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ABSTRACT
Jnks are mitogen activated protein kinases that are best known for regulating transcription and
apoptotic signaling. However, they also play important roles in controlling cell motility and invasion
by phosphorylating many actin and microtubule regulatory proteins. These mechanisms have
important implications for normal cell motility as well as cancer metastasis. Jnks are activated by
growth factors and cytokines that stimulate cell motility, and this often requires upstream activation
of Rho GTPases. Our recent work indicates that Jnks may also regulate Rho GTPase activation.
Specifically, we found that Jnk-dependent phosphorylation of the RhoA guanine nucleotide
exchange factor (RhoGEF) Net1A promotes its cytosolic accumulation to drive RhoA activation
and actin cytoskeletal reorganization. Net1A is unusual among RhoGEFs in that it is sequestered
in the nucleus to prevent aberrant RhoA activation. Importantly, Jnk-stimulated cytosolic localization
of Net1A is sufficient to stimulate cell motility and extracellular matrix invasion in non-invasive
breast cancer cells. Since Net1A expression is critical for cancer cell motility and invasion in vitro, and
breast cancer metastasis in vivo, these data uncover a previously unappreciated regulatory mechan-
ism that may contribute to metastasis in multiple types of cancer.
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Introduction

c-Jun N-terminal kinases (Jnks) are Mitogen Activated
Protein Kinase (MAPK) family enzymes that are best
known for regulating pro-apoptotic signaling and tran-
scriptional activation. However, these kinases clearly
play wider roles in the cell, including the regulation of
cell motility and invasion. There are three genes in the
Jnk family, Jnk1, Jnk2, and Jnk3, which are also known
as stress activated MAP kinases (SAPKγ, α, and β,
respectively). There are multiple isoforms for each
gene. Jnk2 was the first enzyme discovered, where it
was purified from rat livers as a cyclohexamide-stimu-
lated, microtubule-associated protein-2 (MAP2) kinase
[1]. Soon thereafter, a protein kinase capable of phos-
phorylating recombinant c-Jun on its N-terminal activat-
ing sites S63 and S73 was purified from U937 cells [2].
Concurrently a UV- and Ras-responsive S63/S73 c-Jun
kinase was purified from HeLa cells [3]. However, it was
not until the cloning of Jnk1 and Jnk2 that it was
appreciated that these different kinase activities corre-
sponded to the same family of enzymes [4,5]. Since then
it has been shown that a wide variety of stimuli activate
Jnks, ranging from growth factors and oncogenes to
stress and apoptotic stimuli [6–8].

Like all MAPKs, Jnk activation is controlled by a
multi-tiered kinase cascade consisting of Jnk kinases
(MKK4 and MKK7), Jnk kinase kinases (a wide variety
of enzymes in the MAP3K family), and in some cases
enzymes within the MAP4K family (Figure 1) [8]. The
existence of a multi-tiered kinase cascade provides for
specificity of response to particular stimuli, as well as
signal amplification that makes the activation of Jnks
very switch-like [9]. In addition, there are a number of
scaffolding proteins that co-localize Jnks with specific
MAP2Ks and MAK3Ks to increase signaling specificity
and speed of activation [7,10]. These scaffolding pro-
teins also serve to limit Jnk activation to specific sub-
cellular locations.

Regulation of cell motility by Jnks during
development

Jnks most often regulate transcriptional activity through
phosphorylation of transcription factors such as c-Jun,
ATF, and others [11]. However, Jnks are also active in
the cytoplasm, and many of these substrates are impor-
tant for controlling cell motility. A role for Jnk in
controlling cell movement was first discovered in
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Drosophila, where signaling within this cascade was
found to be necessary for dorsal closure within the
embryo. This developmental process requires epithelial
cell sheet spreading, which is mediated by actin cytoske-
letal reorganization and cell movement [12]. Specifically,
it was found that deletion of either Hep (MKK7) or
basket (Jnk) prevented dorsal closure [13,14]. A later
study showed that this was due in part to Jnk-dependent
expression of Dpp (a BMP homolog), indicating that at
least part of the effect was due to transcriptional regula-
tion [15]. Soon thereafter, it was discovered that mice
lacking both Jnk1 and Jnk2 exhibited a deficit in neural
tube closure during fetal development. However, as this
process also requires changes proliferation and apopto-
sis, it was unclear to what extent alterations in cell
motility played a role [16,17]. A later study showed
that Jnk signaling was important for collective move-
ment of border cells in Drosophila egg chambers. In
this study, loss of Jnk expression resulted in dissociation
of cell clusters with a loss of apical-basal polarity. This
was due in part to reduced D-Paxillin expression, indi-
cating once again that transcriptional control was an
essential aspect of Jnk-regulated cell movement during
embryogenesis [18].

Regulation of cell motility by Jnks in vitro

Stronger evidence for direct control of cell motility by
Jnks comes from studies in cultured cells, where var-
ious Jnk substrates regulating cytoskeletal organization
have been identified. For example, inhibition of Jnk
activity with the small molecule inhibitor SP600125,
or by expression of dominant negative Jnk1, blocked
motility in fish keratinocytes and rat bladder cancer
cells. This was at least partly due to phosphorylation
of paxillin on S178, as expression of a mutant paxillin
S178A slowed the turnover of focal adhesions and actin
stress fibers that is required for optimal cell motility
[19]. In a later study, Jnk was shown to phosphorylate
the actin bundling protein MARCKSL1 on three sites in
neurons and PC3 prostate cancer cells. In this work,
Jnk phosphorylation enhanced the actin bundling and
filament stabilizing properties of MARCKSL1 [20].

A significant number of studies indicate that Jnk
regulates microtubule dynamics by phosphorylating
microtubule regulatory proteins. For example, Jnk1
has been shown to phosphorylate the microtubule-asso-
ciated proteins MAP2 and MAP1B in mouse brains.
Mice with Jnk1 deletion exhibited reduced MAP2 phos-
phorylation in vivo and developed age related neurode-
generation [21]. MAP2 isolated from Jnk1−/- mouse
brains was also less effective at promoting microtubule
polymerization in vitro, consistent with its reduced
ability to bind to microtubules. In a separate set of
studies, expression of dominant negative Jnk1 in
mouse embryonic cerebral cortex inhibited neuronal
migration in vivo and in vitro. Moreover, treatment of
these neurites with the Jnk inhibitor SP600125 inhib-
ited MAP1B phosphorylation, which was associated
with reduced microtubule stability [22,23].

Jnk1 has also been reported to phosphorylate the
microtubule binding protein DCX, which is required
for interaction with the motor protein Kinesin 1. The
ability of Jnk1 to phosphorylate DCX was dependent
on its interaction with the Jnk scaffolding protein
JIP1, and DCX phosphorylation promoted neurite
outgrowth and cell motility in rat primary hippocam-
pal neurons [24]. Jnk1 also interacts with and phos-
phorylates the microtubule severing protein SGC10/
Stathmin2, which prevents its association with micro-
tubules and thus indirectly enhances their stability
[25,26]. Jnk1 is also critical for gut elongation in
Xenopus laevis, where inhibition of Jnk activity with
SP610025, or Jnk1 knockdown with morpholinos,
inhibited cell-cell adhesion and reduced microtubule
stability [27]. Taken together, these results indicate
that Jnks regulate microtubule dynamics, cellular
adhesion, and actin cytoskeletal organization by
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Figure 1. Jnk activating kinase cascades. Jnks are activated by a
multi-tiered, sequential kinase cascade that minimally consists
of an upstream MAP2K and MAP3K. Some stimuli make use of a
MAP4K enzyme. Shown are the genes that have been impli-
cated in Jnk activation within each tier.

386 A. ULU AND J. A. FROST



phosphorylating multiple regulatory proteins, and that
these events are critical for controlling cell motility
and development.

Regulation of Rho protein activity by Jnk

In contrast to the multiple reports demonstrating phos-
phorylation-dependent regulation of proteins that
directly regulate cytoskeletal organization, there are
relatively few reports of Jnk directly controlling Rho
GTPase activation. One of the only examples is the
RhoA GEF p63RhoGEF/GEFT, which is inhibited by
interaction with the Jnk-activating MAP3K, MLK3
[28]. In this work it was shown that expression of
constitutively active Gαq, or stimulation of the Gq-
coupled muscarinic type 1 receptor, promoted interac-
tion between MLK3 and p63RhoGEF, thereby inhibit-
ing its RhoA GDP exchange (GEF) activity. In a
feedback loop, this interaction was blocked by phos-
phorylation of MLK3 by Jnk, thereby releasing
p63RhoGEF to allow RhoA activation.

Recently we have reported that Jnk, and to a lesser
extent p38 MAPK, can phosphorylate the RhoA GEF
Net1A (neuroepithelial cell transforming gene 1A) to
promote its cytosolic localization and RhoA activation
[29]. Net1A is a RhoA subfamily GEF that regulates
breast cancer cell motility in vitro [30,31], as well as
lung metastasis in a mouse model of breast cancer [32].
Importantly, the ability of Net1 isoforms to stimulate
RhoA activation in the cytosol or at the plasma mem-
brane is negatively regulated by nuclear sequestration
[33,34]. Net1A localizes to the nucleus because of two
nuclear localization signal (NLS) sequences in its
N-terminal regulatory domain [35]. Nevertheless,
ligand stimulation of quiescent cells causes a rapid
export of Net1A from the nucleus that requires Rac1
activation and results in lysine acetylation within the
second NLS sequence. This neutralizes the positive
charges of the lysines within this NLS, inhibiting its
function and most likely slowing the rate of nuclear re-
import of Net1A [35,36].

To understand whether additional mechanisms
contributed to Net1A cytosolic localization, we tested
whether the MAPK family of enzymes played a role.
We focused on the Erk, Jnk, and p38 MAPK families
as these enzymes are all activated downstream of
Rac1 and are known to translocate to the nucleus
upon activation [37–41]. We observed that small
molecule inhibition of all three MAPK families
blocked EGF-stimulated relocalization of Net1A to
the cytosol in MCF7 breast cancer cells, but that the
cells were most sensitive to inhibition of Jnk family
enzymes [29]. Moreover, expression of constitutively

active MKK7 or MKK3, which stimulate Jnk and p38
MAPK respectively, was sufficient to maximally sti-
mulate Net1A cytosolic relocalization in the absence
of ligand. Jnk-dependent regulation of Net1A subcel-
lular localization occurred following stimulation with
TNFα, and also occurred in the invasive breast cancer
cell lines BT20, MDA-MB-436, and MBA-MB-453
after stimulation with EGF, Heregulin, or fetal bovine
serum. Thus, Jnk-dependent control of Net1A cyto-
solic accumulation appeared to be a generalizable
means of regulation.

To understand how Jnks regulated Net1A cytosolic
localization, we tested whether Jnk1 was capable of
phosphorylating Net1A. Using purified, recombinant
proteins and tandem LC-MS/MS, we showed that Jnk1
phosphorylated Net1A mainly on serine 52 in vitro.
Importantly, mutation of serine 52 to alanine prevented
EGF- or MKK7-stimulated cytosolic relocalization of
Net1A. Moreover, a portion of Net1A containing an
S52E substitution to mimic Jnk phosphorylation was
constitutively localized to the cytosol. To determine
whether phosphorylation of this site promoted nuclear
export or prevented nuclear import, we treated Net1A
transfected cells with the nuclear importin β inhibitor
importazole, which promoted cytosolic accumulation of
Net1A. The importazole was then washed out and the
cells were allowed time to relocalize Net1A to the
nucleus. In these experiments, we observed that wild
type Net1A completely relocalized to the nucleus within
4 hours of importazole washout, but that Net1A S52E
never returned to the nucleus. Taken together these
experiments indicated that EGF-stimulated cytosolic
relocalization of Net1A required Jnk-dependent phos-
phorylation of Net1A on serine 52, and that this pre-
vented nuclear re-import of Net1A.

These data still left open the question of how Net1A
nuclear export was achieved. Years ago, Schmidt and
Hall showed that cytosolic accumulation of an
N-terminal truncation mutant of Net1, called Net1ΔN,
was blocked by leptomycin B, which is an inhibitor of
the nuclear exportin CRM1 [33]. Thus, we tested
whether Net1A nuclear export was also CRM1-depen-
dent. We observed that EGF- or MKK7-stimulated
Net1A nuclear export was completely blocked by lep-
tomycin B treatment, indicating that CRM1 function
was necessary. Interestingly, Net1A lacks a nuclear
export signal (NES) sequence, which is normally
required for interaction with CRM1. Thus, these data
suggest that ligand stimulated nuclear export of Net1A
must promote interaction with one or more NES-con-
taining proteins that mediate nuclear exit.

To understand the phenotypic consequences of Net1A
regulation by Jnks, we tested for effects on RhoA
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activation and actin cytoskeletal reorganization. We
found that Net1A S52E substitution did not affect the
intrinsic RhoA GEF activity of Net1A, but did allow
Net1A to stimulate RhoA activation, myosin light chain
phosphorylation, and F-actin accumulation. Thus, cyto-
solic relocalization was sufficient for Net1A to activate
RhoA. We then tested whether this affected cell motility
and invasion. For these assays, we usedMCF7 cells, which
are epithelial in character and thus weakly motile and
non-invasive. We found that expression of Net1A S52E
significantly stimulated the motility of these cells, and
allowed them to invade a Matrigel extracellular matrix
(ECM). One mechanism by which cancer cells invade an
ECM is through the formation of invadopodia, which are
small, metalloproteinase secreting protrusions that allow
cells to form pores in a dense ECM [42,43]. MCF7 cells
are normally incapable of forming invadopodia.
However, we observed that Net1A S52E expression
caused these cells to form prominent Tks5-containing
invadopodia. Taken together these data indicate that
Jnk-stimulated cytosolic relocalization of Net1A in breast
cancer cells is sufficient to promote RhoA activation, cell
motility, and ECM invasion (Figure 2).

Perspectives

The role of Jnk signaling in cancer cell motility and
metastasis is complex. Jnks were originally investigated
as kinases that promote tumorigenesis, but they also
clearly play a negative role through their pro-apoptotic

functions [40,44]. The majority of studies indicate that
MKK4 and MKK7 play tumor suppressive roles, as they
are mutated in a number of human cancers and suppress
metastasis when overexpressed [45,46]. However, MKK4
deletion in human cancer cells has been shown to inhibit
metastasis in mice, suggesting that the single allele dele-
tions or mutations that occur in the majority of human
cancers underlie a pro-tumorigenic role of low level
MKK4/7 signaling [47]. A number of Jnk-directed
MAP3Ks have also been shown to contribute to breast
cancer invasion and metastasis. MEKK1 deletion impairs
metastasis in the MMTV-PyMT mouse model of breast
cancer [48]. Similarly, shRNA knockdown of MEKK2 or
MLK3 in MDA-MB-231 human breast cancer cells inhi-
bits tumorigenesis and metastasis [49,50]. Alternatively,
knockdown of NIK impairs metastasis of colorectal can-
cer cells in mice [51]. The MAP4K Pak1 may contribute
to tumorigenesis and metastasis in a number of human
cancers [52]. However, a caveat of these studies is that
MAP3K and MAP4K enzymes stimulate multiple signal-
ing pathways in addition to activating Jnks, which
undoubtedly contributes to their pro-tumorigenic and
pro-metastatic functions.

In regards to Rho GTPase signaling, it is perhaps not
surprising that Jnks would also impact Rho GTPase
activation. Paks were cloned as Rac- and Cdc42-acti-
vated kinases [53], and many MAP3Ks such as MEKKs
and MLKs are regulated by Rho proteins [54–56]. Thus,
one might expect feedback regulation of Rho GTPase
activation. Furthermore, cell motility requires precise
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regulation of the localization and timing of Rho
GTPase activation [57,58], and Jnk-stimulated relocali-
zation of Net1A to the cytosol may represent one such
mechanism to promote localized RhoA activity. It
might seem counterintuitive that active Rac1 would
recruit a RhoA GEF such as Net1A to promote RhoA
activation, due to the ability of Rac1 to inhibit RhoA
activation [59–62]. However, Rac1 inhibition of RhoA
is a dynamic, transient event, so Jnk-dependent reloca-
lization of Net1A may provide a mechanism to main-
tain a ready pool of Net1A in the correct place to allow
for proper timing of RhoA activation. Ultimately, these
data may offer an additional mechanism accounting for
why small molecule inhibition of Jnk appears to be a
potent means to block breast cancer cell invasive capa-
city [63–65].

How Jnk phosphorylation of Net1A blocks nuclear
re-import is an open question. The Jnk phosphoryla-
tion site, serine 52, is located between the two NLS
sequences in Net1A, and phosphorylation of this site
creates a predicted class IV, WW domain binding site,
so the simplest explanation is that it drives interaction
with a protein that would prevent productive interac-
tion of the NLS sequences with nuclear importins. In
regards to mechanisms controlling Net1A subcellular
localization, it is still not clear how CRM1 controls
Net1A nuclear export. Previously it has been shown
that the PH domain of Net1 is sufficient to promote
nuclear export [33], so presumably this domain med-
iates interaction with one or more NES-containing
proteins that would respond to ligand stimulation.
The identity of these proteins, as well as the signals
driving their association, are still open questions. In
addition, RhoA is typically activated at the plasma
membrane, and mechanisms promoting the association
of Net1A with the plasma membrane are not under-
stood. These mechanistic questions are important to
answer, as regulation of cell motility and invasion is
likely to be an important aspect of how Net1A contri-
butes to breast cancer metastasis [32]. Moreover, a
better understanding of these mechanisms may provide
novel insights for the design of therapeutic avenues to
intervene in the metastatic process.
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