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ABSTRACT
The production of mRNA is a dynamic process that is highly regulated by reversible post-translational
modifications of the C-terminal domain (CTD) of RNA polymerase II. The CTD is a highly repetitive
domain consisting mostly of the consensus heptad sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7.
Phosphorylation of serine residues within this repeat sequence is well studied, but modifications of all
residues have been described. Here, we focus on integrating newly identified and lesser-studied CTD
post-translational modifications into the existing framework. We also review the growing body of
work demonstrating crosstalk between different CTD modifications and the functional consequences
of such crosstalk on the dynamics of transcriptional regulation.
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Introduction

Precisely tuned gene expression is crucial for main-
tenance of organismal homeostasis and for response
to external stimuli. RNA Polymerase II (RNAPII) is
a largemulti-subunit enzymatic complex that is essen-
tial for constitutive expression of mRNA and small
nuclear RNAs as well as their rapid production in
response to altering cell signaling events. While
RNAPII is highly conserved across eukaryotes, the
C-terminal domain (CTD) of its largest catalytic sub-
unit, Rpb1, has evolved to harbor unique features
across species [1,2]. The CTD is highly repetitive,
unstructured, and of low diversity [3]. The Rpb1
CTD consensus heptad sequence (Tyr1-Ser2-Pro3-
Thr4-Ser5-Pro6-Ser7) is highly conserved as exempli-
fied by the similarity of the Sacccharomyces cervisiae
CTD to the first 26 proximal repeats of the human
CTD. However, the CTD has varying divergence
across eukaryotes with higher eukaryotes evolving
a substantially longer CTD following the common
ancestor of Metazoa [4]. The distal CTD in higher
metazoans has maintained the heptad repeat struc-
ture, yet diverged from the consensus heptad sequence
[1,5–8] (Figure 1). Recent work studying the ability of
RNAPII to induce liquid phase separation suggest that
organisms with increased CTD length harbor more
non-consensus repeats to prevent protein aggregation

of the CTDwhile still allowing phase separation creat-
ing transcriptional hubs [9–12].

Although the CTD is a relatively small appen-
dage of a massive molecular machine, it has
a profound significance on the regulation of gene
expression. The unstructured nature of the CTD
hypothetically allows for increased protein-protein
interactions with major transcriptional effector
molecules, including the enzymes mediating or
removing posttranslational modifications (PTMs;
writers and erasers), and the proteins containing
specific recognition domains for PTMs (readers).
Many CTD-modifying or -recognizing proteins
essential for regulating the process of transcription
are highlighted in this review.

The most extensively studied modification of the
CTD is the dynamic and reversible phosphorylation of
serine residues, specifically of Ser2 and Ser5; the roles
of phospho-Ser2 and -Ser5 in the regulation of tran-
scription have been reviewed previously [5,7,13–16].
However, on-going research in the field has shown
that every amino acid in the consensus heptad repeat,
as well as arginine and lysine residues of non-
consensus repeats, can be modified during transcrip-
tion. RecognizedCTDPTMs include phosphorylation
of serine, tyrosine, and threonine, O-GlcNAcylation
(O-GlcNAc), proline isomerization, arginine and
lysine methylation, arginine citrullination, and lysine
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acetylation (Table 1). The repertoire of PTMs that
have been attributed to the CTD is often referred to
as a “CTD code”, in which certain modifications are
attributed to particular functions during specific steps
of the cycle (Figure 2).

Although many modifications are highly con-
served, their time of occurrence and associated
functions can vary across species. For example,
the role of Tyr1 and Ser7 phosphorylation vary
considerably between mammals and yeast. In
mammals, both modifications control early
steps of transcription, but in yeast, Ser7 phos-
phorylation acts both early in transcription and
as a termination signal and Tyr1 phosphoryla-
tion has primarily been linked to control of
transcription termination [5,17,18]. Other mod-
ifications have only been described in mammals,
including O-GlcNAcylation [19–23], lysine

acetylation [4,24–26] and arginine methylation
[27,28], and the extended PTM repertoire sug-
gests a need for enhanced regulation in more
complex organisms.

Increasing evidence indicates that individual
PTMs can communicate and act to modulate
each other’s presence and function. This crosstalk
expands the regulatory capacity and complexity of
the CTD and allows RNAPII to rapidly and tran-
siently react to external stimuli. Both positive and
negative crosstalk mechanisms have been
described, either promoting or prohibiting the
occurrence of modifications, or enhancing or
impairing reading of the modifications’ “code”.
In this review, we focus on PTMs of the mamma-
lian CTD during mRNA synthesis, including those
that are less studied, and discuss the emerging
significance of PTM crosstalk within the CTD.

Figure 1. Schematic of the CTD. The RNAPII CTD of Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens are
presented. Each heptad repeat is represented as a new line. Conserved repeats are in green, non-conserved amino acids are in bold,
non-consensus repeats that can be uniquely modified are in yellow.
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Timing of individual CTD modifications

Transcription of genes coding for mRNA takes place
in four key phases: initiation, promoter-proximal
pausing, elongation, and termination [29].The
dynamic, reversible PTMs of the CTD mark the
various stages of transcription (Figure 3), from an
uninitiated polymerase to transcription termination
[30]. This is key to allowing transcription to adapt to
specific needs, for example transcription must

progress at fast rates in response to external stimuli
as well as during the rapid cell divisions of early
development [31,32]. Although CTD modifications
play a key role in the regulation of transcription
rates, it is important to note that while not discussed
in this review other features of genes, such as nucleo-
some position, DNA sequence, DNA structure, and
co-transcriptional processes, are also involved [33–
37]. Studies on bulk transcription rates in human

Table 1. CTD modifications, their functions and interacting partners.
Modification Function Reader Writer Eraser Reference

Tyrosine 1
phosphorylation

Prevention of pre-mature termination, CTD
stability, enhancer transcription

c-Abl [79,80,108,163,166]

Threonine 4
phosphorylation

Transcription elongation, termination,
processing of histone mRNA, chromatin
remodeling

Plk1/3,
CDK9

[167–170]

Proline
Isomerization

cis-trans isomerization of CTD prolines,
regulates activity of serine 5 phosphatases

Ssu72, FCP1 Pin1 [149–151,153,154,171]

Arginine
citrullination

Promoter-proximal pause release P-TEFb PADI2 [109]

Arginine
methylation

Transcription termination, terminal R-loop
resolution, snRNA and snoRNA expression

SMN, TDRD3 PRMT5,
PTRM4/
CARM1

[27,28,172]

Lys Ubiquitination Degradation of RPB1 rpfl/hNedd4 pVHL [173,174]
O-GlcNAc Assembly of PIC OGT OGA [19–23,61]
Serine 2
phosphorylation

Promoter-proximal pause release, elongation,
termination, splicing

PAF1, SPT6, TCERG1,
U2AF65-Prp19, SET2,
HDAC/HAT, SCAF8,
SCAF4

CDK9
(P-TEFb),
CDK12,
CDK13

Ssu72,
FCP1

[30,37,42,103,122,152,157,175–
190]

Serine 5
phosphorylation

mRNA capping, promoter-proximal pausing,
chromatin remodeling, ncRNA transcription
termination, splicing, prevention of premature
transcription termination

DYRK1a, SCP1, SCP4,
CDC14, MLL1/2,
Guanyltransferase,
Pin1

CDK7,
CDK8,
CDK9,
CDK12,
CDK13

Ssu72,
RPAP2

[74,76,151,153,155,191–198]

Serine 7
phosphorylation

snRNA expression, Interaction with Integrator,
promoter-proximal pausing

CDK7,
CDK9

Ssu72 [152,199–202]
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Figure 2. The cycle of CTD modifications. Key CTD post translational modifications of each major phase of transcription are shown,
with the average duration of each phase noted. The rate of transcriptional initiation is not listed as a time range as rates of initiation
vary dramatically depending on if the mediator complex is already resident at the gene promoter. Timing for phases is from
eukaryotes in general [31,32,38–44,46-50]. Circles denote phosphorylation and diamonds indicate O-GlcNAc unless otherwise noted.
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cells indicate that the average gene can be transcribed
on the scale of several minutes [38–44]. However,
this varies dramatically with gene size; indeed, the
largest gene in the human genome takes 16 hours to
transcribe [45]. Development of new single molecule
techniques for studying individual transcripts may
allow further elucidation of the rate of individual

phases of transcription and the role of PTMs in
regulating these phases [46–51].

Transcriptional initiation

Initiation is the earliest stage of the transcription
cycle and involves several key steps: initial
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Figure 3. Key steps of transcription. A and B) An unmodified RNAPII is recruited to the transcription start site (TSS) by the Mediator
complex. O-GlcNAcylation of Ser5 and 7 is performed by OGT. C) The pre-initiation complex (PIC) is formed and its CDK7 subunit
phosphorylates Ser5 and 7 after O-GlcNAc is removed by OGA. D) Ser5 and 7 phosphorylation releases the polymerase from
interactions with Mediator and the PIC. Following release, the polymerase pauses proximally to the promoter, marked by Tyr1
phosphorylation by c-Abl, acetylation of Lys7 by p300, and citrullination of non-consensus Arg1810 by PADI2. Pausing is facilitated
by the recruitment of NELF and DSIF. E) The polymerase is released from pausing by phosphorylation of Ser2 by the CDK9 subunit of
PTEF-b, as well as the phosphorylation of DSIF and removal of NELF. F) Once productive elongation begins, CDK12 and CDK13
maintain the phosphorylation of Ser2, and phosphorylation of Ser5 is removed by the Ssu72 phosphatase. G) As the polymerase
reaches the 3ʹ end of the gene, Thr4 phosphorylation by PI3 K occurs, as well as methylation of Arg1810 by PRMT5. H) When the
polymerase is in the proximity of a poly-adenylation site (PAS), it interacts with the cleavage and polyadenylation complex (CPAC)
via Ser2 phosphorylation, allowing for cleavage of the mRNA from the polymerase. I) The polymerase is then removed from the DNA
and the remaining Ser2 phosphorylation is removed by FCP1. J) A unmodified polymerase is free to reinitiate new rounds of
transcription.
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recruitment of the polymerase to a promoter,
proper formation of the transcription preinitiation
complex (PIC), and promoter escape. Classically,
transcriptional initiation was believed to be asso-
ciated with an unmodified CTD [35]. However, an
increasing body of work has shown that less-
studied PTMs are critical to steps in early tran-
scriptional initiation [17,20,26,52,53].

First, a polymerase with an unmodified CTD inter-
acts with Mediator, the transcriptional co-activator
complex [54,55]. This is thought to function as
a bridge between general transcription factors and
RNAPII, and facilitate the formation of the PIC [56–
59]. Proper formation of the PIC requires specific
CTD PTMs, including O-GlcNAcylation of Ser5 and
Ser7 subsequent to polymerase binding to Mediator
[20,23,52]. O-GlcNAcylation is a highly transient
event mediated by the O-GlcNAc transferase (OGT)
and rapidly reversed by the N-acetylglucos-aminidase
(OGA), a member of the PIC [19]. The removal of
O-GlcNAc after PIC formation is required for phos-
phorylation of Ser5 and Ser7, which mark the transi-
tion to elongation, supporting the model that
O-GlcNAc of RNAPII is transient and likely only
exists for the formation of the PIC [19,22]. Notably,
O-GlcNAc modifications have only been described in
mammals and are likely unique to vertebrates, as the
O-GlcNAc enzymes are not present in lower eukar-
yotes, including yeast [60,61].

To begin early elongation, RNAPII must escape
interactions with the Mediator complex and the
PIC. Notably, many polymerases will fail to escape
the promoter and will be turned over through
abortive termination [35,62]. The interaction
among RNAPII, the PIC, and Mediator are dis-
rupted by phosphorylation of Ser5 and Ser7 by
TFIIH, a member of the PIC, via its CDK7 sub-
unit, which frees RNAPII to initiate the early steps
of elongation [63–68]. Interestingly, the kinase
activity of TFIIH is not required for initiation
in vitro, although it is required for early elongation
[69–73]. Ser5 phosphorylation is also critical for
recruitment of enzymes involved in capping the
nascent RNA, which protects it from degradation
[74–76]. This function is supported by the recruit-
ment of Dichloro-1-B-D-ribofuranosyl-
benzimidazole Sensitivity-Inducing Factor (DSIF),
which assists in RNA capping and recruitment of
the Negative Elongation Factor (NELF) [42,57].

Two other less studied PTMs play a role during
transcriptional initiation: phosphorylation of Tyr1,
one of the most highly conserved CTD residues,
and methylation of Lys7 [17,26,53,77–80].
Phosphorylation of Tyr1 has been associated with
RNAPII occupying enhancers and promoters, and
more recently attributed to driving specificity of
CDK kinase activity on CTD repeats (discussed
below). Tyr1-phosphorylated RNAPII is also
involved in the production of enhancer RNAs
that occur specifically in the anti-sense direction
of gene bodies [17,77–80]. The mechanism and
role of lysine methylation remain largely
unknown, but initial work indicates that it is
involved in preventing Lys7 acetylation, and may
negatively regulate transcription [26,53]. Of note,
Lys7 exists on only eight non-consensus repeats in
the distal metazoan CTD, thus this lysine methyla-
tion is a unique feature of higher eukaryotic CTDs.

Promoter-proximal pausing

After promoter escape, RNAPII can pause proximal
to the promoter, at an average of 25–50 bp down-
stream of the transcriptional start site (TSS) [57,81–
85]. This phenomenon was initially believed to occur
at a small number of genes or viruses such as heat
shock genes inDrosophila [86–88] and the integrated
HIV provirus [81]. It is now recognized that promo-
ter-proximal pausing is a feature of RNAPII tran-
scription of most genes, as disruption of the release
from pausing abrogates transcription of nearly all
genes [42,89–92]. Not all paused polymerases will
continue into productive elongation, and some
paused polymerases will be removed and replaced
[42,93–96]. The turnover of paused polymerases
may play a critical role in regulating the rate of
transcription. Whether CTD PTMs play a role in
RNAPII turnover remains to be determined.

Promoter-proximal pausing is established and
maintained by the interaction of the CTD with nega-
tive elongation factors NELF and DSIF [92,97–100].
Paused polymerases are classically characterized by
high levels of Ser5 and Ser7 phosphorylation, but
newer research has highlighted the role of additional
PTMs. The transition of the polymerase fromapaused
state to an actively elongating complex, called pause
release, is catalyzed by the recruitment of the positive
transcriptional elongation factor b (P-TEFb)
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[37,57,89,90,101–105]. P-TEFb is composed of
a regulatory cyclin and catalytic CDK9 component,
which phosphorylates Ser2 residues to enhance poly-
merase processivity [102–104,106]. The ability of
P-TEFb to phosphorylate Ser2 is primed by previous
phosphorylation events at Ser7 [107] and Tyr1 [108].
A recent study in a breast cancer cell line identified
citrullination of Arg1810 by peptidyl arginine deimi-
nase 2 (PADI2), a calcium-dependent enzyme, as
a key CTD modification for recruitment of P-TEFb
to the paused polymerase of genes involved in cell
proliferation [109]. It is important to note the breast
cancer cell line studied expressed high levels of PADI2
and the role of citrullination in cells with normal levels
of PADI2 expression remains to be fully explored.
Given that PADI2 is a calcium dependent enzyme
[109], it is intriguing to hypothesize that citrullination
may act in a gene-selective manner modulating pro-
moter-proximal release in response to calcium-
induced signaling cascades. To date, there is no
known mechanism for reversal of arginine citrullina-
tion, leading to questions about what happens to
citrullinated RNAPII following pause release [109–
111]. P-TEFb also phosphorylates DSIF and NELF;
phosphorylation of NELF leads to its dissociation
from the polymerase complex, whereas phosphoryla-
tion of DSIF turns DSIF into a positive elongation
factor [100–103,112-115].

Paused polymerases are also highly acetylated
at Lys7 residues, mediated by the acetyltransfer-
ase p300 [24,25]. Lys7 acetylation serves to
recruit the RPRD complex, which includes
RPAP2, which serves as a Ser5 phosphatase,
and HDAC1, which deacetylates Lys7 [24].
Phosphorylation of Ser5 has been shown to inhi-
bit the ability of P-TEFb to phosphorylate Ser2
on the same heptad in vitro [107], so recruit-
ment of RPRD may prime RNAPII for proces-
sive elongation. Furthermore, because Lys7
acetylation results in recruitment of its own dea-
cetylase, Lys7 acetylation is limited to a very
narrow window downstream of the TSS [24,25].
The fact that methylation of Lys7 may further
restrict Lys7 acetylation underscores the notion
that Lys7 acetylation acts at a very defined time
during the transcription cycle [26,53].

Transcriptional elongation

Transcriptional elongation is characterized by
a gradual loss of Ser5 and Ser7 phosphorylation and
Lys7 acetylation [25,116]. In addition, there is an
increase in Ser2 phosphorylation, beginning just
downstream of promoter pausing and increasing gra-
dually along the gene body, reachingmaximal levels at
the 3ʹ end of genes [117]. The rate of transcriptional
elongation also increases along the body of the gene
[32,42–44], and the accumulation of Ser2 phosphor-
ylation along the gene appears to be regulated by the
rate of elongation, as RNAPII mutants with slower
elongation rates lead to increased Ser2 phosphoryla-
tion toward the 5ʹ end of genes [118].

Critical to pause release and transcriptional elon-
gation is the recruitment of complexes mediating
co-transcriptional processes, such as splicing or
polyadenylation [31,119,120]. Interactions between
the CTD of actively transcribing RNAPII and the
spliceosome were thought to be mediated primarily
through interactions with phosphorylated Ser5
[121]. However, the crystal structure of transcrip-
tional elongation regulator 1 (TCERG1), which
mediates interactions between RNAPII and the
spliceosome, indicates that hyperphosphorylation
of all three serine residues, Ser2, Ser5 and Ser7, are
required for optimal interactions between RNAPII
and the spliceosome during elongation [122–124].
Additionally, premature termination of transcrip-
tion is inhibited by the interaction between the
CTD phosphorylated on Ser2 and Ser5 and the
human anti-termination proteins SCAF4 and
SCAF8, members of the arginine/serine-rich spli-
cing factor family [125]. Indeed, loss of Ser2 phos-
phorylation leads to increases in the usage of early
alternative polyadenylation sites by RNAPII [126].

While the initial Ser2 phosphorylation is placed
by P-TEFb/CDK9, maintenance of Ser2 phosphor-
ylation throughout elongation is carried out by
different kinases, specifically CDK12 and CDK13
[127–130]. Experiments knocking down CDK12
and CDK13 indicate that these kinases have indi-
vidual as well as overlapping function, however, it
is unlikely that they cooperate on individual genes
[128,130–132]. How these kinases act to maintain
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Ser2 phosphorylation in a gene-specific manner is
an area of ongoing research.

Transcriptional termination

Recent work has dramatically increased our under-
standing of the mechanism of transcriptional ter-
mination in mammalian systems. However, the
exact role that CTD modifications play in termi-
nation in mammals remains elusive. There are two
dominant models of mammalian termination;
Allosteric, where conformational changes to
RNAPII allow for termination, and the Torpedo
model, where RNA polymerase continues tran-
scribing until it is removed by XRN2 [133].
Which of these models is correct remains unclear,
although recent work suggests that aspects of both
occur together for efficient termination [134].
Termination occurs in two steps: cleavage/polya-
denylation of mRNAs, and removal of RNAPII
from DNA [133,135]. These steps occur separately,
which suggests that identification of the correct
polyadenylation site is necessary for efficient ter-
mination. Transcriptional termination is asso-
ciated with a second pausing of the polymerase,
this time at the 3ʹ end of the gene [136–140].
Whether 3ʹ pausing is required for termination
remains controversial, and the cause remains elu-
sive, although it may involve interactions of
RNAPII with the cleavage and polyadenylation
(CPA) complex and the polyadenylation signal
[36,138,141].

Interactions between the CPA complex and
RNAPII are mediated through the termination factor
PCF11, which shows selective interaction with Ser2-
phosphorylated RNAPII [142,143]. Additionally,
Arg1810 di-methylated by the methyltransferase
PRMT5 is recognized by SMN, a protein involved
in spliceosome assembly and ribonucleosome bio-
genesis [27,144]. SMN in turn recruits Sentataxin
(SETX), a DNA-RNA helicase required for cleavage
of the mRNA from RNAPII [27]. Although the
PRMT proteins needed for arginine methylation are
conserved across eukaryotes, non-consensus repeats
harboring arginine only exist in vertebrates [27,145].
Following cleavage of the mRNA, the exonuclease
XRN2 removes RNAPII from chromatin [36,141].
Once the RNAPII is removed from the DNA, it is
maintained in a hypo-phosphorylated state by the

phosphatase FCP1, which allows efficient recycling
of RNAPII into new rounds of transcription [146].

Crosstalk between individual CTD
modifications

While CTD modifications have long been consid-
ered individually in a systematic “ON” and “OFF”
exchange throughout the transcription cycle, recent
examples of cooperativity between PTMs have
uncovered new functions of individual PTMs and
have increased the complexity of our model of tran-
scriptional regulation (Figure 4). Analogous exam-
ples of PTM crosstalk, such as among histone
modifications, demonstrate that the complex com-
binatorial nature of modifications can drive specifi-
city and selectivity of interactions with reader
proteins [147]. The CTD, similar to the histone
tails, is structurally flexible and can support interac-
tions between different PTMs within the same
repeat or between different repeats. The CTD is,
however, unique in its highly repetitive sequence,
and it remains unclear how many repeats within the
CTD carry actual modifications. Recent mass spec-
trometry studies to map phosphorylation of the
CTD have started to address these issues.
Interestingly, these studies show that the CTD is
not heavily phosphorylated, with phosphorylation
of Ser2 and Ser5 being predominant and that hep-
tads with multiple phosphorylation events are rare
[106,148]. One limitation of these heptad-specific
studies is that only phosphorylation marks of the
CTD have been mapped and do not address less
studied CTD modifications. These studies are also
performed on bulk RNAPII and modifications that
may be very transient or unstable during sample
processing may be difficult to detect and accurately
quantify.

Proline isomerization couples CTD
phosphorylation to RNA processing events

A classical example of CTD crosstalk is the role of
proline isomerization in directing serine/threonine
phosphorylation. Prolines are highly conserved at
position 3 and 6 of consensus repeats, and are also
widely found in non-consensus repeats (Figure 1).
Although the dominant state of the proline within
the CTD is the more energetically stable trans-
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configuration, the peptidyl-prolyl isomerase Pin1 is
able to recognize phosphorylated serine-proline
motifs (Ser2-Pro3 or Ser5-Pro6) and isomerize them
from the trans- to the cis-configuration [149–151].

In turn, the conformation of prolines can affect
CTD phosphatases and influence the phosphoryla-
tion status of Ser2 and Ser5. Indeed, Pin1 peptidyl-
prolyl isomerase activity influences the action of the

b

c

d

a

Figure 4. Cross-talk in the CTD. A) Proline isomerization influences the ability of CTD phosphatases to remove Ser5 phosphorylation.
In the trans configuration, SCP1 is able to de-phosphorylate Ser5. While in the cis configuration mediated by the proline isomerase
Pin1, SSU72 is able to de-phosphorylate Ser5. B) Acetyled non-consensus lysine residues interact with the reader proteins RPRD1A
(1A) and RPRD1B (1B), which recruit the Ser5 phosphatase RPAP2. C) Phosphorylation of Tyr1 by c-Abl directs the kinase activity of
the CDK9 subunit of PTEF-b to Ser2 by preventing it from phosphorylating Ser5 of nearby repeats. D) Premature termination is
prevented by the recognition of Ser2 and Ser5 phosphorylation by SCAF4 and SCAF8, which block recruitment of CPAC to alternative
polyadenylation sites (PAS).
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human serine phosphatases Ssu72 and SCP1 [152–
156] (Figure 4a). Molecular modeling studies predict
that the presence of cis-proline significantly disrupts
the active site of SCP1, thus making SCP1 preferen-
tially act on serine residues proximal to trans-
prolines [154]. Ssu72 is ubiquitously expressed and
acts only on CTD repeats when prolines are in cis
conformation [153,155,157].

While effects on serine phosphorylation are
clear, it is unclear yet when isomerization occurs
in the transcription cycle. Notably, Ssu72 functions
as a Ser5 phosphatase only after promoter-
proximal pause release [158–160], suggesting
Pin1 functions during transcriptional elongation.
Interestingly, overexpression of Pin1 leads to over-
all increased levels of Ser2 and Ser5 phosphoryla-
tion and a global shut-down of transcription [150].
These results support the hypothesis that the tim-
ing of proline isomerization plays a key role in the
progression of transcription, but further studies
are required to fully elucidate the function of pro-
line isomerization in gene expression.

Reading of lysine acetylation leads to CTD
de-phosphorylation

Higher eukaryotes have evolved a longer CTD and
incorporated a varying number of non-consensus
repeats carrying Lys7 residues [4]. Lys7 can be
methylated and acetylated at different times during
the transcription cycle [24–26,53]. Lys7 acetylation
is functionally required for activation of signal
response genes, e.g. in response to epidermal
growth factor signaling, an essential function in
the development of multicellular organisms [25].

A recent quantitative mass spectrometry analy-
sis connected Lys7 acetylation with the preferred
recruitment of the RPRD1 complex [24]. RPRD1A
and RPRD1B and their yeast homologs were pre-
viously shown to interact with the Ser2-
phosphorylated CTD, with increased affinity for
repeats that are dually phosphorylated, and play
a role in transcriptional termination [161,162].
However, in the more recent study Lys7 acetyla-
tion was shown to enhance RPRD1A and
B interaction by providing new electrostatic inter-
actions with the CTD [24] (Figure 4b).

As the RPRD1 protein complex also contains
RPAP2, a serine 5 phosphatase, experiments using

deacetylase inhibitors were performed to test the
effect of increased Lys7 acetylation on Ser5 phos-
phorylation. Indeed, increased lysine acetylation
led to decreased Ser5 phosphorylation, consistent
with enhanced recruitment of RPAP2 to the acety-
lated CTD [24]. Interestingly, knockdown of
RPRD1B also increased Lys7 acetylation, and
indeed, the class I deacetylase HDAC1 was found
associated with the RPRD1 complex [24]. This
establishes not only a new link between Lys7 acet-
ylation and Ser5 dephosphorylation, it also shows
that certain modifications can autoregulate by
recruiting an eraser protein as part of a reader
complex. Notably, Lys7 acetylation occurs exclu-
sively in distal repeats, while Ser5 phosphorylation
is found across the CTD [26]. The crosstalk
between Lys7 acetylation and Ser5 phosphoryla-
tion likely occurs between different repeats, in
accordance with biochemical studies which
showed that Ser5 phosphorylated repeats cannot
be acetylated, and vice versa [24,25].

Tyrosine phosphorylation is required for RNAPII
elongation via Ser2 phosphorylation

While Lys7 acetylation negatively regulates Ser5
phosphorylation, Tyr1 phosphorylation positively
influences Ser2 phosphorylation. Tyr1 phosphory-
lation has been implicated in regulating transcrip-
tional termination in yeast, specifically by
preventing binding of the termination factor
Nrd1 [18]. However, in mammals, Tyr phosphor-
ylation occurs primarily at the 5ʹ end of genes
[80,163]. A recent study showed that Tyr1 phos-
phorylation by c-Abl selectively directs P-TEFb/
CDK9 to phosphorylate Ser2 [108] (Figure 4c).
In biochemical studies, CDK9 can phosphorylate
both Ser2 and Ser5 [107], but in vivo it specifically
targets Ser2 [105]. Notably, the in vitro assessment
of CDK9 function was performed using short CTD
peptides, and thus may not account for spatially
separated interactions between different repeats.

Prevention of early termination is mediated by
dual-phosphorylation of Ser2 and Ser5

Transcriptional termination depends on precise
polyadenylation of mRNAs, which is complicated
by the existence of multiple early polyadenylation
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sequences in human genes [164,165]. Thus, extra-
neous polyadenylation sites must be ignored by
the actively transcribing polymerase complex.
Recent work showed that the proteins SCAF4
and SCAF8 prevent premature termination by
inhibiting recognition of early alternative polyade-
nylation sites [125] (Figure 4d). In vivo, SCAF4
and SCAF8 co-immunoprecipitate with actively
elongating RNAPII that is hyperphosphorylated
at Ser2/5/7 and at Tyr1 and Thr4. In vitro experi-
ments with purified CTD heptads showed that
SCAF4 and SCAF8 had strong preference for hep-
tads that are dually-phosphorylated at Ser2 and
Ser5. This suggests that by recognizing dually-
phosphorylated heptads, SCAF4 and SCAF8 iden-
tify polymerases early in the process of elongation,
preventing premature recruitment of the CPA
complex. This is supported by recent work on
the function of CDK12, a kinase that supports
Ser2 phosphorylation during elongation. Loss of
CDK12, and thus loss of Ser2 phosphorylation,
led to use of early polyadenylation sites [126].

Conclusions

CTD modifications are key regulators of each
step of eukaryotic transcription, and our emer-
ging understanding of the interplay between
CTD modifications sheds light on how tran-
scription can be rapidly and dynamically respon-
sive to stimuli. Deciphering the interactions
between modifications will lead to an improved
understanding of their timing and distribution
during the transcriptional cycle. It will also clar-
ify the dynamics of reader protein recruitment,
and could lead to new approaches to therapeu-
tically interfere with these dynamics. New
research is also beginning to reveal the role of
modifications of the CTD at non-consensus
sites, which underlie the enhanced transcrip-
tional complexity in higher eukaryotes.

However, the field is hampered by technical
challenges, such as antibodies with limited specifi-
city, and the inability of mass spectrometry to
provide resolution at the level of a single repeat.
In addition, while recent advances such as cryo-
EM have greatly improved the ability to capture
structural information about RNAPII, the CTD
structure in the various phases of transcription

remains elusive because of its flexible nature.
Future studies directly addressing these issues are
necessary to fully capture the complexity of tran-
scription regulation and the important role of
CTD modifications in this process.
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