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Transcriptional characterization 
of conjunctival melanoma 
identifies the cellular tumor 
microenvironment and prognostic 
gene signatures
Julian Wolf, Claudia Auw‑Haedrich, Anja Schlecht, Stefaniya Boneva, Hans Mittelviefhaus, 
Thabo Lapp, Hansjürgen Agostini, Thomas Reinhard, Günther Schlunck & 
Clemens A. K. Lange*

This study characterizes the transcriptome and the cellular tumor microenvironment (TME) of 
conjunctival melanoma (CM) and identifies prognostically relevant biomarkers. 12 formalin-fixed and 
paraffin-embedded CM were analyzed by MACE RNA sequencing, including six cases each with good or 
poor clinical outcome, the latter being defined by local recurrence and/or systemic metastases. Eight 
healthy conjunctival specimens served as controls. The TME of CM, as determined by bioinformatic 
cell type enrichment analysis, was characterized by the enrichment of melanocytes, pericytes and 
especially various immune cell types, such as plasmacytoid dendritic cells, natural killer T cells, B 
cells and mast cells. Differentially expressed genes between CM and control were mainly involved in 
inhibition of apoptosis, proteolysis and response to growth factors. POU3F3, BIRC5 and 7 were among 
the top expressed genes associated with inhibition of apoptosis. 20 genes, among them CENPK, 
INHA, USP33, CASP3, SNORA73B, AAR2, SNRNP48 and GPN1, were identified as prognostically 
relevant factors reaching high classification accuracy (area under the curve: 1.0). The present study 
provides new insights into the TME and the transcriptional profile of CM and additionally identifies 
new prognostic biomarkers. These results add new diagnostic tools and may lead to new options of 
targeted therapy for CM.

Conjunctival melanoma (CM) is a rare but potentially life-threatening tumor of the ocular surface associated with 
systemic metastasis within 10 years in 18–26% and a 10 year survival rate of 41–78%1. Age-adjusted incidence 
is estimated at 0.55 per million per year in the United States with a tendency to increase from 0.26 in 1973 to 
0.55 per million per year in 19992 accounting for 0.24% of all melanoma3. The majority of CM originates from 
primary acquired melanosis (57–76%), whereas a smaller proportion of CM develops de novo (16–25%) or from 
a pre-existing nevus (1–6%)1,4. Confirmed risk factors are the localization, with worse prognosis being reported 
for fornices, caruncle, plica semilunaris, palpebral conjunctiva and lid margins5, the tumor thickness5, the TNM 
stage6 and de novo CM1. There is evidence that UV radiation contributes to the development of CM7, although 
this factor is still debated8. It has also been shown that melanization stimulates HIF-1α expression of melanoma 
cells9, affects clinical outcome of patients with cutaneous and uveal melanoma10,11 and modifies the sensitivity 
to anticancer treatment, including radio- and immunotherapy12–14. The expression of progesterone and estro-
gen receptors on conjunctival melanomas could explain hormone-dependent changes in tumor morphology15. 
Based on the genetic profile, CM seems to be a distinct subset of melanoma, which is more similar to cutaneous 
melanoma than mucosal melanoma and is significantly different from uveal melanoma16. It is well known that 
CM is often associated with mutations in BRAF, representing a potential therapeutic target17. Nevertheless, little 
is known about the transcriptome and the cellular tumor microenvironment (TME) of CM, which could provide 
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additional information about the pathways, molecular mechanisms and cell types involved in the pathogenesis 
of CM and thus define potentially new diagnostic and therapeutic targets.

This study characterizes the cellular tumor microenvironment and provides a transcriptional profile of CM 
compared to healthy conjunctiva and analyzes the transcriptional differences between CM with poor and good 
clinical outcome (Fig. 1). The results of this study add new diagnostic and prognostic tools and may lead to new 
options of targeted therapy for CM.

Results
Patient characteristics.  A total of 20 conjunctival samples from 20 patients were included in this study. 
Histological analysis confirmed CM in 12 patients and healthy conjunctiva in eight patients. Patient character-
istics are summarized in Table 1. Mean age in the melanoma and the control group was 58.9 (range: 27.3–85.3) 
and 55.7 years (range: 43.0—69.0), respectively (p = 0.692). There were three male and nine female patients in 
the melanoma group and six male and two female patients in the control group, respectively (p = 0.081). Patho-
logic T (pT) categories according to the American Joint Committee on Cancer (AJCC) Cancer Staging Manual 
(eighth edition)18 were pT1a in 9 (75.0%), pT1b in 1 (8.3%) and pT3b in 2 (16.6%) cases. Mean tumor thickness 
was 944.1 µm (range: 199.0 µm—2720.0 µm). Nine (75.0%) cases were located at the bulbar conjunctiva and one 
(8.3%) each at the fornix, tarsal conjunctiva and limbus. There were four patients with local recurrence (three 
cases with different localization between primary tumor and recurrence), one patient with local recurrence and 
systemic metastasis and one patient with systemic metastasis, which were included in the poor prognosis group. 
The mean follow-up time in the melanoma group was 7.1 years (min: 2.2, max: 16.7) (see Table 1).

Unsupervised transcriptomic analysis.  Unsupervised analysis revealed distinct differences in the tran-
scriptome of CM when compared to normal conjunctiva. In addition, melanoma with poor and good clinical 

Figure 1.   Study overview. The study characterizes the transcriptional profile of conjunctival melanoma 
compared to healthy conjunctiva, provides new insights into the cellular tumor microenvironment and identifies 
a prognostic signature classifying clinical outcome of conjunctival melanoma.
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outcome also differed significantly with regard to their transcriptional profile (see PCA and unsupervised heat-
map, Fig. 2).

Cellular tumor microenvironment of conjunctival melanoma.  Cell type enrichment analysis using 
xCell19 revealed that numerous immune cell types were enriched in the tumor microenvironment (TME) of 
CM. Among them, plasmacytoid dendritic cells (pDC), natural killer T cells (NKT), B cells, activated dendritic 
cells (aDC) and mast cells were most significantly increased in CM compared to healthy conjunctiva (log2FC 
of enrichment scores between CM and control: 2.5, 2.3, 2.1, 1.4 and 1.3, respectively, p < 0.05, Fig. 3A). Further-
more, melanocytes and pericytes were significantly enriched in CM compared to control conjunctiva (log2FC: 
1.6 and 1.8, respectively, p < 0.05). An overview of the enrichment scores of all 64 analyzed immune and stroma 
cell types is shown in Supplementary Fig. 2. The cell type analysis also demonstrated that melanoma and control 
samples clustered according to their histological diagnosis based on their cell type enrichment scores, indicating 
the significance of the TME in CM (Fig. 3A). This finding was unaffected when all 64 cell types were included 
in the analysis (data not shown). Immune enrichment scores (composite score of all analyzed immune cell 
types) were significantly higher in CM (mean: 0.063, SD: 0.057) when compared to healthy conjunctiva (mean: 
0.019, SD: 0.020, p = 0.034), whereas stroma scores (composite score of all analyzed stroma cell types) did not 
significantly differ (mean: 0.028, SD: 0.023 and mean: 0.032, SD: 0.027, p = 0.847) (Fig. 3B). Next, we investigated 
whether immune and stroma scores differed between melanoma with poor and good clinical outcome and found 
that neither immune or stroma scores, nor the cell composition differed significantly when taking both clinical 
endpoints—metastasis and local recurrence—into account (Fig. 3A, C). While the immune scores between mel-
anoma with and without local recurrence did not differ significantly (mean: 0.077, SD: 0.070 and mean: 0.053, 
SD: 0.050, p = 0.745), the immune scores in the two melanoma samples with systemic metastasis (mean: 0.012, 
SD: 0.002) were significantly lower compared to all other melanoma (mean: 0.074 SD 0.057, p = 0.041, (Fig. 3D, 
E). Stroma scores, in contrast, were not significantly different in metastasized or recurrent tumors (Fig. 3 D-E).

Transcriptional characterization of conjunctival melanoma.  Differential gene expression analysis 
revealed 363 up- and 1096 downregulated genes in CM compared to healthy conjunctiva (Fig. 4A). Among 
them, LHFPL3 (LHFPL tetraspan subfamily member 3), NAT8L (N-acetyltransferase 8 like), HOXC9 (home-
obox C9), LHFPL3-AS1 (LHFPL3 antisense RNA 1) and EXTL1 (exostosin like glycosyltransferase 1) were 
the five most significantly upregulated factors in CM (Fig. 4A). MIR30A (microRNA 30a), MAMDC2 (MAM 
domain containing 2), MT-ATP8 (mitochondrially encoded ATP synthase membrane subunit 8), SRGN (ser-
glycin) and MYO16-AS1 (MYO16 antisense RNA 1) were the top five downregulated genes in CM (Fig. 4A). 
Gene ontology (GO) analysis revealed, that the DEG contributed to biological processes such as inhibition of 
apoptosis (GO:0043066, GO:0043069), apoptotic signaling pathway (GO:0097190), proteolysis (GO:0030162, 
GO:0051603), tube morphogenesis (GO:0035239), protein catabolism (GO:0030163, GO:0044257), response 
to growth factor (GO:0071363) and transport of substances (GO:0051050) (Fig. 4B). A total of 106 DEG were 

Table 1.   Patient characteristics. pT-classification according to the eighth edition of the AJCC conjunctival 
melanoma staging system18. Data is shown as mean (range) or as absolute (relative) numbers.

Group Conjunctival melanoma Healthy conjunctiva p

n 12 8 –

Age at surgery (years) 58.9 (27.3–85.3) 55.7 (43.0–69.0) 0.692

Sex

0.081 Male 3 (25.0%) 6 (75.0%)

 Female 9 (75.0%) 2 (25.0%)

pT-category

– –
 pT1a 9 (75.0%)

 pT1b 1 (8.3%)

 pT3b 2 (16.6%)

Tumor-thickness (µm) 944.1 (199.0–2720.0) – –

Localization

– –

 Bulbar conjunctiva 9 (75.0%)

 Fornix 1 (8.3%)

 Tarsal conjunctiva 1 (8.3%)

 Limbus 1 (8.3%)

Local recurrence – –

 Different localization 3

 Similar localization 1

Systemic metastasis 1 – –

Local recurrence and systemic metastasis 1 – –

Follow-up (years) 7.1 (2.2–16.7) – –
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associated to inhibition of apoptosis, among which 20 where up- and 86 were downregulated in CM (Supple-
mentary Fig. 2). The top five upregulated genes in CM with regard to inhibition of apoptosis were POU3F3 (POU 
class 3 homeobox 3), SOX10 (SRY-box transcription factor 10), BIRC7 (baculoviral IAP repeat containing 7), 
CAPN3 (calpain 3) and BIRC5 (baculoviral IAP repeat containing 5) (Fig. 4C). CAPN3, BIRC5 and 7, as well as 
CST6 (cystatin E/M) and WFDC3 (WAP four-disulfide core domain 3), also appeared among the top five genes 
playing a role in proteolysis (Fig. 4C). ONECUT1 (one cut homeobox 1), GDF15 (growth differentiation factor 
15), CXCL13 (C-X-C motif chemokine ligand 13), PEG10 (paternally expressed 10) and CHST11 (carbohydrate 
sulfotransferase 11) were the top five DEG in response to growth factor (Fig. 4C).

Prognostic transcriptome signature of conjunctival melanoma.  Genes with prognostic relevance 
for CM were identified by determining the DEG between melanoma with poor and good clinical outcome in a 
first step (Fig. 5A). Poor clinical outcome was defined based on the presence or absence of local recurrence and/
or systemic metastases, respectively, with a follow up of at least 24 months (mean follow-up: 7.1 years, min: 2.2, 
max: 16.7). In a second step, the correlation coefficient between each gene and outcome was calculated and the 
top genes were selected according to the absolute value of their correlation coefficient. By stepwise increasing the 
number of genes and testing the classification accuracy using ROC and leave-one-out validation (see methods 
for details), it became evident that a gene signature of twenty genes had the optimal accuracy for classifying 
clinical outcome in CM (AUC = 1.0). The expression profile of these twenty genes in all 12 melanoma samples is 
shown in the heatmap in Fig. 5B, with the genes and samples arranged according to their correlation with clinical 
outcome (Fig. 5B, description and right and bottom panel). Five prognostic genes were identified, which were 

Figure 2.   Unsupervised cluster analysis of twelve conjunctival melanoma (CM, six each with good or poor 
outcome) and eight normal conjunctival samples. Clinical outcome was classified based on the presence or 
absence of local recurrence and/or systemic metastases, respectively, with a follow up of at least 24 months. (A) 
Representative histological specimens of melanoma and normal conjunctiva as well as an overview of the study 
design. (B) Principle component analysis. (C) Unsupervised heatmap: basic demographic and clinical data 
are shown above. Each column represents one sample (red: melanoma with poor outcome, orange: melanoma 
with good outcome and green: healthy conjunctiva) and each row one expressed gene. There were 20.189 genes 
with at least one raw read. Unsupervised clustering was performed for both the rows and the columns (see 
dendrogram). The z-score represents a gene’s expression in relation to its mean expression by standard deviation 
units (red: upregulation, blue: downregulation). CM: melanoma, PC: principle component.
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upregulated in CM with poor outcome: RPS6KL1 (ribosomal protein S6 kinase like 1), INHA (inhibin subu-
nit alpha), CENPK (centromere protein K), SNORA73B (small nucleolar RNA, H/ACA box 73B) and TRPV4 
(transient receptor potential cation channel subfamily V member 4). The top five of 15 downregulated genes in 
CM with poor outcome were GPN1 (GPN-loop GTPase 1), MRC1 (mannose receptor C-type 1), ACO2 (aco-
nitase 2), SNRNP48 (small nuclear ribonucleoprotein U11/U12 subunit 48) and AAR2 (AAR2 splicing factor) 
(Fig. 5B). The classification of poor and good outcome based on the twenty signature genes is shown in Fig. 5C 
(see methods for details). GO analysis revealed, that the twenty signature genes were mainly involved in biologi-
cal processes such as cell proliferation, apoptosis and several immune processes as illustrated in the cnetplot in 
Supplementary Fig. 3.

Finally, we investigated whether clinical or histopathological parameters, such as age, gender, pT category, 
tumor thickness, localization of the CM or tumor pigmentation, were associated with clinical outcome (Table 2). 

Figure 3.   Cellular tumor microenvironment of conjunctival melanoma characterized by cell type enrichment 
analysis using xCell. The tool uses gene expression profiles of 64 immune and stromal cell types to calculate cell 
type enrichment scores. (A) Heatmap illustrating xCell enrichment scores of 24 of the 64 cell types which were 
significantly enriched in melanoma compared to normal conjunctiva (p < 0.05, Mann–Whitney U test). 16 cell 
types were up- and 8 cell types were downregulated in melanoma (see annotation on the right of the heatmap). 
Each row represents one cell type, each column represents one sample. Rows are ordered according to the fold 
change of mean enrichment scores for melanoma and normal conjunctiva, respectively. Columns are clustered 
according to similarities in xCell enrichment scores (see dendrogram). Samples with local recurrence and/or 
systemic metastasis are labeled (see legend in B, *: local recurrence and systemic metastasis). pDC: plasmacytoid 
dendritic cell, NKT: natural killer T cell, aDC: activated dendritic cell, DC: dendritic cell, iDC: immature 
dendritic cells, Th1: type 1 T-helper cells, Tregs: regulatory T cells, CMP: common myeloid progenitor, CLP: 
common lymphoid progenitor, HSC: hematopoietic stem cell. (B) Boxplots of the xCell immune and stroma 
score between melanoma and healthy conjunctiva. Each symbol represents one sample and the shape represents 
the prognostic groups also shown in (C–E). (C–E): boxplots of the xCell immune and stroma score between 
melanoma with poor and good outcome (C), melanoma with and without local recurrence (D) and with or 
without systemic metastasis (E), respectively. *p < 0.05, ns: not significant (Mann–Whitney U test).
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Uni- and multivariate logistic regression analysis revealed that the clinical and histopathological parameters 
assessed were not significantly associated with outcome, whereas the transcriptome signature remained signifi-
cant in multivariate analysis (p < 0.001).

Discussion
Gene expression analysis provides important insights into the molecular mechanisms of tumorigenesis and 
-progression and has helped to define new therapeutic targets in numerous malignancies. However, the tran-
scriptional analysis of rare tumors, such as CM, has so far been hampered by their low incidence, challenging a 
prospective analysis of fresh tissue. 3′-RNA sequencing methods, such as the Massive Analysis of cDNA Ends 
(MACE), allow transcriptome analysis of FFPE samples20, in which RNA degradation predominantly occurs at 
the 5′ end21. The present study uses MACE RNA sequencing of FFPE samples to characterize the cellular tumor 
microenvironment (TME) and the transcriptional profile of CM compared to healthy conjunctiva and identifies 
a prognostic transcriptome signature that allows the classification of poor and good clinical outcome for CM.

The cellular tumor microenvironment is known to modulate tumorigenesis, tumor progression, therapeutic 
response and clinical outcome of various malignancies22. Transcriptome-based cell type enrichment analysis 
using xCell19 revealed that the tumor microenvironment of CM was predominantly characterized by an enrich-
ment of numerous immune cell types, including plasmacytoid dendritic cells (pDC), natural killer T cells (NKT), 

Figure 4.   Characterization of the transcriptome of conjunctival melanoma (CM). (A) Volcano plot showing the 
up- and downregulated genes (red and green, respectively) in CM in comparison to normal conjunctiva. Genes 
not differentially expressed are shown in grey. The top ten upregulated as well as the top five downregulated 
genes in melanoma are labeled. (B) Gene ontology (GO) analysis of the differentially expressed genes in 
conjunctival melanoma. The top ten biological processes, which the DEG were involved in, are shown in the 
dot plot. “Inhibition of apoptosis” summarizes the two GO terms “negative regulation of apoptotic process” and 
“negative regulation of programmed cell death”, which overlapped with all 106 associated DEG. The size of the 
dots represents the number of associated genes (count). The adjusted p value of each GO term is shown by color. 
The gene ratio describes the ratio of the count to the number of all DEG. (C) Box plots illustrating normalized 
reads of the top five upregulated factors of three disease-relevant GO terms arranged by log2 fold change.
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B cells and mast cells. pDCs and NKTs are known to be important components of the TME in various malignan-
cies and are essentially involved in the regulation of anti-tumor immunity23,24. There is also evidence of tumor-
resident B-cells in skin melanoma, which are associated with a favorable prognosis, suggesting an involvement 
in anti-tumor immunity and highlighting their potential as a therapeutic target25. Finally, mast cell infiltration 
has been observed in various tumors, including malignant cutaneous melanoma, breast and colorectal cancer26. 
Mast cells are able to modulate the TME by releasing different mediators, including a variety of proangiogenic 
factors and several matrix metalloproteinases that can increase the invasiveness of the tumor26. Taken together, 
our results suggest that the enriched immune cells might play a crucial role in the development of CM and thus 
may represent potential therapeutic targets for a specific anti-tumor immune response. Additionally, the present 
study revealed that CM with systemic metastases had significantly lower immune scores than non-metastatic 
tumors, a finding that has previously been reported for different cancer types27,28. In a study of Mlecnik et al.27, 
a low immune score was associated with an increased risk of systematic metastases in patients with colorectal 
cancer. The authors conclude that patients in early stages could benefit most from checkpoint T-cell therapies to 
prevent the development of distant metastases because these tumors have higher immune scores27. In CM, the 
immune analysis could therefore be a promising diagnostic approach to predict the development of systemic 
metastases and might also be used to predict the response to immune therapy, for which, in contrast to other 
tumor localizations, a local application could also be considered. However, it is important to note that of the 

Figure 5.   Prognostic transcriptome signature of conjunctival melanoma (CM). (A) Workflow of analysis. DEG 
between melanoma with poor and good clinical outcome were used to define a prognostic signature. Clinical 
outcome was defined based on the presence or absence of local recurrence and/or systemic metastases with 
a follow up of at least 24 months. (B) Heatmap of expression data of 20 prognostic marker genes of CM with 
good (orange) and poor outcome (red). Each row represents one gene and each column one tumor. The z-score 
represents a gene’s expression in relation to its mean expression by standard deviation units (red: upregulation, 
blue: downregulation). The genes are ordered according to their correlation with poor outcome, placing the 
gene with the highest correlation coefficient at the top (correlation coefficients are shown beside the heatmap). 
Tumors in the columns are ordered according to the correlation between the expression values of all 20 
signature genes of one sample to the mean expression values of the other samples of both outcomes using leave-
one-out validation (see methods). The correlation coefficients for both outcomes are shown below the heatmap 
and in (C): The white space around the diagonal is defined by the standard deviation of the distances of each 
sample from the diagonal. A sample that lies within the colored area can be assigned to an outcome with high 
probability.
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twelve CM included, only two were associated with metastasis, which requires further investigation to validate 
their diagnostic and therapeutic potential.

The transcriptional signature of CM provided in this study differed significantly from healthy conjunctival 
samples and revealed 1459 differentially expressed genes (DEG). Gene ontology (GO) analysis demonstrated 
that these DEG were mainly involved in biological processes such as inhibition of apoptosis, apoptotic signal-
ing pathway, proteolysis and response to growth factor. Among the apoptosis inhibitors, POU3F3 was the top 
upregulated DEG in CM. This factor and especially the long non coding (lnc) RNA linc-POU3F3, which was also 
among the upregulated DEG, are known to play a role in tumor cell proliferation, inhibition of apoptosis, as well 
as in angiogenesis in several malignancies29–35. siRNA-mediated knockdown of linc-POU3F3 reduces tumor cell 
proliferation and invasion and increase apoptosis in colorectal cancer cells33 and may therefore represent a thera-
peutic approach for the treatment of CM. Another top expressed factor in inhibition of apoptosis was SOX10, a 
nuclear transcription factor that is involved in the differentiation of neural crest progenitor cells to melanocytes 
and is known as a sensitive and specific marker for skin melanoma36, that has not yet been described in CM. In 
skin melanoma cells, SOX10 mediates the invasion through MIA (Melanoma Inhibitory Activity)37, which was 
also among the top upregulated DEG in CM. In addition, SOX10 was recently identified as an oncogene in skin 
melanoma that could be inhibited by the miRNA miR-3138. BIRC5 and BIRC7 were among the top 5 DEG associ-
ated with inhibition of apoptosis and regulation of proteolysis. Both factors belong to the "inhibitors of apoptosis 
proteins" family and are upregulated in uveal melanoma as well39. The most significantly upregulated DEG in CM 
was LHFPL3, which is also highly expressed in malignant glioma and can be inhibited by miRNA-218-5p thus 
reducing the invasiveness of glioma cells40. Further studies will be necessary to investigate the presented factors 
and signaling pathways in the development of CM in more detail and to validate them as potential therapeutic 
targets for the treatment of CM.

In search of a prognostic tool that provides information on the aggressiveness of CM in relation to local 
recurrence or systemic metastases, this study identified a prognostic transcriptional signature comprised of 
twenty genes allowing a classification of the clinical outcome of CM with high accuracy. The clinical and histo-
pathological standard predictors, such as TNM stage, tumor thickness and tumor localization6 were not signifi-
cantly associated with the clinical outcome in our study, although some tendency was observed which may be 
explained by the low sample size of our study. These results underline the potential of a transcriptional analysis 
to categorize clinical outcome. While most of the genes predicting outcome of CM have already been described 
as prognostic factors in other malignancies, such as CENPK41–46, INHA47–50, RPS6KL151, CASP3 (Caspase 3)52, 
SERPINB1 (Serpin Family B Member 1)53, USP33 (Ubiquitin Specific Peptidase 33)54–59, TRPV460 and ACO261, 
some of the predicting factors have not yet been associated to cancer prognosis, such as GPN1, SNRNP48, AAR2 
and SNORA73B. Among the mentioned factors, GPN1 was the gene with the highest correlation coefficient 
with good clinical outcome in CM. GPN1 is involved in the nuclear translocation of XPA (XPA, DNA Damage 

Table 2.   Multivariate analysis of clinical and histopathological factors regarding the clinical outcome of 
conjunctival melanoma. pT-classification according to the eighth edition of the AJCC conjunctival melanoma 
staging system18. Data is shown as mean (range) or as absolute (relative) numbers.

Poor prognosis Good prognosis p

n 6 6 –

Age at surgery (years) 57.7 (37.1–85.3) 60.1 (27.3–81.0) 0.818

Sex

 > 0.999 Male 2 (33.3%) 1 (16.6%)

 Female 4 (66.6%) 5 (83.3%)

Skin color  > 0.999

 White 6 (100.0%) 6 (100.0%)

pT-category

0.135
 pT1a 3 (50%) 6 (100%)

 pT1b 1 (16.7%) 0 (0%)

 pT3b 2 (33.3%) 0 (0%)

Tumor-thickness (µm) 1201.0 (376.0–2720.0) 687.2 (199.0–1002.0) 0.630

Localization

0.262

 Bulbar conjunctiva 3 (50%) 6 (100%)

 Fornix 1 (16.7%) 0 (0%)

 Tarsal conjunctiva 1 (16.7%) 0 (0%)

 Limbus 1 (16.7%) 0 (0%)

Pigmentation 0.439

 Melanotic 6 (100.0%) 4 (66.7%)

 Amelanotic 0 (0.0%) 2 (33.3%)

Transcriptome signature

 < 0.001 Classified: poor 6 (100.0%) 0 (0.0%)

 Classified: good 0 (0.0%) 6 (100.0%)



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17022  | https://doi.org/10.1038/s41598-020-72864-0

www.nature.com/scientificreports/

Recognition And Repair Factor), an important factor that controls nucleotide excision repair62, and has been 
linked to the development of oral cancer in a genome-wide association study63. RNA splicing regulators such as 
AAR2 and SNRNP48, on the other hand, are emerging as a new class of oncoproteins and tumor suppressors64, 
and small nucleolar RNAs such as SNORA73B seem to play important roles in tumorigenesis65. However, none 
of the aforementioned factors has been linked to cancer prognosis and further studies are warranted to validate 
their prognostic value in CM and other malignancies.

We acknowledge that this study is limited by its retrospective single center design and its relatively small 
sample size. However, a prospective single center study does not appear feasible due to the very low incidence 
of CM. A prospective multicenter study would be necessary to overcome these limitations. Another limitation 
is the lack of external validation of the prognostic transcription signature, since no sequencing data of CM are 
available so far. Instead, we used the concept of leave-one-out validation, as previously described66,67. Further-
more, in contrast to single cell RNA sequencing (scRNA), bulk RNA sequencing cannot provide insights into 
cell heterogeneity and thus cannot reveal cell-specific transcriptional profiles to discern possible subtypes of 
tumor cells. However, scRNA sequencing is not feasible on FFPE samples. Therefore, we employed a bulk RNA 
sequencing-based cell type enrichment analysis using xCell19 which is one of the most accurate tools available68 
to characterize the cell types involved in the tumor microenvironment of CM. It is important to emphasize that 
the cell type investigations are based on in silico analysis and have not been validated histologically due to the 
limited number of specimens. This needs to be considered in future studies.

In summary, the present study provides new insights into the cellular tumor microenvironment and the 
transcriptional profile of CM. It adds new prognostic biomarkers and diagnostic tools which can help to improve 
identification of high-risk patients and may lead to new options of targeted therapy for CM.

Methods
Patients and clinical outcome.  A total of 12 CM samples from 12 patients who underwent tumor resec-
tion at the Eye Center of the University of Freiburg between 1996 and 2017 were retrospectively included in 
this study. Six cases each with good or poor clinical outcome with a follow-up of at least 24 months were exam-
ined, the latter being defined by local recurrence and/or systemic metastases. Eight healthy conjunctival samples 
from eight patients who underwent retinal detachment surgery between 2013 and 2016 served as controls. All 
methods were carried out in accordance with relevant guidelines and regulations and informed consent was 
obtained from all subjects. Ethics approval was granted from Ethics Committee of the Albert-Ludwigs-Univer-
sity Freiburg (approval number 481/19).

Formalin fixation and paraffin embedding.  Formalin fixation and paraffin embedding (FFPE) of tissue 
samples was performed immediately after surgery according to routine protocols, as previously described69,70. 
Briefly, samples were fixed immediately after surgery in 4% formalin for 12 h, dehydrated in alcohol and pro-
cessed for paraffin embedding. Histological diagnoses were made by an experienced ophthalmic pathologist 
(CAH). Hematoxylin and eosin stained slides were imaged using a Hamamatsu NanoZoomer S60 (Hamamatsu 
Photonics, Herrsching, Germany).

RNA isolation.  After melting the block, tumor-free tissue areas were removed and the tumor, as well as the 
control FFPE samples were stored in tubes until RNA isolation, which was performed as previously described20,70. 
Briefly, total RNA was isolated from FFPE samples using the Quick-RNA FFPE Kit (Zymo Research). Following 
a DNAse I digestion using the Baseline-ZERO kit (Epicentre), the RNA concentration was measured with the 
Qubit RNA HS Assay Kit on a Qubit Fluorometer (Life Technologies). The RNA quality was determined with the 
RNA Pico Sensitivity Assay on a LabChip GXII Touch (PerkinElmer).

RNA sequencing.  RNA sequencing was performed using massive analysis of cDNA ends (MACE), a 3′ 
RNA sequencing method, as previously described20,70. We recently demonstrated that MACE allows sequenc-
ing of FFPE samples with high accuracy71. Briefly, 20 barcoded libraries comprising unique molecule identifiers 
were sequenced on the NextSeq 500 (Illumina) with 1 × 75 bp. PCR bias was removed using unique molecular 
identifiers.

Bioinformatics.  Sequencing data (fastq files) were uploaded to and analyzed on the Galaxy web platform 
(usegalaxy.eu)72, as previously described73.  Quality control was performed with FastQC Galaxy Version 0.72 
(https​://www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​c/ last access on 11/19/2019). Reads were mapped to 
the human reference genome (Gencode, release 32, hg38) with RNA STAR Galaxy Version 2.7.2b74 with default 
parameters using the Gencode annotation file (Gencode, release 32, https​://www.genco​degen​es.org/human​/
relea​ses.html). Reads mapped to the human reference genome were counted using featureCounts Galaxy Ver-
sion 1.6.475 with default parameters using the aforementioned annotation file. The output of featureCounts was 
imported to RStudio (Version 1.2.1335, R Version 3.5.3). Gene symbols and gene types were determined based 
on ENSEMBL release 98 (Human genes, GRCh38.p12, download on 11/19/2019)76. Genes without EntrezID and 
with zero mean reads were removed from analysis. Principal component analysis (PCA)77 was applied to check 
for potential batch effects, which were removed by the limma function removeBatchEffect78 and by consideration 
within the linear model of DESeq277. Differential gene expression was analyzed using the R package DESeq2 
Version 1.22.277 with default parameters (Benjamini–Hochberg adjusted p values). Transcripts with log2 fold 
change (log2 FC) > 2 or < -2 and adjusted p value < 0.05 were considered as differentially expressed genes (DEG). 
Heatmaps were created with the R package ComplexHeatmap 1.20.079. Other data visualization was performed 
using the ggplot2 package80. Gene enrichment analysis and its visualization were done using the R package clus-
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terProfiler 3.10.181. Cell type enrichment analysis was performed using xCell19. The tool uses sequencing-derived 
transcriptomic signatures of 64 distinct immune and stroma cell types to estimate the relative contributions of 
these cells to a bulk RNA transcriptome. Transcripts per million were calculated as an input for the analysis 
based on the output of featureCounts (assigned reads and feature length), as previously described82. xCell enrich-
ment scores were compared between different groups using the Mann–Whitney U test. The log2 fold change of 
enrichment scores between different groups was defined as the log2 of the quotient of mean enrichment scores 
of each group. To define a prognostic transcriptome signature of CM, a three-step method, as described by van´t 
Veer et al.66, was applied. In a first step, DEG between CM with poor and good outcome were determined, as 
described above. Subsequently, the Pearson correlation between each gene and outcome was calculated. All 
genes were then arranged by the absolute value of their correlation coefficient. The top five genes were selected 
and their expression profile in one sample was correlated to each gene’s mean expression of the remaining sam-
ples of the poor and good prognosis group, respectively. These steps were repeated until each sample was left out 
once (leave-one-out validation), as described previously66,67. Classification accuracy was determined by calculat-
ing the area under the curve (AUC) of receiver operating curves (ROC). To find the optimal number of prog-
nostic genes, the next top five genes were added to the signature and its classification accuracy was evaluated, as 
described above. This process was repeated until the AUC stopped improving.

Data availability
The sequencing data are available in the Gene Expression Omnibus Database under the accession number 
GSE148387.
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