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ABSTRACT
MicroRNAs are regulators of gene expressionand may be key markers in liquid biopsy.Early diagnosis is 
an effective means to increase patients’ overall survival. We generated genome-wide miRNA profiles 
from serum of patients and controls from the population-based Janus Serum Bank (JSB) and analysed 
them by bioinformatics and artificial intelligence approaches. JSB contains sera from 318,628 originally 
healthy persons, more than 96,000 of whom developed cancer. We selected 210 serum samples from 
patients with lung, colon or breast cancer at three time points prior to diagnosis (up to 32 years prior to 
diagnosis with median 5 years interval between TPs), one time-point after diagnosis and from indivi
dually matched controls. The controls were matched on age and year of all pre-diagnostic sampling 
time-points for the corresponding case.

Using ANOVA we report 70 significantly deregulated markers (adjusted p-value<0.05). The driver for 
the significance was the diagnostic time point (miR-575, miR-6821-5p, miR-630 with adjusted p-
values<10−10). Further, 91miRNAs were differently expressed in pre-diagnostic samples as compared 
to controls (nominal p < 0.05). Self-organized maps (SOMs)indicated larges effects in lung cancer 
samples while breast cancer samples showed the least pronounced changes. SOMsalsohighlighted 
cancer and time point specific miRNA dys-regulation. Intriguingly, a detailed breakdown of the results 
highlighted that 51% of all miRNAs were highly specific, either for a time-point or a cancer entity. 
Pathway analysis highlighted 12 pathways including Hipo signalling and ABC transporters.Our results 
indicate that tumours may be indicated by serum miRNAs decades prior the clinical manifestation.
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Introduction

MicroRNAs – often abbreviated as miRs or miRNAs – are 
short non-coding RNAs. In basically all organisms, miRNAs 
regulate the gene expression on posttranscriptional level by 
binding to the 3ʹUTR of target genes [1,2]. MiRNAs control 
various cellular processes by targeting a broad number of 
different target genes and target pathways. Even non-canoni
cal binding sites as short as 5-mers can have a deterministic 
influence on the targeting process [3]. Many diseases includ
ing various cancer types as well as neurodegenerative diseases 
are associated with aberrant miRNA expression in affected 
tissues and body fluids [4–7]. One of the most promising 
applications of miRNAs is to facilitate early disease detection 
as liquid biopsies, especially in cancer.

Cancer is the second-most common cause of death worldwide 
and the most common cause of death in men and women under 
the age of 70 and has become a large public health problem. The 
challenges in cancer management are to succeed in early detec
tion, to improve diagnostic precision, to offer an appropriate 
therapy and follow-up, all aimed at reducing suffering and 
prolonging survival.Early detection is especially important 

regarding reduced mortality as therapeutic intervention of 
advanced cancers often has low effect on survival.Early cancer 
detection is particularly promising if the tumour detection occurs 
prior to the clinical manifestation. There is, however, a paucity of 
studies thatpursue the latter idea due to the lack of prospectively 
collected biospecimens. We used samples of the Janus Serum 
Bank,a unique population-based biobank, which collected sera 
form 318,628 originally healthy persons, over 96,000 of whom 
developed cancer after the first samples were taken [8–11].One 
advantage of the Janus Serum bank is the multiple and regular 
sampling over time allowing to follow up pre-diagnostic changes 
of a biomarker.

In addition to miRNAs, the storedserumcontainsother mole
cules which canbe tested for their predictive potential to indicate 
tumour development at very early stages [12].Examples in sum 
include proteins, DNA, metabolites, small non-coding RNAs 
and epigenetic changes [13–15]. Especially, their high degree of 
stability in bloodhas driven the search for miRNAs biomarkers. 
As for any biomarker the identification of confounding factors is 
essential to estimate the diagnostic value of blood-borne 
miRNAs [6,16]. Previously, we comprehensively evaluated the 
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influence of storage time on the totality of blood-borne miRNAs 
by analysing consecutive samples of healthy individuals that 
have been stored in the Janus Serum Bank between 23 and 
40 years at −25 °Celsius. We found that a substantial proportion 
of the miRNome was affected by the age of the blood donor but 
only few miRNAs showed variations in their abundance depend
ing on their storage time (measurement) [17]. Also other factors 
such as smoking influenced the miRNA expression significantly 
[18]. Furthermore, we previouslyalso provided first and prelimi
naryindications forpre-diagnostic miRNA profiles [19] in serum 
of individuals, who were later diagnosed with lung cancer [20].

Because of theurgent clinical needs for screening markers, 
much research is dedicated to discover molecular pre-diagnos
tic cancer signatures. For example, DNA methylation changes 
measured in pre-diagnostic peripheral blood samples were 
found to be associated with smoking and lung cancer risk 
[21]. In a similar direction, hypomethylation of smoking- 
related genes was observed to be correlated to future lung 
cancer in four prospective cohorts [22]. Further, pre-diagnostic 
leukocyte mitochondrial DNA copy number has been discussed 
in the context of lung cancer risk [23]. Also autoantibodies 
against tumour-associated antigens seem to have a potential for 
positive results in pre-diagnostic samples [24]. For colon cancer 
a meta-analysis investigated pre-diagnostic protein levels. The 
results of the study suggest an association of pre-diagnostic 
circulating CRP levels withan increased risk of colorectal cancer 
[25]. Similarly, pre-diagnostic levels of adiponectin and soluble 
vascular cell adhesion molecule-1 (VCAM1) seem to be asso
ciated with colorectal cancer risk [26]. For breast cancer, bio
marker candidates have been likewise identified using serum 
protein profiling of pre-diagnostic serum [27]. But also in other 
cancer types, such as ovarian cancer, pre-diagnostic signatures 
were identified [28].The list of other studies on pre-diagnostic 
biomarkers is far from being complete, however, it show the 
potential of respective tests and the high research interest in 
pre-diagnostic cancer markers.

These previous studies often rely on one or few markers. 
There is however a clear trend towards more complex bio
marker sets. Further, biomarker studies now often consider 
more than only one disease at a time [14]. To analyse respec
tive complex studies including multiple time points and mul
tiple cancer types different bioinformatics, biostatistics, 
machine learning or artificial intelligence approaches can be 
applied. Given the nature of the study we avoided to use 
supervised learning but tested unsupervised competitive 
learning approaches. Respective approaches such as Self 
Organized Maps (SOMs), originally introduced in 1982 by 
Kohonen [29] support the discovery of structures in the 
data. SOMs typically generate two-dimensional and well inter
pretable discretized representations of a high dimensional 
input space. Using SOMs and classical biostatistics methods 
we set to extend the knowledge on pre-diagnostic miRNA 
biomarkers in serumby including strictlymatched controls 
and by analyzingsamples frompatients with carcinoma of 
lung, colon andbreast. We address the questions if and how 
long prior to the diagnosis characteristic blood-bornemiRNA 
changes can be observedin these cases and whetherspecific 
pre-diagnosticmiRNA signaturescan be found forthese cancer 
types. We start our consideration with global aspects, i.e. we 

try to identify overall pre-diagnostic cancer markers before we 
address the topic of discovering pre-diagnostic markers that 
are specific for one cancer entity.

Results

Study set up and miRNA profiling

Weselected serum samples of individuals that later developed 
cancer out of 318,628 stored samples of the Janus Serum 
Bank. Theindividuals had samples at three time points, with 
five-six year intervals,prior to cancer diagnosis andone time 
point after diagnosisfor each patient.Stringentselected cancer- 
free controls with the following criteria: i) the matched con
trols stemmed from donors of the same sex as the cases, ii) the 
age difference between cases and matched controls was not 
more than two years, and iii) the difference between the blood 
collection time point of cases and controls was not more than 
two months ensured control for confounding factors. The 
cases had to develop either lung, breastor colon cancer but 
were not diagnosed with any other cancer type prior to 
diagnosis. The included matched controls were not diagnosed 
with cancer at any time (Fig. 1A/B).Based on these criteria we 
were able to identify 90 case-control paired samples.The sam
ples were stored for up to 40 years with a median storage time 
of 33 years and a median age of blood donors of 41 years at 
enrolment (Fig. 1C).Most samples were collected at three time 
points prior to the cases diagnosis with the median time 
interval between TP1 and TP2 of 5 years and TP2 and TP3 
of 5 years (Fig. 1C).Inherent to the longitudinal character of 
the study design is a strong negative correlation of the age of 
donors and the storage length, i.e. the earliest samples stem 
necessarily from the youngest cases and controls 
(Supplemental Fig. 1).In total, we analysed the miRNomes of 
210 samples including 120 samples from cases and 90 from 
controls. Six samples (2.9%) yielded miRNomes of low quality 
and were excluded from further analysis. Of 2,549 profiled 
miRNAs, 435 were expressed above the background in the 
serum samples.Basic characteristics of the study subjects and 
samples are available in Supplemental Table 1. In the follow
ing we first present a global analysis of changes before we 
consider specific cancer types and finally carry out a pathway 
analysis for the relevant miRNAs.

General patterns between controls, cancer patients prior 
to and post diagnosis

First, we assessed differences between the control samples, the 
pre-diagnostic and the post-diagnostic sampleswithout consid
ering neither the cancer type nor the longitudinal aspect, i.e. the 
three collection time points. An analysis of variance (ANOVA) 
for all cancer types together and with the three groups (controls, 
pre-diagnostic and post-diagnostic)identified 134 significantly 
deregulated miRNAs (unadjusted p < 0.05). Following adjust
ment using the Benjaimin-Hochberg approach still 70 markers 
remained significant at an alpha level of 0.05. The three most 
significant miRNAs (miR-575, miR-6821-5p, and miR-630) 
showed adjusted p-values of below 10−10. For each miRNA, 
raw and adjusted p-value are detailed in Supplemental Table 2. 
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For the majority of miRNAs, the controls largely matched to the 
samples collectedprior to diagnosis. In contrast, the post-diag
nostic cancer showed significantly different miRNA expression 
as compared to the controls. Examples including the most sig
nificant miR-575 (up-regulated following diagnosis) and the 
down-regulated miR-762 are provided in Fig. 2A/B showing 
miRNAs with either reduced or elevated expression in the 
post-diagnostic samples as compared to similar expression 
between controls and pre-diagnostic samples. This calls for 
a more specific analysis in order to discover miRNAs that are 
differently expressed between controls and pre-diagnostic sam
ples. As shown by the density distribution of the p-values, there 
are highly significant miRNAs found for the comparison of pre- 
diagnostic samples and controls (Fig. 2C). Wilcoxon Mann- 
Whitney (WMW) tests for these two groups identified 91 sig
nificant differently expressedmiRNAs (Supplemental Table 3; 
Fig. 2C). We next computed the AUC for each of these 
miRNAsand identified a bi-variate distribution with one peak 
representing miRNA with lower expression in the pre-diagnostic 
cancer samples and the other peak representing miRNAs with 
higher expressionin the pre-diagnostic samples, each as com
pared to the controls. The AUC analysis shows that the num
berof the overexpressed miRNAs is lower (40 miRNAs) than the 
number of the miRNAs with lower expression (51 miRNAs)in 
the pre-diagnostic samples as compared to the controls (Fig. 
2D).Fig. 2E shows miR-149-3p as the most significantly dys- 
regulated miRNA, a miRNA with higher expression in the pre- 
diagnostic cases than in the controls. The study set-up however 
facilitates a more detailed comparison between three cancer 
types and controls at different time points. This leads to a large 
number of pair-wise comparisons. Unsupervised analyses can 
group the patterns of associations and specificity for time points 
and cancer types.

Artificial intelligence to learn temporal and disease 
specific patterns

We next included in our analysis both the cancer type and the 
temporal aspect, i.e. the three collection time points. To this 
end, we applied the self-organizing map (SOM) as 
a competitive learning based artificial neural network. SOM 
is an unsupervised approach, but we used the AUC (and with 
this also the cancer/control information) as input. The SOM 
facilitated dimension reduction, bringing the 435-dimensional 
miRNA space to a 2-dimensional representation.The work
flow of the SOM analysis is presented in Fig. 3A. First, the 
SOM was trained and clusters with respect to AUCsfrom all 
cancer cases combining pre- and post-diagnostic samples as 
compared to the control samples were identified by hierarch
ical clustering. In general, the SOM identified three major 
groups of deregulated miRNAs in this comparison including 
miRNAs with lower expression in the cancer samples, unaf
fected miRNAs and miRNAs with higher expression in the 
cancer cases (Fig. 3B). Second, SOM was trained and clusters 
with data from the three pre-diagnostic time points each 
compared to the control samples were identified. 
Throughout all three time points the SOMs reveal a group 
of miRNAs with lower expression in pre-diagnostic cancer 
samples as compared to the controls (Fig. 3C–E). Higher 
expressed miRNAs in pre-diagnostic cancer samples were 
only identified for the time points closest to diagnosis (Fig. 
3E). The comparison between the post-diagnostic samples and 
the controls highlights distinct patterns of both lower and 
higher expressed miRNAs in the cancer samples (Fig. 3F). In 
summary, SOM showed that the general pattern trained with 
data from all cancer cases combining and all control samples 
(Fig. 3B) is a composition of the disjointed sub-patterns of the 
pre-diagnostic and of the post-diagnostic miRNAs.

50
00

10
00
0

15
00
0

20
00
0

25
00
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

n=10

af
fe
ct
ed
or
ga
ns

se
ru
m
as
re
ad
ou
t

colon

n=10
breast

n=10
lung

n=30
control

TP1 TP2 TP3 TP4 n = 210

n=4 x 10 

n=4 x 10 

n=4 x 10 

n=3 x 30 

storage
length

age

Ti
m

e 
[d

ay
s]

(a) (b) (c)

(204 after removing 6 
experimental drops) 

42y 47y 52y 66y

Ti
m

e 
[y

ea
rs

]

Figure 1. Study set-up and characteristicsof theparticipants.(A) Age distribution and read out. (B) Sampling bycancer type and time point (TP). TP1, 2 and 3 refer to pre- 
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Figure 2. Comparison between cancer and control samples. (A) Box-plot of the normalized expression values of miR-762 in all control samples (HC; free from cancer 
during the study), all samples collected prior to cancer diagnosis(Tumour Pre)and all samples collected after cancer diagnosis(Tumour Post). (B) Box-plot of the 
normalized expression values of miR-575, the most significant miRNA in the analysis of variance. (C) Density distribution of unadjusted p-values for the comparison 
between all pre sampling time points and the matchedcontrols, showing an enrichment of low (significant) p-values.(D) AUC distributions for the comparison 
between all cancer pre sampling time points and the matchedcontrols. An AUC close to 1 indicates higher expression in cancer samples and an AUC close to 0 
indicate higher expression in the control samples.The AUC was computed from all receiver operator characteristic curves (ROC) for paired comparisons of cancer to 
matched controls in each cancer type separately.The red curve corresponds to miRNAs with higher expression in the control samples and the green curve to miRNAs 
with higher expression in pre-diagnostic cancer samples. (E) Box-plot of the normalized expression values for miR-149-3p showing higher expression in pre- 
diagnostic cancer samplescompared to the matched controls.
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We next investigated separately the patterns for the three 
cancer types lung, colon and breast. Specifically, the SOMs 
were analysed for each cancer type according to the following 
five scenarios: All cancer samples versus matched controls, the 
pre-cancer samples of the first, second, and third time point 
each compared to matched controls, and the post-diagnostic 
samples compared to the combined controls. The resulting 
3 × 5 patterns are shown inSupplemental Fig. 2. The analysis 
of the samples combined for each cancer type identified three 
groups of expressed miRNAs including lower expressed 
miRNAs, unaffected miRNAs and higher expressed miRNAs 
for all three cancer types.

The comparison between the three pre-diagnostic time 
points and the matched controls revealed specific patterns 
for each of the three cancer types. The SOM revealed 
a group of up-regulated miRNAs for the first pre-diagnostic 
time point in lung cancer samples. This group of up-regulated 
miRNAs was not found at the second or third time points for 
lung cancer. In contrast, the SOM did not describe clear 
signatures for colon and breast cancer at the first 
and second time points. For colon cancer, the SOM identified 
a group of down-regulated miRNAs at time point three simi
lar to the pattern observed for lung cancer at time point three. 
The SOM did not reveal clear patterns of up- or down- 
regulated miRNAs for breast cancer.The SOM revealed dis
tinct patterns for each cancer type for the comparison 
between post-diagnostic samples compared to controls. 
Specifically, the SOM identified a distinct group of down- 
regulated miRNAs for lung cancer. The least pronounced 
group of down-regulated miRNAs was found for breast can
cer. The most prominent group of higher expressed miRNAs 
was found in colon cancer and less prominent groups of 
down-regulated miRNAs for lung and breast cancer. In sum
mary, the SOM analysis supports the presence of time- and 
disease specific miRNA patterns leading to the question which 
miRNAs contribute to these patterns.

Each cell in the cluster heat maps contains at least one but 
usually more miRNAs with similar expression behaviour in 
and between the groups. For the 10 × 10 cells the miRNAs per 
cluster are presented in Supplemental Table 4 numbered 
consecutively in clusters 1 (lower left corner) to 100 (upper 
right corner). The largest cluster 31 contains 23 miRNAs. 
Having performed detailed analyses for the different cancer 
types and time points can help us to identify diagnostic 
signatures.

Joint analysis highlights 67 diagnostic miRNAs

We computed for each miRNA the number of the above 
comparisons whereit was higher- or lower expressed in any 
cancer or any time point compared to control samples (Fig. 
4A). We found 59 miRNAs, which were not attributed to any 
time-point or disease. The majority of the miRNAs(222) was 
deregulated for only a single time point or a single cancer 
type. Of these, 90 (41.4%) were higher expressed and 130 were 
lower expressed (58.6%).We also observed miRNAs that were 
deregulated at most of the time points and formost cancer 
cases (top left and top right in Fig. 4A).The most prominent 
factor with the strongest impact on miRNA deregulation was 

the time point after cancer diagnosis as exemplified for miR- 
575 in Fig. 4B that was already most significant in the analysis 
of variance (Fig. 2B). However, we also found miRNAs that 
showed an increase of expressionover time prior to diagnosis. 
An example of such a time course is miR-5006-5p in lung 
cancer as shown in Fig. 4C. Other miRNAs were lower 
expressed in pre- diagnostic cancer samples as compared to 
controls. An example is miR-6873-3p that showed an increase 
with age for the controls, but no comparable increase for the 
matched cancer samples (Fig. 4D/E).Since several time-points 
for the same individuals were measured we could generally 
ask whether the miRNA expression levels at consecutive time 
points were significantly altered in cancer cases but not in 
controls.A paired hypothesis test identified 14 miRNAs with 
significantly lower p-values for cases than for controls includ
ing miR-5196-5p and miR-320a as shown in Fig. 5F/G.

In total, we identified 93 miRNAs by the above 4 analyses 
including i) ANOVA of control samples, pre-diagnostic sam
ples, and post-diagnostic cancer samples, ii) comparison of 
pre-diagnostic and controls samples, iii) identification of 
miRNAs that were deregulated in different cancer types, and 
iv) paired hypothesis test for miRNAs that are significantly 
altered in tumour samples but not in matched controls. Some 
miRNAs were identified by several analyses, reducing the 
number to 67 relevant miRNAs (Supplemental Table 5). The 
majority of these miRNAs have also been identified by the 
artificial intelligence-based analyses using SOMs.As shown in 
Fig. 5 h SOM grouped 36 of these miRNAs in one cluster and 
12 miRNAs in a second cluster. Notably, the miR-4687-3p 
and miR-6087 have been identified by three of analyses 
underlying their specific potential as pre-diagnostic markers. 
The immediate question is whether these miRNAs accumulate 
on specific pathways or in specific gene ontology categories.

Pathway analzysis highlights 12 enriched pathways

We performed a miEAA pathway analysis for the 67 miRNAs 
from the previous analysis. This analysis highlighted 12 path
ways (nominal p-value below 0.05 as well as enrichment score 
above 1.2; Supplemental Table 6). Five pathways, ‘D-Arginine 
and D-ornithine metabolism’, ‘ABC transporters’, ‘Glycine, 
serine and threonine metabolism’ and ”Hippo signalling path
way – multiple species”. Had enrichment factors between 6 
and 1.6. With lower enrichment scores we also observed 
different cancer pathways (lung cancer, thyroid cancer, and 
chronic myeloid leukaemia) In sum, 88% of all miRNAs 
contributed in at least one of the 12 pathways. 
Astonishingly, we observed a substantial variability in specific 
and general miRNAs. While 8 miRNAs (hsa-miR-149-3p, hsa- 
miR-1207-5p, hsa-miR-762, hsa-miR-6873-3p, hsa-miR-4741, 
hsa-miR-4530, hsa-miR-4433a-3p, and hsa-miR-1343-5p) 
were contained in 10 or more pathways, 11 miRNAs (hsa- 
miR-6826-5p, hsa-miR-575, hsa-miR-550a-5p, hsa-miR-4721, 
hsa-miR-4515, hsa-miR-4463, hsa-miR-6793-5p, hsa-miR- 
6084, hsa-miR-4687-3p, hsa-miR-3682-3p, and hsa-miR- 
4327) were observed only in three or less pathways. 
A detailed matching of miRNAs to pathways is provided in 
Supplemental Table 6.
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Figure 4. Specific miRNA patterns. (A) Computation of the number of significantly higher- or lower expressed miRNA for each time point and each cancer. Higher expressed 
miRNAs are indicated in red and lower expressed miRNAs in blue. The bubble size corresponds to the number of miRNAs found for a given time point and a specific cancer. 
Specifically indicated in blue is miR-6786 that were lower expressed in 6 analyses and higher expressed in none of the analyses.Also indicated in blue are the 12 miRNAs with 
lower expression in 6 analyses and higher expression in none of the analyses.Specifically indicated in orange is miR-6873-3p that were higher expressed in 7 analyses and lower 
expressed in none of the analyses.Also indicated in orange are the 9 miRNAs with higher expression in 4 analyses and lower expression in none of the analyses.(B) The boxplot 
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each panel) and four cancer time points (right part in each panel). This miRNA was already highest in the analysis of variance and presented in Fig. 2A.(C) Analogously to Fig. 4B we 
present the expression of miR-5006-5p, showing steadily increasing expression over time for lung cancer patients but not for controls. This miRNA is potentially an early lung 
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these miRNAs (upper left corner of the SOM map).
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Discussion

Markers that facilitate detection of tumours in early stages, at 
best pre-diagnostic markers, are one of the most promising 
tools to improve cancer outcome. One question is how long 
prior to diagnosis molecular changes can be measured. To 
address such issues, very large sample collections are manda
tory. Janus Serum Bank in Oslo (Norway)isan comprehensive 
resource for serum samples that have been stored and fol
lowed up over decades.A major strength of the Janus Serum 
Bank is the large number of collected samples and the long 
follow-up time, allowing to identify for each cancer case 
a matching control even by applying stringent criteria. The 
possibility for closely matched pairs was essential for the 
design of our study (nested case-control design), which ana
lysed 30 pairs of samples, each including an individual who 
developed cancer and a matched individual who was not 
diagnosed with cancer at any time point. A further strength 
of the Janus Serum Bank is the multiple sampling over time 
allowing to follow up pre-diagnostic changes of a biomarker. 
This characteristic was also central to the design of our study, 
which includes three pre-diagnostic samples of each indivi
dual selected. One limitation in the study set up was a later 
time point for controls. Since the collection to the Janus 
Serum Bank was ended in 2004 we were not able to acquire 
matched controls for the diagnostic samples, which were 
obtained at later time points.

Still, many factors can potentially confound miRNA pro
files. We thus addressed the influence of different factors 
potentially influencing circulating miRNA biomarker profiles. 
As most obvious confounders we investigated the age and sex 
of individuals [30]. In this study we detected 318 miRNAs that 
were significantly correlated with age and after adjustment for 
multiple testing 35 miRNAs remained statistically significant. 
Regarding sex, 144 miRNAs showed significant dysregulation 
and no miRNA remained significant after adjustment for 
multiple testing. The age seems thus to have a more substan
tial influence than the gender. Both aspects should have 
a limited influence in the present study since we either per
formed paired testing for the same individuals or group com
parisons with cohorts matched for age and gender. But other 
less obvious confounders exist, we e.g. observed even small 
changes depending on the season when samples have been 
collected [31]. The effect size of such changes is however 
typically below the effect sizes for disease related biomarkers.

Nonetheless, we checked especially for the miRNAs that 
are dys-regulated following diagnosis whether the abundance 
in blood changes with age between young and old individuals 
[32]. Of all 64 miRNAs significantly up-regulated following 
diagnosis only one (hsa-miR-21-5p) was also significantly 
correlated with age. Notably hsa-miR-21-5p that is up-regu
lated in the samples following diagnosis (that are older) is 
associated with the opposite, a down-regulation in older indi
viduals. Of the 58 samples down-regulated in cancer samples 
post diagnosis, one is going down with age (hsa-miR-33b-3p) 
and two are going up in age (hsa-miR-574-3p, hsa-miR-324- 
3p). Of course this comparison in itself is not perfect (e.g. the 
miRNAs from the previous study had to be matched to the 
most recent miRBase version, the age range is more extreme 

in the previous comparisons), but limits the likelihood that 
the post cancer signatures are due to the age differences. 
Another challenge in analysis of microarray miRNA expres
sion is whether appropriate approaches are used and whether 
data are log-transformed prior to the analysis. In our study 
the miRNAs were only partially normally distributed on the 
original or the log transformed scale. We thus largely applied 
methods that are rank based and thus do not differ in the 
results depending on a log transformation. Prominent exam
ples are the AUC that was used as input for SOMs or the non- 
parametric Wilcoxon Mann-Whitney test. One exception is 
the analysis of variance. Here, we performed the analysis on 
the original data and on the log transformed data. The nega
tive decimal logarithm of p-values between the two analyses 
was as high as 0.87, demonstrating the very high concordance 
(Supplemental Fig. 3).

Already in previous research studies we obtained valuable 
results from samples of the Janus Serum Bank. We deter
mined the influence of confounding factors including storage 
time, age, sex, smoking, and body mass index among others 
on the patterns [18] of blood-borne miRNAs. Further, we 
identified pre-diagnostic miRNA patternsin sera from lung 
cancer patients [19]. In the present study we extend our 
previous results with respect to many aspects. We now 
include more samples per cancer type, we include time points 
that are much further away from the diagnosis and we mea
sure and compared different cancer types. Lastly, we matched 
on the time difference between the samples allowing only 
minimal variation (a maximal difference between the blood 
collection time point of cases and controls of only up to two 
months). The extended scope of the study also called for 
different bioinformatic and biostatistical approaches, such as 
self-organizing maps as an artificial neural network approach.

The different design of our present and our previous ana
lysis makes it difficult to compare the two analyses both in 
terms of sample collections and in terms of the applied mea
surement technology. Despite the substantial differences 
between the studies, we re-identified several pre-diagnostic 
miRNAs from the previous study in our present results, 
including miR-762, miR-1202, miR-1207-5p, and miR-575. 
To further gauge the biological meaning and especially the 
evidence for causative role of the pre-diagnostic miRNAs 
identified in the present study, we evaluated these miRNAs 
with regards to their previously reported involvement in can
cer. A systematic PubMed search for the 67 miRNAs identi
fied in our study yielded 324 manuscripts that report a cancer 
connection for these miRNAs (Supplemental Table 7). Most 
frequently we found a cancer association for miR-320a, which 
was described in 93 studies, for miR-630 in 59 studies, for 
miR-1207-5p in 25 studies, and for miR-149-3p in 21 studies. 
Specifically, miR-320a has been associated with lung carci
noma in 11 studies, withbreast carcinoma in 17 studies and 
with colon carcinoma in 8 studies. Likewise, miR-630 and 
miR-1207 have previously been associated with the cancer 
types analysed in the present study. In detail, miR-630 wasas
sociated in 10 studies with lung cancer, in 6 studies with 
breast cancer, in 2 studies with colon cancer, and miR-1207- 
5p in 4 studies with lung cancer, in 4 studies with breast 
cancer and in 2 studies with colon cancer (Supplemental 
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Table 8). Our results emphasized miR-4687-3p to have spe
cific potential as pre-diagnostic marker. This is also suggested 
by Nagy et al who identified altered levels of miR-4687 in 
plasma of colorectal cancer and adenomas cases compared to 
individuals with normal colon [33].Also miR-6087, the other 
miRNA showing specific potential, has previously been sug
gested as a circulating early detection biomarker of bladder 
cancer in a large serum study [34], with a potential role in 
regulation of p53 [35].Circulating cell-free RNA are consid
ered promising as liquid biopsy cancer markers, although the 
biological and clinical interpretations are challenging [36]. 
Our study is indicativeof RNA profiles specific for cancer 
decades before diagnosis, however, validation and biological 
and clinical interpretations are needed in future studies.

Since most of these studies were on tissue orcell cultures, 
care must be taken to prematurely hypothesize a causal role for 
the pre-diagnostic sera miRNAs in the development of these 
cancers.Although we analyzeda total of 210 samples, it has also 
to be acknowledged that we could only identify 10 patients for 
each cancer type.This was due to the criteria of sample selection 
requiring i) three pre-diagnostic samples for each patient with 
ii) comparable collection time points, and with iii) matched 
controls both in terms of the patients’ age and the collection 
time points. The predictive value of the identified miRNAs 
awaits confirmation by prospective studies with an extended 
number of samples ideally recruiting from additional popula
tions beside the Norwegian population that was analysed in the 
present study.Such prospective cohort-based studies, however, 
require long follow up times as part of a longitudinal study 
design, which are essential to identify new biomarkers [37]. 
While the respective study set ups have clear advantages as 
pointed out above, they will likely not reach the cohort sizes of 
current case-control studies that include already for single 
cancer types over 3,000 patients and controls [38]. One solution 
will be to combine the results of studies with stringent match
ing as performed here with results of studies having larger 
cohort sites and less stringent inclusion criteria e.g. considering 
the pre-diagnostic time points.

In summary,our results suggest that circulating miRNA sig
natures can be found decades prior to the clinical manifestation 
of a tumour. The most prominent miRNA changes occur in pre- 
diagnostic samples for lung cancer, which could however be 
confounded by smoking behaviour of patients and controls. 
This is consistent with our previous study that showed dynamic 
pre-diagnostic changes of circulating RNAs related to the histol
ogy and the stage of lung cancer after its manifestation. As for 
colon and breast cancer, our results indicate less pronounced 
changes of blood-bornemiRNAs prior to diagnosis. While the 
results of our study are generally promising it is evident that 
reproduction in other cohorts is required.

Methods

Study set-up and RNA extraction

In the study we included lung cancer, colon cancer and breast 
cancer patients, three of the top most common cancers and where 
the identification of early detection biomarkers would have 
a large impact. We also wanted to compare miRNA signatures 

across different cancer types. The cancer cases were identified by 
linking the Janus Cohort to the Cancer Registry of Norway using 
the individual’sNorwegian national identity number.

For each cancer group, 10 patients were included who had 
three pre-diagnostic and one diagnostic sample available.30 
control individuals were selected. For the cancer patients three 
pre-diagnostic and one post diagnostic time point were mea
sured (120 samples) for the controls three time points match
ing the pre-diagnostictime points were measured (90 samples) 
(Fig. 1B). Between cancer and matched controls, a maximal 
time difference of two months was allowed. All samples in the 
JSB are stored at −25°C and collected in gel vials, or in 10-mL 
tubes containing either 5 mg sodium iodoacetate or no addi
tives. Total RNA including miRNAs was isolated using the 
miRNeasy Serum/Plasma Kit (Qiagen, Hilden, Germany) as 
previously described[17]. Of the 210 samples, 204 yielded 
high-quality RNA and microarray results, 6 samples were 
excluded for quality reasons[39].The study was approved by 
the Norwegian regional committee for medical and health 
research ethics (REC no: 2013/614). The donors have given 
broad consent for the use of the samples in cancer research.

Microarray measurement

Genome wide miRNA expression profiles were created using 
the SurePrint G3 8 × 60 k miRNA microarray (miRBase 
version 21, Cat. no. G4872A). Using this microarray, probes 
for 2,549 mature human miRNAs were measured. As input 
material for the microarray screening, 100 ng total RNA 
including miRNA was used for each sample. The hybridiza
tion process and read out of the microarrays has been per
formed according to manufacturer’s recommendations as 
previously described[17].

Data processing and bioinformatics

Features were extracted from the manufacturers GW Feature 
Extraction software (version 10.10.11, Agilent Technologies). 
Replicated measurements of miRNAs were summarized by the 
median expression and data were subjected to standard quantile 
normalization. Filtering of miRNAs close to the background 
excluded 2,114 miRNAs leaving an expressed set of 435 serum 
miRNAs. The filtering was done using the present call definition 
of the Manufacturers software that identifies a feature to be 
expressed if it is significantly above the microarray background. 
The expression matrix is freely available without any restriction 
(Supplemental Table 9).Since miRNA measurements were not 
always normally distributed (according to Shapiro Wilk 
Normality tests), non-parametric Wilcoxon Mann-Whitney 
(WMW) test have been performed in addition to the parametric 
t-test. If not mentioned explicitly, p-values in the manuscript 
rely on the WMW test. Because of the explorative nature of our 
study nominal p-values are reported. To assess differential 
expression of miRNAs, the area under the curve (AUC) has 
been computed in addition to p-values. Note that the AUC is 
closely related to the effect size of the WMW test. Here, an AUC 
close to 0.5 means no dys-regulation, an AUC below 0.5 means 
higher expression in controls and an AUC above 0.5 means 
higher expression in cancer patients. An AUC of 1 in turn 
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means that the lowest expression in a cancer patients is above 
the highest in a control patient and vice versa an AUC of 0 
means that the lowest expression in a control patient is above 
the highest expression in cancer samples.To compute the den
sity of AUC values, the em algorithm for mixtures of univariate 
normal the normalmixEM from the R mixtools package has 
been applied assuming two components. To assess sources of 
data variability, Principal Variance Component Analysis 
(PVCA) using the Bioconductor pvca package has been per
formed. To learn cancer and time patterns we applied one type 
of artificial neural networks (aNN), so called self-organized 
maps (SOMs). The computations have been performed using 
the kohonen and somgrid package from R. We used 
a hexagonal 10 × 10 grid to group the 435 serum miRNAs. As 
feature vector, the AUC values for the different comparisons 
were used. The data set was presented 10,000 times to the SOM 
with a learning rate linearly decreasing from 0.05 to 0.01. To 
cluster the SOM results, hierarchical clustering using the hclust 
function has been performed. All downstream analyses have 
been carried out with R (R 3.3.2 GUI 1.68 Mavericks build 
(7288)).

Pathway analysis

As pathway analysis we used the newest release of our miEAA 
tool [40] (https://anathema.cs.uni-saarland.de/mieaa_tool/). 
We performed a so-called Over-Representation analysis by 
uploading the relevant miRNAs and comparing them against 
the human background. We allowed only categories with at 
least three miRNAs contained in order to exclude very small 
categories showing an arbitrary enrichment (e.g. a category 
with an expected number of 0.1 miRNAs and one miRNA 
observed would show an enrichment factor of 10). We set the 
nominal alpha level to 0.05 and only considered categories 
with an enrichment factor of at least 1.2.

Data Availability Statement
The expression intensities of the miRNAs included in the study are 
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