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Abstract Exported fresh intact pineapples must fulfill the

minimum internal quality requirement of 12 degree brix.

Even though near-infrared (NIR) spectroscopic approaches

are promising to non-destructively and rapidly assess the

internal quality of intact pineapples, these approaches

involve expensive and complex NIR spectroscopic instru-

mentation. Thus, this research evaluates the performance of

a proposed pre-dispersive NIR light sensing approach in

non-destructively classifying the Brix of pineapples using

K-fold cross-validation, holdout validation, and sensitive

analysis. First, the proposed pre-dispersive NIR sensing

device that consisted of a light sensing element and five

NIR light emitting diodes with peak wavelengths of 780,

850, 870, 910, and 940 nm, respectively, was developed.

After that, the diffuse reflectance NIR light of intact

pineapples was non-destructively acquired using the

developed NIR sensing device before their Brix values

were conventionally measured using a digital refractome-

ter. Next, an artificial neural network (ANN) was trained

and optimized to classify the Brix values of pineapples

using the acquired NIR light. The results of the sensitivity

analysis showed that either one wavelength that was near to

the water absorbance or chlorophyll band was redundant in

the classification. The performance of the trained ANN was

tested using new pineapples with the optimal classification

accuracy of 80.56%. This indicates that the proposed pre-

dispersive NIR light sensing approach coupled with the

ANN is promising to be an alternative to non-destructively

classifying the internal quality of fruits.

Keywords Pre-dispersive Near-infrared � Non-destructive
measurement � Brix, Artificial neural network � Pineapples

Introduction

The total world pineapple (Ananas Comosus) production

that was approximately 24.8 million tons contributed to

more than 20% of the world’s tropical fruits production in

2017 (Records The Daily 2017). Pre- and post-harvesting

knowledge is paramount to prevent or minimize unneces-

sary wastes and losses by managing the ripening process

and the optimal harvest date of fruits (Li and Li 2018).

Intensive global transportation of high-quality fruits stres-

ses the need for innovative and sustainable postharvest

technologies. However, inadequate extension services and

limited researches in fulfilling the export quality standards

are the major challenges for pineapple farmers (Jaji et al.

2018).

Pineapple is a non-climacteric fruit that does not change

its internal quality once it has been harvested (Paull et al.

2017). For instance, pineapples that are harvested prema-

turely will not continue to ripen in sweetness because

pineapples do not reserve starch to be converted to sugar

(Moyle et al. 2005). This implies that the determination of

the optimal harvest day is crucial to meet the worldwide
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Codex Alimentarius Standard for the minimum export Brix

requirement i.e. 12 degree Brix. Ultrasonic technologies

might be able to non-destructively predict the mechanical

properties of pineapples e.g. firmness and apparent elastic

modulus (Vasighi-Shojae et al. 2018). The conventional

method of measuring the Brix of pineapples using a

refractometer, however, is destructive and infeasible to

ensure each exported pineapple fulfills the minimum Brix

requirement. Consequently, these limitations cause unnec-

essary wastes and losses when low quality fruits have been

exported. Thus, a non-destructive measurement alternative

is needed to ensure all exported pineapples fulfill the

minimum Brix requirement for marketing and commercial

quality control (Unit United Nations. Economic Commis-

sion for Europe 2013).

Near-infrared (NIR) technology has been widely inves-

tigated as a non-destructive and rapid sensing technology

in measuring the quality attributes of various fruits and

vegetables, e.g. apples (Li et al. 2018), grapes (Yu et al.

2017), pineapples (Srivichien et al.2015), tomatoes (Torres

et al. 2015), and spinach (Sánchez et al. 2018). This is

because the amount of absorbed NIR radiation is related to

the degree and ways in which the bonds between atoms of

dissimilar mass are deformed (Abu-Khalaf et al. 2001).

Additionally, the physical properties e.g. the solid density

of cane stalk might be estimated using NIR technology

(Sanseechan et al. 2018). Recently, several investigations

have been conducted to reduce the financial barrier in

utilizing NIR technology e.g. replacing a halogen lamp

with a relatively low-cost NIR light emitting diode (LED);

and replacing a high resolution NIR spectroscopy with a

relatively low-cost sensing element that coupled with

several bandpass filters for post-dispersive spectral acqui-

sition. This may address the limitation of previous NIR pre-

dispersive acquisition design that involved a concave

holographic grating in which its maximum light transmis-

sion was 30% (Guthriea and Walshb 1999). Pre-dispersive

spectral acquisition that uses a combination of a sensing

element and NIR LEDs with specific different wave-

lengths, on the other hand, is promising to further reduce

the financial barriers of NIR technology. This pre-disper-

sive spectral acquisition method is similar with the com-

bination of a light source and monochromator that has been

widely used to characterize liquid samples. For instance, a

combination of seven NIR LEDs coupled with a webcam

has been reported to be able to detect adulterations of

hydrated ethyl alcohol fuel without visible spectrum

(Dantas et al. 2017). For solid samples, this pre-dispersive

sensing method was reported to be able to achieve a

comparable predictive accuracy with a portable commer-

cial visible-NIR spectrophotometer in testing the ripeness

of white grapes (Giovenzana et al. 2015). Nevertheless, it is

worthy to highlight that three of the four wavelengths that

used in the study were from the visible spectrum (i.e. 630,

690, 750 and 850 nm) (Giovenzana et al. 2015). In other

words, more studies are needed to evaluate the feasibility

of the pre-dispersive NIR spectral acquisition in measuring

the components of interest for solid samples e.g. the

internal quality of intact fruits.

Previous pilot studies reported that the pre-dispersive

acquired NIR spectral data from the top, middle and bot-

tom of pineapples can be distinguished with 70% classifi-

cation accuracy based on the fact that different parts of

pineapples have different Brix values (Jam and Chia

2017a), and the accuracy of the Brix classification was

75.56% using K-fold cross-validation (Jam and Chia

2017b). However, an external validation has not been

studied to evaluate the performance of the proposed

method. Since this is crucial to justify the potential of the

proposed method that might be further developed for pre-

and post-harvesting applications, this study aims to eval-

uate the performance of the proposed pre-dispersive NIR

spectral acquisition coupled with artificial neural network

(ANN) in non-destructively classifying the Brix of

pineapples using cross-validation and external holdout

validation.

Materials and methods

Spectral data acquisition

13 Josephine-type pineapples that were freshly bought

from a local market (Parit Raja, Johor, Malaysia) were used

in this study. During the pre-dispersive NIR data collec-

tion, the three points of a pineapple (i.e. top, middle, and

bottom) were scanned as each segment had different Brix

values, as that depicted in a previous related study (Sri-

vichien, Terdwongworakul, and Teerachaichayut 2015).

The diffuse reflectance NIR data were non-destructively

collected using the developed NIR sensing device (Fig. 1)

that consisted of a photodiode detector and five NIR LEDs

with different peak wavelengths of 780, 850, 870, 910, and

940 nm. These LEDs that were bought from Thorlabs.com

had viewing half angles, spectral FWHM, and the maxi-

mum forward current of between 7 and 10 degree, 30 and

50 nm, and 75 and 100 mA, respectively. These wave-

lengths are at the third overtone NIR region (also known as

shortwave NIR region) that contains the third overtone N–

H stretching (775–850 nm) and the third overtone C–H

stretching (850–950 nm) information (NIRSystems 2002).

Besides, shortwave NIR region has better penetration into

biological materials compare to NIR region that is above

1100 nm. Each NIR LED was allocated around the pho-

todiode detector with the same radius and pointed to the

same spot with 45 degree toward the spot.
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An OPT101 monolithic photodiode (Texas Instruments)

was used as the photodiode detector because it has an on-

chip transimpedance amplifier that eliminates common

challenges e.g. noise pick-up, leakage current errors, and

gain peaking during the data acquisition. The output volt-

age of the photodiode detector is proportional to the

detected light intensity. The photodiode detector was

allocated perpendicular to the spot. The spot was the

scanned area of a pineapple. Next, a diffuse reflectance

standard (PTFE Ocean Optics) was used to calibrate the

developed NIR sensing device as follows. First, the

intensities of all LEDs were maximized by minimizing

their respective variable resistors’ values. After that, the

amplifier gain of the OPT101 was reduced until only one of

the five LEDs was slightly below the saturation intensity.

Lastly, the intensities of the rest of LEDs were reduced by

increasing their respective variable resistors’ values until

each of the signal was slightly below the saturation inten-

sity. For each NIR wavelength, an average of five scans

were performed at each scanned area. This scanning pro-

cess was repeated from one LED to another LED until all

the five wavelengths had been scanned once. A micro-

controller was used to automate this data acquisition and to

transfer the acquired data in a laptop computer using an

Universal Serial Bus (USB) cable for offline calibration

and analysis. A 7.4 V 1000 mAh Li-poly rechargeable

battery was used to supply electrical power to the devel-

oped NIR sensing device. An organic light-emitting diode

(OLED) screen was used to display the predicted results.

Conventional brix measurement

Immediately after the non-destructive NIR data acquisition

of an intact pineapple was completed, the pineapple was

cut using a stainless-steel apple corer to obtain the flesh

under each scanned area. The Brix value of the obtained

flesh was conventionally measured using a digital refrac-

tometer (PAL-1, Atago, Tokyo, Japan). Both reflected NIR

Fig. 1 The designed sensing

device: a the framework of the

design, b the front view of the

developed NIR sensing device,

c the sensing design (side view),

and d NIR data acquisition
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light and Brix data acquisition process was repeated for the

rest of pineapples.

Data arrangement

The acquired samples from the first 10 pineapples were

used as training dataset to study and identify the optimal

architecture of the artificial neural network (ANN) using

the K-fold cross-validation. The samples from the rest of

three pineapples were reserved as an independent testing

dataset to evaluate the robustness of the optimal ANN.

Both training and testing datasets were pineapples that

harvested on different days. During the K-fold cross-vali-

dation, the best architecture of an ANN (i.e. the optimal

number of hidden neurons) was determined. After that, all

the training data were used to produce the optimal ANN

that would be tested using the independent samples as that

depicted in Fig. 2.

Classification

All pineapple samples were categorized into Class A and

Class B according to their Brix values. Pineapple samples

that had Brix values equivalent to or more than 12 degrees

Brix would be categorized as Class A, while the rest would

be categorized as Class B. This Brix value classification

was based on the minimal Brix requirement of 12 degrees

Brix for exported intact fresh pineapples (Unit United

Nations. Economic Commission for Europe 2013). The

training samples selection was carried out using a boxplot

and leave-one-out cross-validation analysis from the

training dataset.

An artificial neural network (ANN) was developed to

classify the Brix values of pineapples as either Class A or

Class B. The architecture of the ANN consisted of an input

layer, a hidden layer, and an output layer (Fig. 3). The

acquired diffuse reflected NIR lights of 780, 850, 870, 910,

and 940 nm were used as the inputs of the ANN. The

classification training algorithm of the ANN was the Scaled

Conjugate Gradient (SCG). Unlike other conjugate training

algorithms, SCG uses a step size structure instead of a line

search, which reduces the computation cost of an ANN

(Garg and Bansal 2015). The performance of the ANN was

studied when its hidden neuron number and the random

seed value were varied during the training process. In

general, the complexity of an ANN is proportional to the

number of its hidden neuron. The random seed value is

another important parameter that affects the initial weights

of an ANN, and consequently that affects the performance

of an ANN. An ANN with the optimal hidden neurons

number and the best random seeds will achieve the optimal

accuracy without both under- and over-fitting issues.

Performance analysis

K-fold cross-validation was used to identify the best hidden

neuron number of the ANN. K-fold cross-validation with

higher K value has more computational time, while that

with lower K will lead to an increase in the variance value

(Behroozi-Khazaei and Nasirahmadi 2017). The ANN was

optimized using a fivefold cross-validation. All the training

data were randomly divided into five sub-datasets i.e. each

sub-dataset had the samples from two of the ten pineapples.

The number of hidden neurons was adjusted to find the best

ANN. The effects of the hidden neuron number and the

random seed value of the ANN were studied.

To evaluate the robustness of the proposed method, the

ANN with the best architecture was re-trained using the

training dataset, and then the trained ANN was evaluated

using the independent testing dataset. The independent data

were tested without any sample selection. The performance

of the ANN was evaluated by computing the classification

accuracy rate i.e. the ratio of the number of correctly

classified samples to that of total samples (Zhang et al.

2020).

Fig. 2 The relationship

between the data used for cross-

validation and holdout

validation. Independent samples

from new pineapples were used

as testing data to evaluate the

robustness of the model
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Sensitivity analysis

The sensitivity analysis was used to study how the noise

variation affects the behaviour of an ANN (Kapanova et al.

2017), and the uncertainty of the output performance (Li

et al. 2016). This method was applied by removing some of

the inputs of a predictive model (Olden et al. 2004). In this

study, the effect of each NIR wavelength was studied and

discussed using the sensitivity analysis in classifying the

Brix values of pineapples. Reducing data dimension by

identified the optimal region (also known as the optimal

combination of inputs) would not degrade the performance

of the predictive model (Islam et al. 2018).

Results and discussion

Table 1 summarizes the descriptive statistics of the

acquired data for training and testing datasets. The training

dataset consisted of a total of 108 pineapple samples i.e. 62

Class A and 46 Class B pineapple samples. The range of

the Brix values was between 8.20 and 16.50 degree Brix.

For testing analysis, the 36 pineapple samples that were

acquired from new pineapples were used as the indepen-

dent testing dataset, ranging from 9.80 to 14.50 degree

Brix.

K-fold cross-validation

Figure 4 shows that the ANN with seven hidden neurons

and the best random seed value achieved the most accurate

classification result of 85.24% in the fivefold cross-vali-

dation. In other words, the presence of more than seven

hidden neurons did not improve the performance of the

ANN. This implies that the ANN might be overfitted

because its performance was not significantly improved

even though its complexity was increased. Different opti-

mal initial weights were used for the ANN that had dif-

ferent hidden neuron number to achieve the optimal

classification accuracies of between 81.43 and 85.24%.

According to the principle of parsimony, the ANN that

used one hidden neuron was selected as the best architec-

ture with 82.8% classification accuracy to avoid potential

over-fitting issue for the sensitivity analysis and the

external holdout validation.

Sensitivity analysis

Table 2 tabulates the classification accuracy of the ANN

that used one hidden neuron in classifying the Brix of

pineapples using K-fold cross-validation and external

holdout validation. The external holdout validation con-

sisted of both training and testing analysis, in which,

training and independent testing datasets were used,

respectively. When all of the five wavelengths were

included as the inputs of the ANN, the ANN was able to

Fig. 3 The neural diagram of the neural network: the measured NIR intensities were the inputs, the hidden neurons were studied from one to 10,

and the output was the predicted result (i.e. Class A or Class B)

Table 1 The descriptive statistics of the training and testing datasets

Dataset Maximum Brix Minimum Brix Mean (Brix) Standard deviation (Brix) Number of samples

Class A Class B Total

Training 8.20 16.50 12.0185 1.4019 62 46 108

Testing 9.80 14.50 12.6111 1.1966 28 8 36

Total 8.20 16.50 12.1667 1.3738 90 54 144
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classify the Brix values of pineapples with a satisfying

classification accuracy of 82.38, 76.85, and 75% for K-fold

cross-validation, training, and testing analysis, respec-

tively. This shows that the performance of cross-validation

was more optimistic compared with the holdout validation.

Next, the performance of the ANN was re-evaluated

when each wavelength was excluded once to investigate

the effects of each wavelength. It is noticeable that the

ANN achieved the lowest cross-validation accuracy when

910 nm was excluded. This implies that 910 nm was the

most important wavelength among the five wavelengths.

However, this finding disagrees with the previous study

because the exclusion of 910 nm was reported to have a

better classification accuracy (Jam and Chia 2017b). Next,

the least important wavelength might be the 850 nm

wavelength because the ANN that excluded and that

included 850 nm achieved the same cross-validation

accuracy. In short, the results of the K-fold cross-validation

suggested that 850 nm was the least important wavelength,

followed by 940, 870, 780, and 910 nm.

On the other hand, the results of the holdout validation

indicated that 850 nm was the most important wavelength,

followed by 870 or 910 nm, and then 780 or 940 nm based

on the testing accuracy. The 850 nm is closed to the third

combination overtone of sugar O–H stretching at 840 nm

i.e. the second harmonic of a combinational O–H stretching

and bending vibration (Golic et al. 2003). 870 and 888 nm

are corresponding with the absorbance band due to car-

bohydrate e.g. starch, sucrose, fructose and glucose

(Suhandy 2009). The least important information were the

wavelengths that near to the chlorophyll band of 680 nm

and the water absorbance (O–H stretching vibration) of

960 nm, i.e. 780 and 940 nm, respectively. The trained

ANN that was tested using the new pineapples achieved the
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Fig. 4 The classification

accuracy of K-fold validation

when ANN used different

hidden neurons

Table 2 The classification accuracy of ANN that used one hidden neuron in classifying the Brix of pineapples using K-fold cross-validation and

holdout validation

Third overtone region (NIRSystems 2002) Excluded wavelength (nm) Accuracy

K-fold cross-validation accuracy (%) Holdout validation accuracy

(%)

Training Testing

Both N–H and C–H stretching None 82.38 76.85 75.00

N–H stretching (775–850 nm) 780 78.81 75.00 80.56

850 82.38 79.63 72.22

C–H stretching (850–950 nm) 870 80.48 70.37 77.78

910 77.74 74.07 77.78

940 82.14 75.00 80.56
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best classification accuracy of 80.56% when either 780 or

940 nm was excluded during the holdout validation.

Previous researches reported the derivative of absor-

bance at 876 nm was important in pineapple Brix predic-

tion (Guthriea and Walshb 1999). Nevertheless, different

effective wavelengths were reported for Brix predictions

e.g. 884 and 878 nm for tomato and mango, respectively

(Suhandy 2009). This could be due to different fruits, NIR

instruments, acquisition setups, and validation approaches

were used in different researches. For instance (Islam et al.

2018) reported that different variable selection methods

might suggest different sets of selected. Another possible

reason could be due to the nature of NIR third overtone

spectrum that is highly overlapping and correlated. Con-

sequently, the use of adjacent wavelengths that are highly

correlated with each other may achieve a comparative

prediction performance. Nevertheless, more researches are

needed to study the effectiveness of variable selection in

NIR related researches.

The proposed method is a secondary measurement

approach that can non-destructively classify the Brix val-

ues of intact pineapples. With the external holdout vali-

dation accuracy of 80.56%, the proposed method might

help farmers to make a judgment about when they should

harvest their pineapples and how they should sort their

harvested pineapples. This is important because the internal

quality of pineapples will have little change once it has

been harvested. Pre-dispersive transmission spectral

acquisition that fulfills Beer-Lambert law has been com-

monly used to characterize liquid samples. This is because

the light travel path through a liquid sample can be fixed

from a light emitter to a receiver. For the proposed pre-

dispersive reflectance spectral acquisition, the geometrical

effects were minimized by fixed the positions of the light

emitters to the receiver. Nevertheless, the accuracy of the

proposed method might be further improved by investi-

gating the geometrical effects of the pre-dispersive reflec-

tance spectral acquisition.

Conclusion

This study shows that the proposed pre-dispersive NIR

light sensing approach (that consists of one sensing ele-

ment and five NIR LEDs) could be an alternative to clas-

sify the internal quality of pineapples without an expensive

NIR spectroscopy and a halogen lamp. The proposed

method is a secondary measurement approach that corre-

lated the non-destructively measured NIR data to the

conventionally measured Brix values of pineapples using

an ANN. The external holdout validation (i.e. training and

testing analysis) was used to evaluate the robustness of the

proposed method, in which, pineapples that harvested on

different day were used as testing data to evaluate the

classification accuracy. The ANN that used one hidden

neuron and the five different NIR wavelengths (i.e. 780,

850, 870, 910, 940 nm) as its inputs achieved a classifi-

cation accuracy of 82.38, 76.85, and 75% for K-fold cross-

validation, training, and testing analysis, respectively. The

classification accuracy of K-fold validation (i.e. between

77.74 and 82.38%) was comparable with the testing

accuracy in the external holdout validation (i.e. between

72.22 and 80.56%). Next, the sensitivity analysis indicated

that the exclusion of one wavelength that near to the water

absorbance or chlorophyll band could potentially improve

the classification accuracy. This implies that the use of

fewer number of different NIR wavelengths as the inputs of

an ANN could potentially achieve a better classification

accuracy. Nonetheless, more studies are needed to study

the related parameters using different algorithms so that the

parsimonious principle can be complied by having a better

understanding about the relationship between the acquired

pre-dispersive reflectance NIR light and the component of

interest in solid samples.
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Monitoring texture and other quality parameters in spinach

plants using NIR Spectroscopy. Comput Electron Agric

155:446–452. https://doi.org/10.1016/j.compag.2018.11.004

Sanseechan P, Panduangnate L, Saengprachatanarug K, Wongpichet

S, Taira E, Posom J (2018) A portable near infrared spectrometer

as a non-destructive tool for rapid screening of solid density stalk

in a sugarcane breeding program. Sens Bio Sen Res 20(Septem-

ber):34–40. https://doi.org/10.1016/J.SBSR.2018.07.001

Srivichien S, Terdwongworakul A, Teerachaichayut S (2015) Quan-

titative prediction of nitrate level in intact pineapple using vis-

NIRS. J Food Eng 150:29–34. https://doi.org/10.1016/j.jfoodeng.

2014.11.004

Suhandy D (2009) Nondestructive measurement of soluble solids

content in pineapple fruit using short wavelength near infrared

(SW-NIR) spectroscopy. Int J Appl Eng Res 4(1):107–114
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