Skip to main content
. 2020 May 9;57(12):4697–4706. doi: 10.1007/s13197-020-04506-2

Table. 1.

Comparison of the proposed aptasensor with other methods for detection of TET

Electrode Method Dynamic range (M) LOD (M) Repeatability (RSD%) Reproducibility (RSD%) Stability (day) Reference
M-shape structure of aptamer /complementary strands of aptamer/ exonuclease I/gold electrode DPVa 1.5 × 10–9–3.5 × 10–6 0.45 × 10–9 7.9 8.3 (Taghdisi et al. 2016)
MWCNTb/GCEc DPV 1 × 10−8 –5 × 10−5 5 × 10–9 10 14 (Zhou et al. 2012)
Avidin-HRPd/bio-cDNAe/aptamer/MoS2-TiO2@Au /GCE DPV 1.5 × 10−10–6 × 10−6 5 × 10–11 5.12 10 (Tang et al. 2018)
MIPf/Aptamer/ AuNP/GCE EIS 5 × 10–13–1 × 10–10 144 × 10–15 6.8 14 (Rad and Azadbakht 2019)
MBCPEg/Fe3O4NPs@OAh/anti-TET EIS 1 × 10–14–1 × 10–6 3.8 × 10–15 6.8 7 (Jahanbani and Benvidi 2016)
Anti-ET/PGAi/MWCNT /GCE DPV 1 × 10−15–1 × 10− 6 3.1 × 10− 16 5.6 7 (Benvidi et al. 2018)
TET/Aptamer/AuNPs/RGO/PGE EIS 1 × 10–16–1 × 10–6 3.05 × 10−17 4.2 5.6 21 This work

adifferential pulse voltammetry, bMulti-walled carbon nanotubes, cglassy carbon electrode, davidin-horseradish peroxidase, ebiotin-DNA oligonucleotide, fmolecular imprinted polymers, gmagnetic bar carbon paste, holeic acid, ipoly L-glutamic acid