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Overexpression of YPT6 restores invasive filamentous growth and secretory
vesicle clustering in a Candida albicans arl1mutant
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ABSTRACT
Virulence of the human fungal pathogen Candida albicans depends on the switch from budding to
filamentous growth. Deletion of the Arf GTPase Arl1 results in hyphae that are shorter as well as
reduced virulence. How Arl1 is regulated during hyphal growth, a process characteristic of
filamentous fungi, yet absent in S. cerevisiae, is unknown. Here, we investigated the importance of
the Rab6 homolog, Ypt6, in Arl1-dependent hyphal growth and determined that YPT6
overexpression specifically rescued the hyphal growth defect of an arl1 mutant, but not the
converse. Furthermore, we show that deletion of ARL1 results in an alteration of the distribution of
the Rab8 homolog, Sec4, in hyphal cells and that this defect is restored upon YPT6 overexpression.
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Introduction

Cell shape changes are critical for a range of biological
processes, such as neuronal development, and cell shape
abnormalities are characteristic of cancer cells. Morpho-
logical changes are also crucial for the virulence of a
range of plant and human fungal pathogens. Candida
albicans is a major fungal pathogen of humans that
accounts for »10% of hospital-acquired bloodstream
infections, with mortality rate exceeding 30%. The suc-
cess of C. albicans as a pathogen is associated with its
ability to switch between different morphological
states.1–3 These dramatic cell shape changes require cyto-
skeleton reorganization and sustained membrane traffic,
resulting, in particular, in the secretion of hydrolytic
enzymes, critical for pathogenicity.4–6 During filamen-
tous growth, C. albicans secretory vesicles are clustered
at a structure called the Spitzenk€orper at the tip of the fil-
ament,7 the Golgi apparatus redistributes to the apex
region8,9 and endocytosis sites form a collar below the
hyphal tip.8,10 Trafficking to the plasma membrane is
mediated by vesicular transport regulated by small
GTPases of the Arf (ADP-ribosylation factor) and Rab
(Ras-related in brain) families.11–16

C. albicans has 5 Arf/Arl homologs compared to 26 in
Human. C. albicans is a diploid yeast, thought to have
diverged from Saccharomyces cerevisiae approximately
800 millions years ago.17 We recently showed that of these 5
Arf/Arl proteins, only Arf2 is essential for viability and

antifungal drug sensitivity.18 While both Arf2 and Arl1 are
required for hyphal growth and virulence, Arl1 is addition-
ally critical for restricting hyphal growth to a single site,
likely via regulation of protein secretion. Arl1 is involved in
multiple cellular processes both in mammalian and yeast
cells.19 How is Arl1 regulated during hyphal growth, a pro-
cess characteristic of filamentous fungi, is at present
unknown. Several studies have shed light on the crosstalk
between Arf and Rab proteins; in budding yeast, Arl1 was
shown to genetically interact with the Human Rab6 homo-
log, Ypt6.20–22 Recently, a role of Arl1 and Ypt6 in S. cerevi-
siae autophagy was also reported.23–25 Here, we investigated
the importance of Ypt6 in C. albicans Arl1-dependent fila-
mentous growth.

Results and discussion

We have shown that an arl1/arl1 deletion mutant was
dramatically reduced in invasive growth in response to
fetal calf serum (FCS) or the carbon source-poor Spider
medium.18 Fig. 1A and 1B show that the arl1/arl1 defect
was partially rescued by over-expression of YPT6, on
both media. To examine if GTP-GDP cycling of Ypt6
was critical for such a rescue, we generated constitutive
active and constitutive negative mutants of Ypt6. Fig. 1C
shows that, compared to over-expression of wild-type
Ypt6, over-expression of the constitutive negative form
of Ypt6, Ypt6[T25N], did not rescue the defect while
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over-expression of the constitutive active form, Ypt6
[Q71L], rescued the defect to an intermediate level, sug-
gesting that GTP-GDP cycling of Ypt6 is indeed critical.
Alternatively, it is possible that the reduced efficiency of
Ypt6[Q71L], compared to Ypt6, to restore invasive
growth is due to sub-optimal activation by a GEF.26 We
next investigated the importance of YPT6 for invasive
growth and Fig. 1D shows that YPT6 is also critical, as a
ypt6/ypt6 deletion mutant was dramatically reduced in

invasive growth. This defect in invasive growth of the
ypt6/ypt6 mutant was complemented by over-expression
of YPT6, but not over-expression of ARL1. The deletion
and over-expressing mutants were verified by RT-PCR
(Fig. 1F and 2G).

Previously, we also observed that the arl1/arl1 mutant
had reduced hyphal growth in response to FCS in liquid
media, with filaments »2-fold shorter compared to that
of the wild-type.18 Fig. 1E shows that arl1/arl1 cells

Figure 1. Overexpression of YPT6 rescues the hyphal invasive growth defect in an arl1 deletion mutant. (A-D) Overexpression of YPT6
specifically rescues invasive growth in arl1/arl1 cells. Indicated strains were grown on agar-containing YEPD with 50% FCS (A, C, D) or
on Spider media (B) and images were taken after 5–6 days. Similar results were observed in 2 independent experiments. (C) Rescue of
invasive growth in arl1/arl1 cells depends on Ypt6 activity. Indicated strains were grown on agar-containing YEPD with FCS as in A. (D)
Overexpression of ARL1 does not rescue invasive growth in ypt6/ypt6 cells. Indicated strains were grown on agar-containing YEPD with
FCS as in A. (E) Overexpression of YPT6 partially rescues arl1/arl1 hyphal length defect. Cells from the indicated strains were incubated
with FCS for 90 min and the graph shows the average hyphal length (mean of 200–400 cells each strain, from 3 experiments); error bars
indicate SD. Student t test was used to calculate the p values: arl1 C ARL1 vs arl1: 0.0028 and arl1 C YPT6 vs arl1: 0.0042. (F) YPT6 and
ARL1 transcripts in the overexpression mutants. mRNA and cDNA were prepared from the indicated strains and the transcripts were
quantified by RT-PCR; actin (ACT1) was used for normalization. (G) Overexpression of YPT6 does not rescue cell wall defects in arl1/arl1
cells. Serial dilutions of the indicated strains were spotted on YEPD media (Ctrl) containing 400 mg/ml Congo red (CR) or 1 mg/ml
hygromycin B (HygB). Images were taken after 2 days.
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over-expressing YPT6 have an average hyphal length of 16
§ 3 mm (nD 400 cells), which is intermediate compared to
12 § 2 mm (n D 250 cells) and 21 § 4 mm (n D 160 cells)
for the arl1/arl1 and the arl1/arl1 over-expressing ARL1

cells, respectively. Over-expression of YPT6 in WT cells did
not result in an increase of hyphal length (21 § 4 mm,
nD 300 cells, compared to 23§ 4mm, nD 200 cells, for the
WT cells).

Figure 2. Overexpression of YPT6 rescues the altered Sec4 distribution in the arl1 deletion mutant. (A-B) Arl1 and Ypt6 partially co-localize
in hyphae. The mCh-Ypt6 fusion is functional (A) Cells from the indicated strains were incubated on Spider media and images were taken
after 5 days. Similar results were observed in 2 independent experiments. Maximum projections of 21 deconvolved z-sections of representa-
tive cells expressing Arl1-GFP together with mCh-Ypt6 after 90 min FCS-induced hyphal growth; GFP and mCherry signals were acquired
simultaneously. (B) (C-E) Sec4, but not Mlc1, distribution is altered in arl1/arl1 cells. WT and arl1/arl1 cells, expressing Mlc1-GFP (C) or GFP-
Sec4 (D), were incubated with FCS for 45 and 90 min, respectively. Representative images are shown. Cell fluorescence concentration pro-
files were analyzed with the HyphalPolarity program,47 to quantify the GFP-Sec4 signal concentration along the major axis of hyphal cells,
from sum projection images generated with Image J (E). (F) Overexpression of YPT6 restores Sec4 clustering in arl1/arl1 cells. The graph
shows averages of 3 independent experiments (n D 10–30 cells each) for each indicated strain, with p values: arl1 vs WT: 0.0004, arl1 C
ARL1 vs arl1: 0.0028 and arl1 C YPT6 vs arl1: 0.0042; no statistically significant difference was observed between the values for WT, arl1 C
ARL1 and arl1 C YPT6. (G) YPT6 and ARL1 transcripts in strains expressing GFP-Sec4. Transcripts were determined as in Fig. 1F.
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Furthermore, the D/pTetARF2 mutant, and to a lesser
extent arl1/arl1 mutant, had reduced growth on the cell
wall perturbant congo red (CR) a defect complemented
by the addition of the respective gene.18 Fig. 1G shows
that the arl1/arl1 defects on this cell wall perturbant is
not rescued by the over-expression of YPT6. In C. albi-
cans, cell wall integrity mutants often exhibit a growth
defect on hygromycin B (HygB). In S. cerevisiae, the
hypersensitivity of an arl1 deletion mutant to hygromy-
cin B was not rescued by YPT6 overexpression.21 Fig. 1G
shows, intriguingly, that the growth defect on hygromy-
cin B was stronger for the arl1/arl1 than theD/pTetARF2
mutant and, in contrast to growth on CR, the growth
defect of the arl1/arl1 mutant was rescued by over-
expression of YPT6.

Previously, we showed that a functional Arl1-mCh
fusion localizes to the late Golgi by colocalization with
Sec7-GFP.18 Here, we generated a functional mCh-Ypt6
fusion, which complements the invasive growth defect of
the ypt6/ypt6 mutant (Fig. 2A). In S. cerevisiae budding
cells, Ypt6 was shown to localize both to the cis- and
trans-Golgi, with» 30% colocalization with Sec7,27 while
in Aspergillus nidulans, its homolog RabC also localized
to the Spitzenk€orper.28 Comparison of the localization of
mCh-Ypt6 to that of Arl1-GFP in C. albicans WT cells
(Fig. 2B) revealed that the majority of Arl1 containing
punctae also had Ypt6 signal (67 § 8% punctae had both
signals, n D 55 cells), indicating that Arl1 and Ypt6 are
largely co-localized during hyphal growth. To confirm
this result, we compared the localization of Ypt6 to that
of Sec7 and determined a similar level of colocalization
(63% § 4% of Ypt6 containing punctae had Sec7 signal,
n D 90 cells).

Our previous results suggested that the polarized
growth defect in the arl1/arl1 mutant results from misre-
gulated secretion.18 We further investigated secretion in
this arl1/arl1 mutant by examining the distribution of a
Spitzenk€orper marker, the myosin light chain, Mlc1, and
that of secretory vesicles, the small Rab G-protein Sec4.7

Fig. 2C shows that Mlc1 was clustered similarly in the
arl1/arl1 and the WT hyphal cells and quantification of
the fluorescent signal at the tip indicated that it was com-
parable in the two strains, suggesting that the Spit-
zenk€orper is not substantially altered. In contrast,
Fig. 2D shows that the distribution of Sec4 was altered in
the arl1/arl1 mutant, compared to the WT. During
hyphal growth, Sec4 is predominantly clustered at the tip
of the hyphal cell in C. albicans, as well as in A. nidu-
lans7,29 which was reflected by the distribution profiles in
the WT cells, shown in Fig. 2E. In comparison, the Sec4
distribution in the arl1/arl1 cells was less tip-clustered.
As illustrated in Fig. 2F, there was a higher percentage of
arl1/arl1 cells exhibiting non-clustered secretory vesicles,

compared to the WT cells and the mutant over-express-
ing ARL1, 58 § 8% compared to 12 § 9% and 19 §
10%, respectively. Interestingly, the WT Sec4 distribution
in the arl1/arl1 mutant was restored by over-expression
of YPT6, with only 20 § 12% of cells with non-clustered
secretory vesicles. Similar to that reported previously,18

the filament extension rate in the arl1/arl1 cells express-
ing GFP-Sec4 was slightly reduced compared to that of
WT cells expressing GFP-Sec4 (12 § 2 mm/h in arl1
compared to 15 § 2 mm/h in WT). Overexpression of
either ARL1 or YPT6 in this arl1/arl1 strain background
restored the filament extension rate to that of the WT
(19 § 3 mm/h and 15§ 2 mm/h, respectively) suggesting
that the alteration in Sec4 distribution is associated with
reduced filament extension rate. Interestingly, we
observed that the ypt6 mutant also had a reduced fila-
ment extension rate (in preparation), similar to what was
observed in A. nidulans.28

This study revealed that overexpression of the RAB6
homolog Ypt6 can rescue the hyphal growth defect and
secretory vesicles clustering defect of an arl1 mutant. In
HeLa cells, RAB6 regulates the movement and docking
of secretory carriers to the plasma membrane30 and in
specialized cell types, such as macrophages and develop-
ing neurons, this RAB6-dependent secretory pathway
fulfills specific functions.31,32 In A. nidulans, deletion of
the Ypt6 homolog, RabC, also resulted in impaired secre-
tion.28 An attractive possibility is that the increased level
of Ypt6 facilitates membrane traffic in the C. albicans
arl1 mutant, perhaps via promoting targeting of secre-
tory vesicles to the growth site. Alternatively, as the arl1
deletion mutant has a reduced hyphal extension rate, it
is also possible that the alteration of Sec4 distribution
results indirectly from reduced growth rather than from
Arl1 regulation. Hence, over-expression of Ypt6 could
rescue such a defect as a result of increasing the hyphal
extension rate. In such a scenario, we can imagine that
the Arl1 and Ypt6 genetic interaction during retrograde
vesicular transport via the GARP (Golgi-associated ret-
rograde protein) complex, observed in S. cerevisiae33–35,
is critical specifically for hyphal growth, perhaps for lipid
homeostasis.36 Further characterization of the arl1 and
ypt6 mutants will be necessary to define the specific roles
of these small GTPases during hyphal growth. C. albi-
cans has only 9 Rab proteins, compared to nearly 70 in
mammalian cells and 11 in S. cerevisiae. Indeed, homo-
logs of S. cerevisiae Ypt10 and Ypt11 and homologs of
Ypt4 (Human Rab4 homolog), present in filamentous
fungi such as A. nidulans, are not present in C. albicans.
Hence, C. albicans has the minimal protein trafficking
machinery37 and identification of the regulators and
effectors of critical Rab and Arf GTPases during transi-
tion between yeast and hyphal growth should shed light
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on the key elements of membrane traffic, sufficient to
achieve morphological changes.

Materials and methods

Growth conditions

Yeast extract-peptone dextrose (YEPD) was used and
strains were grown at 30�C, unless indicated otherwise.
Filamentous growth induction was carried out as
described previously either with 50% serum38 or Spider
medium.39 Congo red and Hygromycin B were from
Fluka, Sigma-Aldrich, Saint Quentin Fallavier, France.

Strains and plasmids

Strains used are listed in Table S1. All strains were
derived from BWP17.40 The ypt6Δ/ypt6Δ strain was gen-
erated by homologous recombination. Each copy was
replaced by either HIS1 or URA3, using knockout cas-
settes generated by amplification of pGemHIS1 and pGe-
mURA3.40 Primers with a unique RsrII, at the 50 end,
and a unique MluI, at the 30 end, were used to amplify
the YPT6 and ARL1 ORFs, and the fragments subse-
quently cloned into pExpArg-pADH1RAC1,41 yielding
to pExpArg-pADH1YPT6 and pExpArg-pADH1ARL1,
respectively.

pExpArg-pADH1YPT6[Q71L] and pExpArg-pAD-
H1YPT6[T25N] were generated by site-directed muta-
genesis of pExpArg-pADH1YPT6. The GFP-Sec4
expressing strains and the Mlc1-GFPg expressing strains
were generated as described.42,43 pExpArg-pYPT6m-
ChYPT6 was constructed by cloning yemCherry (yeast
enhanced monomeric Cherry), amplified by PCR from
pFA-yemCherry plasmid using primer pairs with unique
Pac1 site, into pExpArg-pYPT6YPT6. pExpArg-pYP-
T6YPT6 was constructed by amplifying from gDNA
YPT6 ORF with 1 kb upstream and downstream, using
primer pairs with unique Xho1 and Not1 sites at the 50
and 30 ends; pExpArg-pARF2ARF2,18 with unique Xho1
and Not1 sites, was used to subclone the PCR amplified
fragment.

All pExpArg plasmids were linearized with StuI and
integrated into the RP10 locus. Two independent clones
of each strain were generated and confirmed by PCR. All
PCR amplified products and site-directed mutagenesis
products were confirmed by sequencing (Eurofins MWG
Operon, Ebersberg, Germany).

Microscopy analyses

For colony morphology analyses, plates were incubated
for 3–6 days prior to imaging. For cell morphology

studies, cells were imaged by differential interference
contrast. For GFP-Sec4 imaging, z-stacks were acquired
as described.8 For Arl1 and Ypt6 co-localization experi-
ments, GFP and yemCherry signals were acquired simul-
taneously and the analyses were carried out as
described.8 Images were deconvolved, using Huygens
Professional software (V3.7)

General techniques

RT-PCR analyses were carried out as described.44,45

Genomic DNA from C. albicans strains was isolated as
described.46
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