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Type 2 and interferon inflammation regulate
SARS-CoV-2 entry factor expression in the
airway epithelium
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Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, an emerging virus that

utilizes host proteins ACE2 and TMPRSS2 as entry factors. Understanding the factors

affecting the pattern and levels of expression of these genes is important for deeper

understanding of SARS-CoV-2 tropism and pathogenesis. Here we explore the role of

genetics and co-expression networks in regulating these genes in the airway, through the

analysis of nasal airway transcriptome data from 695 children. We identify expression

quantitative trait loci for both ACE2 and TMPRSS2, that vary in frequency across world

populations. We find TMPRSS2 is part of a mucus secretory network, highly upregulated by

type 2 (T2) inflammation through the action of interleukin-13, and that the interferon

response to respiratory viruses highly upregulates ACE2 expression. IL-13 and virus infection

mediated effects on ACE2 expression were also observed at the protein level in the airway

epithelium. Finally, we define airway responses to common coronavirus infections in children,

finding that these infections generate host responses similar to other viral species, including

upregulation of IL6 and ACE2. Our results reveal possible mechanisms influencing SARS-CoV-

2 infectivity and COVID-19 clinical outcomes.
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In December of 2019, a novel Coronavirus, SARS-CoV-2,
emerged in China and has gone on to trigger a global
pandemic of Coronavirus Disease 2019 (COVID-19), the

respiratory illness caused by this virus1. While most individuals
with COVID-19 experience mild cold symptoms (cough and
fever), some develop more severe disease including pneumonia,
which often necessitates mechanical ventilation2. In fact,
an estimated 5.7% of COVID-19 illnesses are fatal3. Enhanced
risk of poor outcomes for COVID-19 has been associated with a
number of factors including advanced age, male sex, and
underlying cardiovascular and respiratory conditions4,5. Yet,
while the majority of serious COVID-19 illness occurs in adults
over 60, children are also susceptible to infection, with the
Centers for Disease Control and Prevention (CDC) reporting
that 2% of confirmed cases being in patients under 18 years of
age. Of these COVID-19 cases in children, the CDC estimates
that 5.7–20% are hospitalized and 0.58–2.0% require ICU stays6.
Moreover, recent data from China suggests that 38% of COVID-
19 cases occurring in children are of moderate severity and 5.8%
are severe or critical7, although not all cases were confirmed in
this data set. In addition, a small minority of SARS-CoV-2
infections in children have been associated with a severe
inflammatory syndrome similar to Kawasaki’s disease. Together
these data highlight a need to study risk factors of COVID-19
illnesses in children.

One factor that may underlie variation in clinical outcomes of
COVID-19 is the extent of gene expression in the airway of the
SARS-CoV-2 entry receptor, ACE2, and TMPRSS2, the host
protease that cleaves the viral spike protein and thus allows for
efficient virus-receptor binding8. Expression of these genes and
their associated programs in the nasal airway epithelium is of
particular interest given that the nasal epithelium is the primary
site of infection for upper airway respiratory viruses, including
coronaviruses, and acts as the gateway through which upper
airway infections can spread into the lung. The airway epithelium
is composed of multiple resident cell types (e.g., mucus secretory,
ciliated, basal stem cells and rare epithelial cell types) inter-
digitated with immune cells (e.g., T cells, mast cells, macro-
phages), and the relative abundance of these cell types in the
epithelium can greatly influence the expression of particular
genes9–11, including ACE2 and TMPRSS2. Furthermore, since the
airway epithelium acts as a sentinel for the entire respiratory
system, its cellular composition, along with its transcriptional and
functional characteristics, are significantly shaped by interaction
with environmental stimuli. These stimuli may be inhaled (e.g.,
cigarette smoke, allergens, microorganisms) or endogenous, such
as when signaling molecules are produced by airway immune
cells present during different disease states. One such disease state
is allergic airway inflammation caused by type 2 (T2) cytokines
(IL-4, IL-5, IL-13), which is common in both children and adults
and has been associated with the development of both asthma
and chronic obstructive pulmonary disease (COPD) in a sub-
group of patients12–14. T2 cytokines are known to greatly modify
gene expression in the airway epithelium, both through tran-
scriptional changes within cells and epithelial remodeling in the
form of mucus metaplasia12,15,16. Microbial infection is another
strong regulator of airway epithelial expression. In particular,
respiratory viruses can modulate the expression of thousands of
genes within epithelial cells, while also recruiting and activating
an assortment of immune cells17–19. Even asymptomatic nasal
carriage of respiratory viruses, which is especially common
in childhood, has been shown to be associated with both
genome-wide transcriptional re-programming and infiltration of
macrophages and neutrophils in the airway epithelium20,
demonstrating how viral infection can drive pathology even
without overt signs of illness.

Genetic variation is another factor that may regulate gene
expression in the airway epithelium. Indeed, expression quanti-
tative trait loci (eQTL) analyses carried out in many tissues have
suggested that the expression of as many as 70% of genes are
influenced by genetic regulatory variants21. The severity of
human rhinovirus (HRV) respiratory illness has specifically been
associated with genetic variation in the epithelial genes CDHR322

and the ORMDL323 and, given differences in genetic variation
across world populations, it is possible that functional genetic
variants in SARS-CoV-2-related genes could partly explain
population differences in COVID-19 clinical outcomes.

Finally, there are important questions regarding the host
response to SARS-CoV-2 infection. For example, it is unclear
whether specific antiviral defenses in the epithelium are blocked by
SARS-CoV-2 or whether the virus may trigger epithelial or immune
cell pathways that prolong airway infection, and/or even incite a
hyperinflammatory state in the lungs in some individuals that leads
to more severe disease. Although large cohorts of subjects infected
by the novel coronavirus are still lacking, much can be learned by
exploring transcriptional responses to other coronavirus strains.
In particular, because nasal airway brushings capture both epithelial
and immune cells present at the airway surface, such samples col-
lected from a cohort of subjects infected by a range of viruses
provide an opportunity to comprehensively investigate the poten-
tially varied and cascading effects of coronavirus infection on airway
expression and function.

In this study, we first use single-cell RNA-sequencing (scRNA-
seq) to elucidate the cellular distribution of ACE2 and TMPRSS2
expression in the nasal airway epithelium. We also perform
network and eQTL analysis of bulk gene expression data on nasal
airway epithelial brushings collected from a large cohort of
asthmatic and healthy children in order to identify the genetic
and biological regulatory mechanisms governing ACE2 and
TMPRSS2 expression. We then validate the effects on ACE2
expression at the protein level in the airway epithelium. We then
use multi-variable modeling to estimate the relative contribution
of these factors to population variation in the expression of these
two genes, and by performing experiments on mucociliary airway
epithelial cultures confirm a dominant role for both T2 inflam-
mation and viral infection in regulating the expression of ACE2
and TMPRSS2. Finally, we define the cellular and transcriptional
responses to in vivo coronavirus infections in the nasal airway of
children.

Results
Cell-type specificity of ACE2 and TMPRSS2 in the nasal airway.
We first examined ACE2 and TMPRSS2 expression at a cell-type
level through single-cell RNA-sequencing (scRNA-seq) of a nasal
airway epithelial brushing from an adult, asthmatic subject.
Shared Nearest Neighbor (SNN)-based clustering of 8,291 cells
identified nine epithelial and three immune cell populations
(Fig. 1a and Supplementary Data 1). We found that seven epi-
thelial cell populations contained ACE2+ cells (at low frequency),
with the highest frequency of positive cells found among basal/
early secretory cells, ciliated cells, and secretory cells (Fig. 1b).
We did not observe meaningful ACE2 expression among any of
the immune cell populations, which included T cells, dendritic
cells, and mast cells. We found TMPRSS2 to be expressed by all
epithelial cell types, with a higher frequency of positive cells
among the different cell types, compared to ACE2 (Fig. 1b, c).
A small number of mast cells were also TMPRSS2+ (Fig. 1c).

TMPRSS2 is a T2 inflammation-induced mucus secretory gene.
We next sought to determine the variation in nasal epithelial
expression of ACE2 and TMPRSS2 across healthy and asthmatic
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children and to identify biological mechanisms that regulate this
variation. Thus, we performed weighted gene co-expression net-
work analysis (WGCNA) on whole-transcriptome sequencing
data from nasal airway brushings of 695 Puerto Rican healthy and
asthmatic children in the Genes-Environments and Asthma in
Latino Americans II study (GALA II). This analysis identified 54
co-expression networks representing cell-type-specific expression
programs such as ciliogenesis, mucus secretion, and pathways of
immunity and airway inflammation (Supplementary Data 2). The
TMPRSS2 gene was contained within one of a set of three highly
correlated networks exhibiting strong enrichments for mucus
secretory cell genes and pathways (Fig. 2a and Supplementary
Data 2 and 3). For example, the black network, which was highly
correlated with TMPRSS2 expression (r= 0.64, p= 1e−82), was
strongly enriched for Asparagine N-linked glycosylation (R-HSA-
446203) and COPI-mediated anterograde transport (R-HSA-
6807878) pathways. These and other enriched pathways are
involved in the normal processing and transport of mucin pro-
teins (Fig. 2a). TMPRSS2 itself fell within and was highly corre-
lated with expression of the pink network (r= 0.68, p= 3e−97),
which was highly enriched for mucus goblet cell markers (p= 2e
−6, Fig. 2a, b). The pink network was also enriched for genes
involved in the O-linked glycosylation of mucins (R-HSA-
913709) pathway (p= 9e−4), which is vital to the function of
mucins, especially those produced by mucus secretory cells
induced by T2 inflammation (r= 0.68, p= 3e−97, Fig. 2a, b). In
fact, we found that this network contained the T2 cytokine IL13
while being particularly enriched for genes known to mark and
transcriptionally regulate IL-13-induced mucus metaplasia
(FCGBP, SPDEF, FOXA3). The saddle brown network was also
related to mucus secretory cells, and contained the most cano-
nical T2 inflammation markers12,24 including POSTN, CLCA1,
CPA3, IL1RL1, CCL26, and was strongly correlated with both
TMPRSS2 (r= 0.61, p= 5e−72, Fig. 2c) and the other T2 mucus
secretory network (pink) (r= 0.92, p= 3e−280, Supplementary
Data 4). In contrast, we found ACE2 expression to be strongly
negatively correlated with expression of both T2 networks (pink:
r= -0.61, p= 3e−72, saddle brown: r=−0.7, p= 2e−102,
Fig. 2e, f). To identify subjects with high and low T2 inflamma-
tion, we hierarchically clustered all subjects based on the
expression of genes in the canonical T2 network (saddle brown).
This resulted in the identification of two distinct groups we
labeled as T2-high (n= 364) and T2-low (n= 331) (Supple-
mentary Fig. 1a). We found that this expression-derived T2 status
was strongly associated with traits known to be driven by T2
inflammation including immunoglobulin E (IgE) levels, exhaled
nitric oxide (FeNO), blood eosinophils, and asthma diagnosis
(Supplementary Fig. 1b–e). Notably, TMPRSS2 levels were 1.3-
fold higher in T2-high subjects (p= 1e−62), while, ACE2
expression was 1.4-fold lower in T2-high subjects (p= 2e−48)
(Fig. 2d, g).

To investigate whether the strong in vivo relationship between
airway T2 inflammation and TMPRSS2/ACE2 expression is causal
in nature, we performed in vitro stimulation of paired air–liquid
interface (ALI) mucociliary airway epithelial cultures with 72 h of
IL-13, a known regulator of type 2 inflammation25,26, or mock
stimulus (n= 5 donors, Fig. 3a). Performing paired differential
expression analysis between the mock and IL-13 stimulated
cultures, we found that ACE2 and TMPRSS2 were strongly
downregulated and upregulated, respectively, supporting our
in vivo analysis results (log2 fold change [log2FC]= −0.67, p= 5e
−3, log2FC= 1.20, p= 5e−9, Fig. 3b, c). To better understand the
cellular basis of TMPRSS2 and ACE2 regulation by IL-13, we
leveraged scRNA-seq data previously generated on tracheal
airway epithelial cultures that were chronically stimulated
(10 days) with IL-13 or control media (Fig. 3a, d). Similar to
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our results from in vivo nasal scRNA-seq data, we observed that
ACE2 expression was highest among basal, ciliated, and early/
intermediate secretory cell populations, with ACE2 being
significantly downregulated by IL-13 among both basal and
intermediate secretory cells (Fig. 3e). Also mirroring the in vivo
scRNA-seq data, TMPRSS2 was expressed across all epithelial cell
types, but at a higher frequency among secretory cells (Fig. 3f).
IL-13 stimulation-induced marked upregulation of TMPRSS2
in early secretory, intermediate secretory, and mature mucus
secretory cell populations (Fig. 3f). Furthermore, IL-13 stimulated
mucus metaplasia that resulted in the development of a novel
mucus secretory cell type and an IL-13 inflammatory epithelial
cell that both highly expressed TMPRSS2 (Fig. 3f). Together, our
in vivo and in vitro analyses strongly suggest that TMPRSS2 is
part of a mucus secretory cell network that is highly induced by
IL-13-mediated T2 inflammation.

ACE2 is a virally induced interferon response network gene.
Returning to the in vivo nasal airway epithelial expression

networks, we found that ACE2 expression was highly correlated
with the expression of two networks (purple and tan) (purple:
r= 0.74, p= 3e−120, tan: r= 0.72, p= 2e−110, Fig. 4a, b). The
purple network was highly enriched for genes that mark cyto-
toxic T cells and antigen-presenting dendritic cells, both of
which are particularly abundant in a virally infected epithelium
(Fig. 4c and Supplementary Data 2), whereas the tan network
was strongly enriched for interferon and other epithelial viral
response genes (IFI6, IRF7, CXCL10, CXCL11) (Fig. 4c and
Supplementary Data 2). Clustering of subjects based on the
interferon response network genes resulted in two groups, one
highly (interferon-high= 78) and one lowly (interferon-low=
617) expressing these interferon response network genes (Sup-
plementary Fig. 2). We found that ACE2 expression was 1.7-fold
higher in the interferon-high vs. interferon-low group (Fig. 4d).
In a previous study, we found that children with nasal gene
expression characteristic of the interferon network tended to be
infected with a respiratory virus, despite being asymptomatic20.
To explore the possibility of this relationship in our current data
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Fig. 3 ACE2 and TMPRSS2 are both regulated by IL-13 in the airway epithelium. a Experimental schematic detailing the timeline for differentiation of
basal airway epithelial cells into a mucociliary airway epithelium and treatment with chronic (10 days) or acute (72 h) IL-13 (10 ngmL−1). b Box plots of
count-normalized expression between paired (n= 5 pairs) nasal airway cultures (control/IL-13) revealing strong downregulation of bulk ACE2 expression
with IL-13 treatment. Differential expression results are from DESeq2. Benjamini–Hochberg correction was used to control for false discovery rate. c Box
plots of count-normalized expression between paired (n= 5 pairs) nasal airway cultures (control/IL-13) revealing strong upregulation of bulk TMPRSS2
expression with IL-13 treatment. Differential expression results are from DESeq2. Benjamini–Hochberg correction was used to control for false discovery
rate. d UMAP visualization of 6,969 cells derived from control and IL-13 stimulated tracheal airway ALI cultures depict multiple epithelial cell types
identified through unsupervised clustering. e Violin plots of normalized ACE2 expression across epithelial cell types from tracheal airway ALI cultures,
stratified by treatment (gray= control, red= IL-13). Differential expression using a two-sided Wilcoxon test was performed between control and IL-13-
stimulated cells with significant differences in expression for a cell type indicated by a * (p < 0.05). p-values (left to right) = 0.62; 0.18; 2.8e−4; 0.66; 4.6e
−6; 0.08; NA; 0.77; NA; NA; 0.12. f Violin plots of normalized TMPRSS2 expression across epithelial cell types from tracheal airway ALI cultures, stratified
by treatment (gray= control, red= IL-13). Differential expression using a two-sided Wilcoxon test was performed between control and IL-13-stimulated
cells with significant differences in expression for a cell type indicated by a * (p < 0.05). p-values (left to right) = 9.4e−4; 1.4e−11; 0.51; 2.5e−14; 6.9e−117;
1.5e−38; 2.3e−4; 2.3e−10; 0.46; NA; 0.95. Box centers give the median, upper and lower box bounds correspond to first and third quartiles and the upper/
lower whiskers extend from the upper/lower bounds up to/down from the largest/smallest value, no further than 1.5 × IQR from the upper/lower bound
(where IQR is the inter-quartile range). Data beyond the end of whiskers are plotted individually.
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set, we metagenomically analyzed the RNA-seq data for all
subjects to identify those harboring reads for a respiratory virus.
This analysis found that 16% of GALA II children were
asymptomatically harboring a respiratory virus from one of
seven general respiratory virus groups (Fig. 4e). Strikingly, we
found that 82% of interferon-high subjects were virus carriers
compared to only 8% of interferon-low subjects (Supplementary
Fig. 2B). These results demonstrate how asymptomatic virus

carriage nonetheless stimulates an active viral response that
includes ACE2.

To directly test the effect of respiratory virus infection on
epithelial ACE2 gene expression, we again employed our ALI
mucociliary epithelial culture system. Performing mock or human
rhinovirus-A16 infection of mature cultures (day 27, Fig. 4f) from
five donors, we found 7.7-fold upregulation of ACE2 gene
expression with HRV-A infection (p= 1.3e−51, Fig. 4g). In
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contrast, we only observed a trend for the downregulation
of TMPRSS2 gene expression among virally infected subjects
(Fig. 4h). These results confirm the strong regulation of ACE2
gene expression by HRV-A viral infection and likely other
respiratory viruses.

ACE2 protein is regulated by T2 stimulus and viral infection.
We next evaluated whether the T2 and viral inflammation-driven
modulation of ACE2 observed at the mRNA level extends to the
protein level as well. Specifically, we performed immunohis-
tochemistry for ACE2 protein on replicate mature ALI muco-
ciliary nasal airway epithelial cultures from a childhood asthmatic
donor in the GALA II cohort. The replicate cultures were either
mock-treated, IL-13 treated (5 days), or infected with HRV-A
or HRV-C (24 h post-infection). In mock-treated cultures, we
observed ACE2 protein staining both sporadically in the cyto-
plasm, and along the apical surface of epithelial cells, many times
colocalizing with ciliated cells (Fig. 5a, f and Supplementary
Fig. 3a). Due to its potential to mediate virus binding, we focused
the quantification of ACE2 staining to that found on the apical
surface. Five days of IL-13 treatment strongly downregulated
ACE2 apical staining (2.4-fold, p= 0.03, Fig. 5b, e and Supple-
mentary Fig. 3b), which was conversely strongly increased
by both acute HRV-A (2.0-fold, p= 2e−3, Fig. 5c–e and Sup-
plementary Fig. 3c) and HRV-C infection (1.7-fold, p= 0.02,
Fig. 5e).

To explore more definitively the relationship between the
presence of ciliated cells and ACE2 surface protein expression, we
treated nasal basal airway epithelial cells throughout ALI
mucociliary differentiation with either mock stimulus (Fig. 5f),
IL-13 (blocks ciliated cell differentiation, Fig. 5g) or the γ-
secretase inhibitor DAPT (stimulates ciliated cell differentiation,
Fig. 5h). The IL-13 differentiated cultures exhibited the expected
marked increase in mucus secretory cells with no ciliated cells
present. This loss of ciliated cells among the IL-13 stimulated
cultures was matched by an almost complete loss of apical ACE2
protein (41.0-fold, p= 1e−3, Fig. 5g, i). In contrast, DAPT
treatment generated the expected full ciliation of the ALI cultures,
which corresponded with a marked increase in apical ACE2
protein expression (2.0-fold, p= 0.02, Fig. 5h, i). We then
evaluated histological sections of two human tracheas (Fig. 5j and
Supplementary Fig. 3d–f), finding the most prominent ACE2
expression localized to the apical surface of the tracheal
epithelium, colocalizing strongly with ciliated cells. Together,
these results confirm at a protein level the downregulation
and upregulation of ACE2 caused by IL-13 stimulation and

virus infection of the airway epithelium, respectively, while also
revealing ACE2 protein at the apical epithelial surface, particu-
larly in ciliated cells.

Genetic regulation of ACE2 and TMPRSS2 in the nasal airway.
We next explored the role of genetic regulatory variants in the
epithelial expression of ACE2 and TMPRSS2. To do this, we
performed cis-eQTL analysis for these two genes, using nasal gene
expression and genome-wide genetic variation data collected
from the GALA II study children. We identified 316 and 36
genetic variants significantly associated with the expression of
ACE2 and TMPRSS2, respectively (Fig. 6a, b). Stepwise
forward–backward regression analysis of these eQTL variants
revealed a single independent eQTL variant (rs181603331) for the
ACE2 gene (p= 6e−23), located ~20 kb downstream of the ACE2
gene (Fig. 6a). This rare eQTL variant (allele frequency [AF]=
1%) was associated with a large decrease in ACE2 expression
(log2AFC=−1.6) (Fig. 6c).

A similar analysis of the TMPRSS2 eQTL variants yielded three
independent eQTL variants (rs1475908 AF= 20%, rs74659079
AF= 4%, and rs2838057 AF= 13%, Fig. 6b). The eQTL variant
rs1475908 was associated with a decrease in TMPRSS2 expression
(log2 allelic fold change [log2AFC]=−0.37, Fig. 6d), whereas both
the rs74659079 and rs2838057 eQTL variants were associated
with increased TMPRSS2 expression (log2AFC= 0.38, 0.43,
respectively, Supplementary Fig. 4).

Considering that a large number of eQTL effects are very
consistent across populations, we next examined the frequency of
these variants among eight world populations listed in the
gnomAD genetic variation database (v2.1.1). We found that the
ACE2 eQTL variant was only present in people of African descent
and at a low frequency (AF= 0.7%, Fig. 6e). In contrast, the
TMPRSS2 eQTL variant associated with decreased expression,
rs1475908, occurred across all world populations, with the highest
allele frequencies among East Asians (AF= 38%), Europeans
(AF= 35%), intermediate frequencies among Africans (AF=
26%) and Ashkenazi Jews (AF= 23%), and the lowest frequency
among Latinos (AF= 17%). The two TMPRSS2 eQTL variants
associated with increased expression exhibited much more
disparate allele frequencies across world populations. Namely,
the allele frequency of rs74659079 is above 1% only among people
of African descent (AF= 11%) and 4% in the participating Puerto
Rican population. Likewise, the rs2838057 eQTL variant, which
was associated with increased TMPRSS2 expression was present
at a frequency of 32% in East Asians, 20% in Latinos, and <10% in
all other world populations.

Fig. 4 ACE2 is an interferon network gene regulated by a viral infection. a Scatterplot revealing a strong positive correlation between ACE2 expression
and summary (eigengene) expression of the cytotoxic immune response network (purple). p-values were obtained from a two-sided Pearson correlation
test. b Scatterplot revealing a strong positive correlation between ACE2 expression and summary (eigengene) expression of the interferon response
network (tan). p-values were obtained from a two-sided Pearson correlation test. c WGCNA analysis identified networks of co-regulated genes related to
cytotoxic immune response (purple) and interferon response (tan). ACE2 was within the purple network. Select pathway and cell-type enrichments for
network genes are shown. Enrichment p-values were obtained from a one-sided hypergeometric test. Benjamini–Hochberg correction was used to control
for false discovery rate. d Box plots of count-normalized expression from GALA II nasal epithelial samples reveal strong upregulation of ACE2 expression
among interferon-high (n= 78) compared to interferon-low (n= 617) subjects. Differential expression results are from DESeq2. Benjamini–Hochberg
correction was used to control for false discovery rate. e Pie graph depicting the percentage of each type of respiratory virus infection found among GALA II
subjects in whom viral reads were found. f Experimental schematic detailing a timeline for differentiation of basal airway epithelial cells into a mucociliary
airway epithelium and experimental infection with HRV-A16. g Box plots of count-normalized expression between paired (n= 5 pairs) nasal airway cultures
(control/HRV-A16 infected) revealing strong upregulation of ACE2 expression with HRV-A16 infection. Differential expression results are from DESeq2.
Benjamini–Hochberg correction was used to control for false discovery rate. h Box plots of count-normalized expression between paired (n= 5 pairs) nasal
airway cultures (control/HRV-A16-infected) revealing no effect of HRVA-16 on TMPRSS2 expression. Differential expression results are from DESeq2.
Benjamini–Hochberg correction was used to control for false discovery rate. Box centers give the median, upper and lower box bounds correspond to first
and third quartiles and the upper/lower whiskers extend from the upper/lower bounds up to/down from the largest/smallest value, no further than 1.5 ×
IQR from the upper/lower bound (where IQR is the inter-quartile range). Data beyond the end of whiskers are plotted individually.
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Multi-variable modeling of airway ACE2 and TMPRSS2 levels.
Our analyses indicate that T2 inflammation, interferon/viral
response signaling, and genetics are all determinants of ACE2 and
TMPRSS2 gene expression in the airway epithelium of children.
Therefore, we next sought to determine the relative importance of
these factors in determining levels of these genes using multi-
variable regression analysis. We included asthma status, age, and
sex as model covariates since chronic lung disease, increasing age,
and male sex have all been associated with increased risk of poor

COVID-19 illness outcomes. Modeling ACE2 expression among
GALA II children, we found that T2 and interferon statuses had
the strongest effects on ACE2 expression (p= 1.6e-57, p= 6.5e
−43, respectively), with T2-low and interferon-high individuals
exhibiting the highest levels of expression. These two variables
independently explained 24% and 17% of the variance in ACE2
expression (Table 1). While the ACE2 eQTL variant,
rs181603331, was associated with a notable decrease in ACE2
levels, it only accounted for 1.2% of the variance, reflecting the
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Fig. 5 Airway surface ACE2 protein is regulated by IL-13 and viral infection. a–c Immunofluorescence staining of in vitro nasal airway epithelial ALI
cultures (derived from a single GALA II asthmatic child) derived from vehicle-treated (a), 5 days IL-13(10 ngmL−1) treated (b), and 24 h HRV-A infected
epithelium (c). Representative images of ciliated cells (ACT; red) and ACE2-positive (white) cells. The nuclei were counterstained with DAPI (blue). ACE2
protein was located in the apical compartment and decreased with IL-13 treatment and increased in HRV-A infection. Scale bars: 60 μm. d Zoomed in
image of c. e Quantification of apical ACE2-positive cells per 20x field for each condition in the IL-13/HRV mature culture stimulation experiment (n= 1
donor). p-values were obtained from a two-sided t-test. Data are presented as mean values ± SEM. f–h Immunofluorescence staining of in vitro nasal
airway epithelial ALI cultures from a single child non-asthmatic donor derived from vehicle-treated (f), 21 days IL-13 (10 ngmL−1) treated (g), and 21 days
DAPT(5 μM) treated epithelium (h). Representative images of ciliated cells (ACT; red), basal cells (KRT5; green), and ACE2-positive (white) cells. The
nuclei were counterstained with DAPI (blue). ACE2 protein located in the apical compartment and decreased in IL-13 treatment and increased in DAPT
treatment. Scale bars: 60 μm. i Quantification of apical ACE2-positive cells per 20x field for each condition in the IL-13/DAPT differentiation experiment
(n= 1 donor). p-values were obtained from a two-sided t-test. Data are presented as mean values ± SEM. j Immunofluorescence staining of in vivo trachea
tissues from a single healthy donor. Representative images of ciliated cells (ACT; red), basal cells (KRT5; green), and ACE2-positive (white) cells. The
nuclei were counterstained with DAPI (blue). ACE2 protein located in the apical compartment of ACT positive ciliated cells. Scale bars: 60 μm. All images
were captured on the Echo Revolve R4 and images were cropped and resized using Affinity Designer. For each image, brightness and contrasts were
uniformly adjusted relative to the brightest feature to balance exposure of each color channel.
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Fig. 6 Nasal airway ACE2 and TMPRSS2 are regulated by eQTL variants. a Locuszoom plot of ACE2 eQTL signals. The lead eQTL variant (rs181603331) is
highlighted with a purple dot. The strength of linkage disequilibrium (LD) between rs181603331 and other variants is discretely divided into five quantiles and
mapped into five colors (dark blue, sky blue, green, orange, and red) sequentially from low LD to high LD. b Locuszoom plot of TMPRSS2 eQTL signals. The
three independent eQTL variants (rs1475908, rs2838057, rs74659079) and their LD with other variants (r2) are represented by red, blue, and green color
gradient, respectively. c Box plots of normalized ACE2 expression among the three genotypes of the lead ACE2 eQTL variant (rs181603331). log2AFC= log2 of
the allelic fold change associated with the variant. (n: GG= 654, GT= 8, TT= 3). eQTL p-values were obtained from testing the additive genotype effect on
gene expression using the linear regression model implemented in FastQTL. Benjamini–Hochberg correction was used to control for false discovery rate. d Box
plots of normalized TMPRSS2 expression among the three genotypes of the lead TMPRSS2 eQTL variant (rs1475908). log2AFC= log2 of the allelic fold change
associated with the variant. (n: GG= 432, GA= 218, AA= 31). eQTL p-values were obtained from testing the additive genotype effect on gene expression
using the linear regression model implemented in FastQTL. Benjamini–Hochberg correction was used to control for false discovery rate. e Bar plots depicting
allele frequencies of the ACE2 eQTL variant rs181603331 and TMPRSS2 eQTL variants (rs1475908, rs2838057, rs74659079) across world populations. Allele
frequency data were obtained from gnomAD v2.1.1. Box centers give the median, upper and lower box bounds correspond to first and third quartiles, and the
upper/lower whiskers extend from the upper/lower bounds up to/down from the largest/smallest value, no further than 1.5× IQR from the upper/lower bound
(where IQR is the inter-quartile range). Data beyond the end of whiskers are plotted individually.
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low frequency of this variant in our population. Increasing age
and asthma diagnosis were both associated with small decreases
in ACE2 expression, although both variables accounted for <2%
of the variance, and sex was not a significant predictor
(Table 1).

Similar modeling of TMPRSS2 expression found that T2-high
status markedly increased expression, with an effect size 5.4 times
larger than any other variable, capturing 33% of the total
variation in TMPRSS2 (Table 1). While statistically significant,
the two TMPRSS2 eQTL variants associated with increased
expression exhibited small effect sizes totaling <1% of variance
explained. All other predictors were not significant. Collectively,
these modeling results confirm that both T2 and interferon
inflammation are strong and antagonistic regulators of ACE2
expression and show that T2 inflammation is the lone dominant
driver of airway expression of TMPRSS2.

Host response to CoV is similar to other respiratory viruses.
Our metagenomic analysis of RNA-seq data from the nasal
brushings identified 113 subjects infected with a range of viral
species, including 17 children infected with one of four different
common coronavirus (CoV) species (OC43, JKU1, 229E, NL63)
(Supplementary Data 5 and 6). This presented us with the
opportunity to determine the host airway response to collective
common CoV species and to contrast this response to that of
other non-CoV respiratory viruses. We also reasoned this analysis
would allow us to generate a reference host nasal airway response
to common, non-severe CoV infections, which could be com-
pared to host nasal airway responses to SARS-CoV-2 infections,
likely to be generated by researchers soon, allowing investigators
to discriminate between host responses that are pertinent or not
to generating severe respiratory illness. To increase the likelihood
that these subjects were experiencing an active viral infection, we
limited our analysis to the 9 most highly CoV-infected subjects,
comparing them to all subjects not infected with a virus (n=
582). To allow us to investigate whether CoV infections stimulate
a unique host response relative to other respiratory viruses, we
established a viral infected group composed of 22 subjects highly
infected with one of several viral species known to cause sig-
nificant respiratory illness27–33, including lower airway effects
and asthma exacerbations, collectively referred to hereafter as the
Other Respiratory Virus group (ORV). The ORV group included
samples infected with human rhinovirus species C (HRV-C),

Influenza A, Influenza B, Orthopneumovirus, Metapneumovirus,
Enterovirus, or Parainfluenza (Supplementary Data 6).

We first broadly examined the host viral response in the two
virus-infected groups, evaluating the mean expression difference
of the interferon response (tan) and cytotoxic immune response
(purple) networks (discussed earlier; see Fig. 4a, b). We found
that both networks were strongly upregulated among both the
CoV and ORV virus-infected groups and that there was no
significant difference in expression of these networks between the
CoV and ORV groups (Fig. 7a, b).

To comprehensively explore host viral responses, we next
performed a transcriptome-wide screen for differentially expressed
genes (DEGs) in CoV- or ORV-infected groups compared to
uninfected individuals (Supplementary Data 7). The two virus
groups showed highly similar responses, with 94% of the
differentially expressed genes with CoV infection also being
identified as significant with ORV infection (false discovery rate
[FDR] < 0.05 and |log2FC| > 0.5). Highlighting the similarity of
transcriptomic responses to viral infection in these two groups, the
log2FC values for genes identified as significant in either group had
a Pearson correlation of 0.95 (p < 2.2e−16; Fig. 7c). To further
characterize whether the differences observed between the two
groups were significant or a result of differences in statistical power
from unequal sample sizes, we used Cochran’s test for hetero-
geneity and discovered no significant difference for any of the
DEGs that were identified in only the CoV- or ORV-infected
groups after adjusting for multiple testing.

Upstream regulator analysis with Ingenuity Pathway Analysis
(IPA) carried out separately on CoV and ORV infection response
genes showed that the top cytokines and transcription factors that
may regulate these infections are largely shared between the two
virus families, which included IFNG, IFNA2, STAT1, IFNL1, and
IRF7 (Fig. 7d). One inferred upstream regulator of CoV response
genes, IL-6, which was also among the genes upregulated with viral
infection (CoV log2FC= 2.0, ORV log2FC= 3.0, Fig. 7e), is
especially noteworthy considering that an IL-6 blocking antibody
therapy is currently under investigation for use in the treatment of
COVID-19 illnesses34. In addition, we found ACE2 among the
shared upregulated genes, reinforcing its upregulation in the course
of different respiratory virus infections (log2FC in CoV= 0.8,
log2FC in ORV= 0.5, Fig. 7f). Together, these results suggest that
host airway responses to common CoV infections are transcripto-
mically similar to the host airway responses to other respiratory
viruses.

Table 1 Results for multivariate models of ACE2 and TMPRSS2 expression.

Variable Reference group Partial R2 (%) Coefficient SE t-Statistic p-value

ACE2
Age n/a 1.03 −0.032 0.009 −3.64 3.00E−04
Interferon status Low 17.09 1.301 0.088 14.78 6.50E−43
T2 inflammation Low 24.44 −1.001 0.057 −17.68 1.58E−57
Sex Male 0.14 0.075 0.056 1.33 0.19
Asthma Healthy 0.58 −0.160 0.059 −2.73 0.0064
rs181603331 (G>T) G/G 1.20 −0.635 0.162 −3.92 9.75E−05

TMPRSS2
Age n/a 0.07 −0.008 0.010 −0.88 0.38
Interferon status Low 0.07 0.087 0.098 0.88 0.38
T2 inflammation Low 33.24 1.177 0.063 18.77 1.74E−63
Sex Male 0.02 −0.031 0.062 −0.50 0.62
Asthma Healthy <0.01 0.014 0.065 0.22 0.83
rs1475908 (G>A) G/G 0.22 −0.082 0.054 −1.51 0.13
rs74659079 (C>T) C/C 0.39 0.216 0.107 2.03 0.043
rs2838057 (A>C) A/A 0.42 0.139 0.066 2.12 0.035
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Discussion
Although the high variability in clinical outcomes of COVID-19
illness is now well documented and multiple demographic and
clinical traits have been associated with severe disease, little is
known about the host biologic factors underlying this variability.
In the current study, we reasoned that population variation in
upper airway expression of the ACE2 receptor for SARS-CoV-2
and the virus-activating TMPRSS2 protease would drive infection
susceptibility and disease severity. We, therefore, deployed net-
work and eQTL analysis of nasal airway epithelial transcriptome

data from a large cohort of healthy and asthmatic children to
determine mechanisms associated with airway expression of these
genes, and their relative power in explaining variation in the
expression of these genes among children. We observed only
weak associations with asthma status, age, and gender among
children aged 8–21 years. Moreover, although we found
that genetics does influence the expression of these genes, the
effect of this variation was small in comparison to the marked
influence of T2 cytokine-driven inflammation on both ACE2
(downregulation) and TMPRSS2 (upregulation) expression levels.
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We found an equally important role for viral-driven interferon
inflammation in regulating levels of ACE2 in the airway. In
addition, through the study of in vivo upper airway CoV
family member infections, we identified host transcriptional
responses to CoV infections and inflammatory regulators of these
responses. We were also able to confirm the strong up and
downregulation of ACE2 protein levels by virus infection and IL-
13, respectively. In total, our work provides a set of biomarkers
that can be easily examined in COVID-19 patients, through
analysis of nasal swabs, to determine the relative importance of
these mechanisms and genes in governing susceptibility to
infection, severe illness, and death.

Our scRNA-seq analysis of an in vivo nasal brushing from an
adult asthmatic found ACE2 expression, albeit at low frequency,
primarily among basal, ciliated, and less mature, early secretory
cells. A much higher portion of cells, representing all epithelial
cell types, expressed TMPRSS2, although the low frequency of
ACE2+ cells resulted in very few dual ACE2/TMPRSS2 expressing
cells. However, we caution that a cell may not need to be
TMPRSS2+ to be susceptible to infection, since it has been
demonstrated the TMPRSS2 protein is secreted from nasal airway
epithelial cells35. We also caution that scRNA-seq data are known
to exhibit biases in gene detection, and thus the level and fre-
quency of ACE2 expression across cells may be higher than we
observe here. In line with this possibility, we observe more
moderate levels of ACE2 expression in our bulk RNA-seq data on
nasal brushings. Although our results are based on a single adult
donor, they correspond strongly to and validate the results of
several recently published, large scRNA-seq surveys36,37. We also
note that a recent report shows that airway epithelial expression
of ACE2 and TMPRSS2 is similar between adults and children38.
Importantly, we were able to show that ACE2 protein is expressed
at the apical surface of the tracheal airway epithelium, particularly
colocalizing with ciliated cells, a pattern we also observed among
in vitro nasal mucociliary airway epithelial cultures.

Airway inflammation caused by type 2 cytokine production
from infiltrating immune cells has a prominent role in the control
of cellular composition, expression, and thus biology of the air-
way epithelium12,14,24,39. Moreover, while T2 airway inflamma-
tion is an important driver of T2-high asthma and COPD disease
endotypes, it is also associated with atopy in the absence of lung
disease, a very common phenotype in both children and adults.
In fact, among the children in this study, we find that 43% of non-
asthmatics were scored as T2-high based on expression profile,
further substantiating the high prevalence of T2 airway inflam-
mation outside of those with lung disease. Our data suggest that

airway epithelial TMPRSS2 expression is highly upregulated by
T2 inflammation, and specifically by IL-13. Both our network and
single-cell data show that TMPRSS2 is most prominent in less
developed early secretory cells as well as in more mature mucus
secretory cells. Based on our in vitro data, IL-13 upregulates
TMPRSS2 across nearly all types of epithelial cells, but the core of
this effect appears to be in the metaplastic mucus secretory cells
that are generated as a consequence of IL-13 signaling15,16. In
fact, our network data suggest that, although TMPRSS2 expres-
sion is highly correlated with that of a co-expressed network of
mucus secretory genes characterizing normal, non-metaplastic,
mucus secretory cells, it is correlated even more strongly with a
network that characterizes mucus secretory cells undergoing IL-
13-induced metaplasia. In contrast to enhanced levels of
TMPRSS2, T2 inflammation, whether observed in vivo or induced
with IL-13 stimulation, precipitated a marked reduction in levels
of epithelial ACE2, thus making it difficult to predict how T2
inflammation might affect overall risk for a poor COVID-19
outcome. Germane to this question, a recent study of 85 fatal
COVID-19 subjects found that 81.2% of these subjects exhibited
very low levels of blood eosinophils4. Blood eosinophil levels are a
strong, well-known predictor of airway T2 inflammation and
were strongly correlated with T2 status in our study as well12,24.
The strong downregulation of ACE2 protein at the apical surface
of the epithelium by IL-13 is supportive that T2 inflammation
effects on ACE2 expression may be the dominant factor of any
potential effect of T2 inflammation on outcomes. However, both
in vitro experiments examining IL-13 effects on SARS-CoV-2
infection and empirical data on COVID-19 outcomes among T2-
high and T2-low patients will be needed to determine whether
this common airway inflammatory endotype ultimately protects
against, exacerbates, or has no effect on COVID-19 illness. Given
the higher frequency of T2 inflammation among asthmatic sub-
jects, this population should be monitored especially closely,
considering the enhanced risk of complications due to respiratory
virus infection in those with asthma. We note that measurement
of blood eosinophil levels could be used as an informative and
more accessible (albeit less powerful) proxy for investigating the
association between airway T2 inflammation and outcomes of
COVID-19.

In addition to the strong negative influence of T2 inflammation
on ACE2 expression in the airway, we found an equally strong
positive influence of respiratory virus infections on ACE2 levels.
Network analysis placed ACE2 within an interferon viral response
network suggesting that these cytokines are a driving force behind
ACE2 upregulation. This notion is supported by a recent

Fig. 7 Host response to CoV strains are similar to other respiratory viruses. a Box plots revealing a strong and equivalent upregulation of summary
(eigengene [Eg]) expression for the interferon response network among ORV- and CoV-infected GALA II subjects (n= 22, 9 respectively), compared to
uninfected subjects (n= 582). Differential expression analysis between infected and uninfected groups was performed with a two-sided t-test. b Box plots
revealing a strong and equivalent upregulation of summary (eigengene [Eg]) expression for the cytotoxic immune response network among ORV- and
CoV-infected GALA II subjects (n= 22, 9 respectively), compared to uninfected subjects (n= 582). Differential expression analysis between infected and
uninfected groups was performed with a two-sided t-test. c Scatterplot showing the similarity in log2FC differential expression of genes in ORV (x axis) and
CoV (y axis) infected individuals relative to uninfected subjects. The color of the points corresponds to the group in which each gene was identified as
significant (FDR < 0.05, absolute log2FC > 0.5). The Pearson correlation coefficient of the significant genes (excluding the “Neither” category) is 0.95. Top
enrichment terms for genes that were significantly differentially expressed in both virus infections (blue) are shown. d Top upstream regulators predicted
by Ingenuity Pathway Analysis to be regulating the genes that were upregulated in CoV. Enrichment values for these CoV regulators, using the ORV
upregulated genes are also shown. Enrichment p-values were obtained from IPA. No multiple comparison adjustment was performed. e Box plots revealing
upregulation of IL6 expression in virus-infected individuals (n: CoV+= 9, ORV+= 22, non-infected= 582). Differential expression analysis was performed
with limma. Benjamini–Hochberg correction was used to control for false discovery rate. f Box plots revealing upregulation of ACE2 expression in virus-
infected individuals (n: CoV+= 9, ORV+= 22, non-infected=582). Differential expression analysis was performed with limma. Benjamini–Hochberg
correction was used to control for false discovery rate. Box centers give the median, upper and lower box bounds correspond to first and third quartiles and
the upper/lower whiskers extend from the upper/lower bounds up to/down from the largest/smallest value, no further than 1.5 × IQR from the upper/
lower bound (where IQR is the inter-quartile range). Data beyond the end of whiskers are plotted individually.
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publication reporting ACE2 as an interferon-stimulated gene in
airway epithelial cells37. This information is interesting in
several regards. First, it suggests that SARS-CoV-2 and other
coronaviruses using ACE2 as a receptor could leverage the host
antiviral response to increase the infectability of airway cells.
Secondly, as data here and elsewhere show, asymptomatic car-
riage of respiratory viruses is common, especially in young
children20,40–43. Children in the GALA II cohort included in this
study ranged in age from 8 to 21 years; among them, we found
18% who were carrying respiratory viruses without illness.
However, as we show in this and our previous study20, even
asymptomatic carriage of respiratory viruses exacts a funda-
mental change in airway epithelial expression and immune cell
presence, including upregulation of ACE2 expression. In fact, we
find using in vitro mucociliary experiments that ACE2 protein is
highly upregulated at the airway epithelial apical surface by HRV
infections, suggesting co-infection with other respiratory viruses
could prime a subject for SARS-CoV-2 infection. In determining
outcomes, this potential detrimental influence of virus carriage
may also be weighed against a potentially beneficial influence of
virus carriage through a more potent cross serologic-immune
defense in these individuals, especially if the virus carried is a
coronavirus family member. Ultimately, the effect of current or
recent virus carriage on COVID-19 outcomes will need to
be determined by in vivo studies in patients, followed up with
controlled in vitro studies of virally infected cells. Supporting
a possible role for interferon responses in COVID-19 outcomes,
a recent single-cell RNA-seq study found increased type I inter-
feron response was a defining feature of patients with a severe vs.
mild COVID-19 illness44.

Our evaluation of genetic influences on airway ACE2 and
TMPRSS2 expression revealed a single eQTL for ACE2 and sev-
eral common eQTL variants for TMPRSS2. While both the effect
size and explanatory power of these variants paled in comparison
to the influence of T2 inflammation and interferon signaling in
multi-variable modeling of expression for these genes, the effect
of these variants may still be significant enough to alter infection
rates and/or illness severity, especially in the populations where
these variants are most frequent. However, this assumes these
variants will similarly function as eQTL variants in other popu-
lations, which will need to be confirmed. Relatedly, we found the
allele frequency of these variants varies significantly across world
populations. Therefore, we postulate that if TMPRSS2 levels
influence susceptibility to SARS-CoV-2, then infection risk may
vary significantly across world populations as a result of the
prevalence of these eQTL variants. Thus, future genetic studies of
COVID-19 illnesses should pay particular attention to these
eQTL variants.

A particularly vexing question regards the mechanisms that
underlie the unusual severity of illness associated with SARS-
CoV-2, especially when compared to most circulating respiratory
viruses. Clearly, severe disease often entails the development of
pneumonia, possibly resulting from an expanded tropism of
SARS-CoV-2 to include lower lung airway and alveolar cells. The
most severe patients also appear to experience an exuberant
immune response, characterized as a cytokine storm34, occurring
with and possibly driving the development of acute respiratory
distress syndrome (ARDS). This is in stark contrast to the mild
cold symptoms triggered by other CoV species of the same family.
To characterize the host nasal airway transcriptomic response to
asymptomatic infection with common CoV family members, we
leveraged the CoV-infected GALA II samples used in this study.
We found that, despite a lack of symptoms, subjects exhibited a
robust transcriptomic response, which included both epithelial
innate immune pathways and activation of multiple immune cell
types. Our analysis defined all genes differentially expressed by

these CoV infections and likely transcriptional regulators of these
responses. Notably, we found that IL-6 was predicted to regulate
airway responses to CoV and was itself upregulated in the airway
with these infections. These data provide additional support for
the ongoing investigation of tocilizumab (IL-6R blocking anti-
body) for the treatment of COVID-19 illnesses34. This robust
CoV host response did not differ from the host response triggered
by other respiratory viruses. Given the number of genes and
pathways activated in these common, asymptomatic CoV ill-
nesses, we believe this data will be valuable in deciphering the
parts of the airway response to COVID-19 illnesses that are
generic to common CoV illnesses, and those that underlie the
severity of some COVID-19 illnesses.

To summarize, our data suggests that the strongest determi-
nants of airway ACE2 and TMPRSS2 expression in children are
T2 inflammation and viral-induced interferon inflammation, with
limited but noteworthy influence from genetic variation. We
caution that extrapolation of our results to other groups (e.g.,
adults and other racial groups) will require similar studies in these
populations. Moreover, whether these factors drive better or
worse clinical outcomes remains to be determined, but closely
watching individuals with these airway endotypes in the clinical
management of COVID-19 illnesses would be prudent.

Methods
Materials and correspondence. Further information and requests for resources
and reagents should be directed to and will be fulfilled by Max A. Seibold, Ph.D.
(seiboldm@njhealth.org).

Human subject information. Under the Institutional Review Board (IRB)
approved Asthma Characterization Protocol (ACP) at National Jewish Health (HS-
3101), we consented a 56-year-old asthmatic subject, from which we collected nasal
airway epithelial cells. The nasal airway cells were brushed from the inferior tur-
binate using a cytology brush and used for the scRNA-seq experiment described in
Fig. 1. Nasal airway epithelial cells used for bulk RNA-seq network and eQTL
analysis came from GALA II study subjects described below (n= 695, 681,
respectively). Nasal airway epithelial cell ALI culture gene expression experiments
used cells derived from GALA II study subjects (n= 5). Nasal airway epithelial cells
used for ACE2 protein staining in IL-13/HRV experiments were from a single
GALA II asthmatic donor. Human tracheal airway epithelial cells used for in vitro
IL13 stimulation and scRNA-seq gene expression experiments were isolated from a
single de-identified lung donor. Tracheal tissues used for the ACE2 immuno-
fluorescence studies were obtained from two de-identified lung donors, from one of
whom nasal airway epithelial cells were also obtained for ACE2 protein staining in
IL-13/DAPT differentiation experiments. All lung donor sample was received from
the International Institute for the Advancement of Medicine (Edison, NJ), and
Donor Alliance of Colorado. The National Jewish Health Institutional Review
Board approved our research on all lung donor tracheal/nasal airway epithelial cells
and tracheal tissues under IRB protocol HS-3209. These cells and tissues were
processed and given to us through the National Jewish Health (NJH) live-cell core,
which is an institutional review board-approved study (HS-2240) for the collection
of tissues from consented patients for researchers at NJH.

GALA II study subjects. The Genes-Environment & Admixture in Latino Amer-
icans study (GALA II) is an ongoing case–control study of asthma in Latino children
and adolescents. GALA II was approved by local institutional review boards (Uni-
versity of California, San Francisco [UCSF], IRB number 10-00889, Reference number
153543, NJH HS-2627) and all subjects and legal guardians provided written
informed assent and written informed consent, respectively45,46. A full description of
the study design and recruitment has been described elsewhere45–47, and we provide a
summary here. A demographic table of this cohort is provided in Supplementary
Data 8. Briefly, the study includes subjects with asthma and healthy controls of Latino
descent between the ages of 8 and 21, recruited from the community centers and
clinics in the mainland U.S. and Puerto Rico (2006–present). Asthma case status was
physician-diagnosed, with additional requirements for two or more symptoms of
coughing, wheezing, or shortness of breath within the 2 years prior to enrollment in
the study. Subjects were not eligible if they were in the third trimester of pregnancy,
were current smokers at the time of enrollment, or had at least a 10 pack-year
smoking history. Recruited subjects completed in-person questionnaires detailing
medical, environmental, and demographic information. Additional physical mea-
surements were obtained, and subjects provided a blood sample for DNA extraction
and later whole-genome sequencing (WGS). GALA II subjects that were part of this
analysis were all recruited from Puerto Rico (n= 695). A nasal airway inferior tur-
binate brushing was used to collect airway epithelial cells from these subjects for
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whole-transcriptome sequencing (n= 695). Network analyses were performed on all
subjects with nasal brushing whole-transcriptome sequencing data (n= 695) and
eQTL analysis was performed on the subset (n= 681) with whole-genome sequencing
generated genotype data.

Airway epithelial culture for gene expression analyses. Primary human basal
airway epithelial cells were expanded and differentiated at ALI in vitro following
our established protocols48, described here. Primary human basal airway epithelial
cells were expanded on rat tail collagen-coated dishes in PneumaCult Expansion-
Plus Medium (PEP) supplemented with Y-27632 (10 μM; PEP+ Y) and harvested
by trypsinization with FBS neutralization. The apical chambers of 6.5 mm transwell
inserts were seeded at 4 ×104 cells/insert in PEP+ Y media, and the basolateral
chambers received 500 μL of PEP+ Y media alone. Following 24 h incubation, Y-
27632 was removed and the media changed to PEP media only. Once the epithelial
basal cells reached confluence, the apical growth media was removed, and the
basolateral medium was replaced with PneumaCult ALI medium, initiating day 0
of the ALI mucociliary culture system. Epithelial cultures were allowed to differ-
entiate at ALI in vitro for 21–28 days under each respective stimulation described
below. Paired tracheal ALI cultures for the IL-13 scRNA-seq analysis were samples
of convenience. These cultures were used as mock gene-edited controls for a gene-
editing experiment. Therefore, the basal cells from which these ALI cultures were
derived were mock-edited with a CRISPR ribonucleoprotein (RNP) complex.
Specifically, these basal cells were nucleofected with IDTDna’s non-specific Alt-R®
CRISPR-Cas9 Negative Control crRNA #1 complex (Catalog #: 1072544). The
electroporated cell suspension was immediately transferred into a fresh culture vessel
for recovery and expansion and differentiation as described above. ALI cultures
derived from these basal cells were mock-treated or treated with 10 ngmL−1 IL-13 in
media (20 µL apical; 500 µL basolateral) for the final 10 days of differentiation (ALI
days 11-21) before harvest and scRNA-seq analysis. In contrast, nasal ALI cultures
used for the gene expression studies were from five randomly selected GALA II
subjects were either stimulated with IL-13 for 72 h following completion of muco-
ciliary differentiation (25 days) or were infected with human rhinovirus strain A16
for 4 h during the final 24 h of the 28 days of differentiation. Control cultures were
only treated with media.

Immunofluorescence staining of ACE2 protein. To conduct the ACE2 immu-
nofluorescence (IF) studies, we expanded and differentiated at ALI in vitro nasal
basal airway epithelial cells from an asthmatic child in the GALA II study and a
non-asthmatic, smoker child from the lung donor program and NJH cell core as
described above. The asthmatic child ALI cultures were mock-treated, IL-13 treated
(5 days), or HRV-A16 and -C infected (harvested 24 h post-infection) after
>60 days at ALI. The non-asthmatic child ALI cultures were differentiated nor-
mally for 21 days, or differentiated for 21 days in the presence of IL-13 (daily
treated), or DAPT (treated every other day) (Selleck Chemicals). ALI inserts from
these donors were fixed in 4% PFA for 20 min at room temperature. Human
trachea tissues from one child (same as the DAPT experiment donor) and one
adult, non-smoker, a non-asthmatic donor (from the lung donor program
described above) were fixed in 10% neutral buffered formalin for overnight. The
tissues and ALI inserts were paraffin-embedded and sectioned onto glass micro-
scope slides. Deparaffinization was performed with HistoChoice (Sigma-Aldrich),
followed by a standard Ethanol dilution series (100, 90, 70, 50, and 30%), and
antigen retrieval in 1× Antigen Unmasking Solution (100× Citric acid-based,
VECTOR LAB) before blocking in Blocking Buffer (1× PBS, 3% BSA, and 5% FBS).
Histology sections were incubated with primary antibodies KRT5 (1:2000; Biole-
gend), MUC5AC (1:500; ThermoFisher), ACT (1:2000; Sigma), and ACE2 (1:100;
AF933, R&D Systems) for 1 h at room temperature followed by Alexa
Fluorochrome-conjugated secondary antibodies (ThermoFisher) for 45 min at
room temperature in the dark. For nuclear staining, cells were incubated with
DAPI for 5 min at room temperature. All stained tissues were mounted with
ProLong Diamond Mount Medium (Invitrogen) and imaged using Echo Revolve
R4 fluorescence microscope. For quantification of ACE2 staining, in a blinded
fashion, we took images of ×20 objective fields (12-13 fields per condition for the
IL-13/HRV experiment and 5–6 fields per condition for the IL-13/DAPT differ-
entiation experiments) and counted the number of apical ACE2-positive cells. All
images were captured on the Echo Revolve R4 and images were cropped and
resized using Affinity Designer (v1.8.3). For each image, brightness and contrasts
were uniformly adjusted relative to the brightest feature to balance exposure of
each color channel.

Bulk RNA-sequencing of GALA II and culture Samples. Total RNA was isolated
from 695 GALA II subject nasal airway epithelial brushings using the AllPrep
DNA/RNA Mini Kit (QIAGEN, Germantown, MD). Whole-transcriptome
libraries were constructed using the KAPA Stranded mRNA-seq library kit (Roche
Sequencing and Life Science, Kapa Biosystems, Wilmington, MA) from 250 ng of
total input RNA with the Beckman Coulter Biomek FXP automation system
(Beckman Coulter, Fullerton, CA) according to the manufacturer's protocol. Bar-
coded libraries were pooled and sequenced using 125 bp paired-end reads on the
Illumina HiSeq 2500 system (Illumina, San Diego, CA). Bulk RNA-seq data for the
nasal ALI cultures (n= 5) to measure ACE2 and TMPRSS2 levels reported in

Figs. 3b, c and 4g, h, were generated with KAPA Hyperprep Stranded mRNA-seq
library kits (Roche Sequencing and Life Science, Kapa Biosystems, Wilmington,
MA) and sequenced with a Novaseq 6000 using 150 bp paired-end reads.

Whole-genome sequencing of GALA II Samples. Genomic DNA was extracted
from whole blood obtained from GALA II study subjects using the Wizard
Genomic DNA Purification kits (Promega, Fitchburg, WI), and DNA was quan-
tified by fluorescent assay. DNA samples were sequenced as part of the Trans‐
Omics for Precision Medicine (TOPMed) whole-genome sequencing (WGS) pro-
gram49. WGS was performed at the New York Genome Center and the Northwest
Genomics Center on a HiSeqX system (Illumina, San Diego, CA) using a paired‐
end read length of 150 base pairs, to a minimum of 30X mean genome coverage.
Briefly, the sequences were mapped using BWA-MEM (v0.7.15)50 to the hs38DH
1000 Genomes build 38 human genome reference with the options “-K 100000000
-Y”. Variants were identified and called using the GotCloud51 pipeline (v1.17).
These variants were filtered for quality, and genotypes with at least 10× coverage
were phased with Eagle 2.452. Variant calls used in this study were obtained from
TOPMed data freeze 8 variant call format files.

Preparation of cultures for scRNA-seq. Following stimulation experiments
involving the tracheal airway epithelial ALI samples, apical culture chambers were
washed once with phophate-buffered saline (PBS) and once with PBS supplemented
with dithiothreitol (DTT; 10mM), followed by two PBS washes to remove
residual DTT. Cold active protease (CAP) solution (Bacillus licheniformis protease
2.5 μg mL−1, DNase 125 U mL−1, and 0.5 mM EDTA in DPBS w/o Ca2+Mg2+)
was added to the apical culture chamber and incubated on ice for 10min with
mixing every 2.5min. Dissociated cells in CAP solution were added to 500 μL cold
FBS, brought up to 5 mL with cold PBS, and centrifuged at 225 × g and 4 °C for
5 min. The cell pellet was resuspended in 1mL cold PBS+DTT, centrifuged at
225 × g and 4 °C for 5 min, and then washed twice with cold PBS. The final cell
pellet was resuspended in PBS with 0.04% BSA for single-cell gene expression
profiling with the 10× Genomics system. Sample capture, cDNA synthesis, and
library preparation for 10 d IL-13 ALI stimulations were performed using protocols
and reagents for 10× Genomics Chromium Single Cell 3′ v3 kit. Single-cell libraries
were pooled for sequencing on an Illumina NovaSeq 6000.

scRNA-seq of in vivo nasal brushing cells. Nasal brush cells were dissociated
from the brush using Bacillus licheniformis cold-active protease (10 mgmL−1),
EDTA (0.5 mM), and EGTA (0.5 mM) at 4 °C with vortex mixing, followed by
enzyme neutralization with FBS. Red blood cell lysis was performed and cells were
washed twice in 0.04% BSA/PBS. Cell concentration was adjusted to 400 cells μL−1

for cell capture of ~8,000 cells using the 10× Genomics Chromium Next GEM
Single Cell 3′ reagent kit chemistry. Sample capture, cDNA synthesis, and library
preparation were performed following 10× Genomics Chromium Next GEM Single
Cell 3′ v3 kit. The single-cell library was sequenced on an Illumina NovaSeq 6000.

Preprocessing of GALA II RNA-seq data. Raw sequencing reads were trimmed
using skewer53 (v0.2.2) with the following parameter settings: end-quality=15,
mean-quality=25, min=30. Trimmed reads were then aligned to the human
reference genome GRCh38 using GSNAP54 (v20160501) with the following
parameter settings: max-mismatches=0.05, indel-penalty=2, batch=3, expand-
offsets=0, use-sarray=0, merge-distant-same-chr. Gene quantification was per-
formed with htseq-count55 (v0.9.1) using iGenomes GRCh38 gene transcript
model. Variance stabilization transformation (VST) implemented in DESeq256

(v1.22.2) was then carried out on the raw gene count matrix to create a variance
stabilized gene expression matrix suitable for downstream analyses. These RNA-
seq data were analyzed and published for other analyses57.

Weighted gene co-expression network analysis. To understand what biological
mechanisms regulate the variation of nasal airway epithelial gene expression,
Weighted Gene Co-expression Network Analysis58 (WGCNA) v1.68 was per-
formed on the VST matrix of 17,473 expressed genes. WGCNA analysis is a
network-based approach that assumes a scale-free network topology. To adhere to
the scale-free assumption of the constructed biological networks, a soft thresh-
olding parameter (β) value of 9 was chosen based on WGCNA guidelines. Fur-
thermore, minClusterSize was set to 20, deepSplit was set to 2, and pamStage was
set to TRUE. A total of 54 co-expression networks were identified and described in
Supplementary Data 2. WGCNA networks are referred to by different colors, and
two of the identified networks, saddle brown, and tan were found by gene ontology
enrichment with the tool enrichR to capture co-expressed genes that underlie type
2 (T2) inflammation and interferon inflammation, respectively. We hierarchically
clustered all subjects based on the expression of only the genes in the saddle brown
network and then used the first split in the dendrogram as the basis for assigning
individuals to T2-high or T2-low categories (Supplementary Fig. 1a). Similarly, we
hierarchically clustered subjects using only the genes in the tan network and then
selected the dendrogram branches with the highest tan network expression as
interferon-high and the other subjects as interferon-low (Supplementary Fig. 2a).
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Cis-eQTL analysis. Cis-expression quantitative trait locus (eQTL) analysis was
performed by following the general methodology of the Genotype-Tissue Expres-
sion (GTEx) project version 7 protocol59, using the nasal RNA-seq data and WGS
variant data from 681 GALA II subjects.

Namely, WGS variant data were filtered based on allele frequency (minor allele
frequency [MAF] > 1%) and allele subject count (total number of subjects carrying
minor allele ≥ 10). After filtering, 12,590,800 genetic variants were carried forward into
the eQTL analysis. For expression data filtering and preparation, we first ran Kallisto60

(v0.43.0) to generate transcript per million (TPM) values. We filtered out any genes
that did not reach both TPM> 0.1 and raw counts > 6 for at least 20% of our samples.
After filtering, 17,039 genes were then trimmed mean ofM-values (TMM) normalized
using edgeR61 (v3.22.3). Finally, we applied an inverse normal transformation into the
TMM-normalized expression values to render them suitable for eQTL analysis. To
account for the global population structure, we ran ADMIXTURE62 (v1.3.0) on the
genotype data to create five admixture factors. We then ran Probabilistic Estimation of
Expression Residuals63 (PEER, v1.3) to create 60 PEER factors to utilize as covariates
in the eQTL analysis along with admixture estimates, gender, age, body-mass index
(BMI), and asthma diagnosis status. To perform cis-eQTL analysis, we utilized a
modified version of FastQTL64 that was provided by the GTEx project, with a MAF
cutoff of 1% and a cis window of 1Mb. The results from FastQTL’s permutation pass
were used to generate a genome-wide empirical p-value threshold for each gene,
according to the GTEx method. In short, the empirical p-values were adjusted for
multiple testing, and the p-value closes to the FDR threshold of 0.05 was used to
compute a nominal threshold for each gene based on the modeled beta distribution
from FastQTL. These gene-level significance thresholds ranged from 1e−6 to 1e−2.
Furthermore, we performed a stepwise regression analysis to identify independent
eQTL variants using QTLTools65 (v1.1). Allelic fold change (AFC) of the eQTL variant
is computed using the aFC python script66.

Virus identification and quantification. To identify individuals with asymptomatic
virus infection at the time of sample collection, viral genomic sequences were
recovered from bulk RNA-seq data using an in-house analysis pipeline. Raw RNA-
Seq reads were quality and adapter trimmed with BBduk67 (v38.79) at Q= 10. Read
pairs mapping (concordantly or discordantly) to the human transcriptome or human
genome were removed using Hisat2 (v2.1.0) and Bowtie268 (v2.4.1), respectively. Low
entropy reads were removed with BBduk at entropy=0.6. The remaining reads were
assembled with MetaSpades69 (v3.14.0). Contigs shorter than 200 bp in length were
removed and the filtered reads mapped to the contigs using Bowtie2. Per contig read
counts were obtained with samtools70 (v1.10). Contigs were matched to the human
genome using BlastN71 (v2.9.0) in MegaBlast mode with subject besthit enabled.
Contigs yielding any results with an e-value better than 10−2 were removed. The
remaining contigs were matched to the NCBI NT database (downloaded May 1st
2020) using BlastN with subject besthit enabled. An in-house tool was used to
aggregate contigs using best-scoring combinations of High-scoring segment pairs
(HSPs) from the Blast results, classify aggregated contigs, summarize read counts and
filter results to include only sequences classified as respiratory viruses.

Defining virus-infected groups and associated analysis. To ensure we selected
subjects that were experiencing an active host response to a viral infection, we
required subjects from the GALA II cohort to have at least 1,000 viral reads in
order to be included in the CoV vs. ORV analysis. This resulted in 9 CoV+

individuals. To generate a similar infection-control group, composed of subjects
highly infected with different virus species, we pooled subjects with at least 1,000
reads of one of Enterovirus (n= 2), Influenza (n= 3), Metapneumovirus (n= 1),
Orthopneumovirus (n= 3), Parainfluenza (n= 2), or Rhinovirus C (n= 11) for a
total of 22 virally infected subjects in the Other Respiratory Viruses (ORV) cate-
gory. All non-infected subjects (n= 582) based on the analysis described above,
were used as a comparison group for the CoV+ and ORV+ groups.

In performing the CoV+ and ORV+ transcriptome-wide differential expression
analyses, to account for the class imbalance of this experiment, log2 count-
normalized expression values in units of counts per million (calculated using edgeR
v3.28.0) were passed to the arrayWeights function in the limma72 R package
(3.42.0). limma-voom was then used to perform differential expression analysis on
the count-normalized expression values between the CoV+ and uninfected groups,
as well as between the ORV+ and uninfected groups, controlling for age, gender,
and asthma diagnosis status. Genes were required to have an FDR adjusted p-value
< 0.05, and an absolute log2FC > 0.5 to be considered significant. Based on these
cutoffs, genes were classified as being shared if they were significant in both
comparisons, or as CoV+-specific or ORV+-specific if significant in only one
comparison. All significantly differentially expressed genes from either viral group
were tested for heterogeneity of effect using Cochran’s Q statistic as implemented
by METASOFT (v2.0.0)73. Significance values were adjusted for multiple testing
using the Benjamini–Hochberg74 approach of the R function p.adjust.

Gene set enrichment analysis. To investigate enriched pathways within WGCNA
networks (Fig. 2a) or within genes differentially expressed in CoV+ and/or ORV+

infected subject groups (Fig. 7c), we used Enrichr75 to test for gene over-
representation of network genes within a panel of annotated gene databases (Gene
Ontology [GO] Biological Process [BP] 2018, GO Molecular Function [MF] 2018,

GO Cellular Component [CC] 2018, Ligand Perturbations from GEO up, Kyoto
Encyclopedia of Genes and Genomes [KEGG] 2019 Human, and Reactome 2016).
In addition, gene marker sets were obtained for each of 35 epithelial and immune
cell types inferred from a recent scRNA-seq study on ~70,000 cells from human
lung tissue samples obtained intraoperationally from three individuals76. The
WGCNA networks reported in Fig. 2a were tested for overrepresentation within
each of these marker sets, with an FDR cutoff of 0.05.

Canonical pathway analysis. We used QIAGEN’s IPA program (v01–16; content
version: 51963813, release 2020-03-11) to investigate canonical pathways and
upstream regulators that were significantly enriched in one or both of the upre-
gulated CoV+-specific or ORV+-specific gene sets.

scRNA-seq analysis of the nasal epithelial brushing. Initial processing of 10×
scRNA-seq data, including cell demultiplexing, alignment to the human genome
GRCh38, and unique molecular identifier (UMI)-based quantification was per-
formed with Cell Ranger (version 3.0). Since the nasal brushing sample contains
both epithelial and immune cell populations that have distinct expression profiles
(e.g., Immune cell types express far fewer genes compared to epithelial cell types),
clustering and cell-type identification were done in two stages: (1) an initial clus-
tering with a less stringent filter to identify major epithelial and immune cell
clusters was performed, (2) cells were reclustered with different independent fil-
tering criteria for epithelial and immune cell types. All these analyses were per-
formed using Seurat77 R package (v3.5.1).

In the first stage, we removed cells with fewer than 100 genes detected or cells
with greater than 25% mitochondrial reads. In addition, to remove possible
doublets, we removed cells with higher than 6,000 genes detected and/or more than
20,000 UMIs. Lowly expressed genes (detected in fewer than four cells) were also
removed. We then performed normalization using SCTransform78 and ran
principal component analysis (PCA) on the top 5,000 highly variable normalized
genes. Clustering analysis was performed on the top 20 PCs using a shared nearest
neighbor (SNN)-based SLM79 algorithm with the following parameter settings:
Resolution=0.8, algorithm=3. The single-cell expression profiles were visualized
via embedding into two dimensions with UMAP80 (Uniform Manifold
Approximation and Projection), resulting in the identification of 11,157 epithelial
cells and 229 immune cells based on known cell-type signatures.

In the second stage, we retained all the immune cells but removed epithelial
cells with fewer than 1,000 detected genes. After this filtering, a combined 8,291
epithelial and immune cells were then normalized as in the first stage. Clustering
analysis performed on the top 30 PCs with parameters (resolution=0.4,
algorithm=1, k.param=10) identified 15 clusters. We then ran differential
expression analysis using a Wilcoxon test implemented in Seurat’s FindMarkers
function on the CPM (count per million) normalized expression values to help
with cell-type identification. Based on these cluster marker lists, two clusters were
merged into a single secretory cluster, another two clusters were merged into a
single ciliated cluster, and a final two clusters were combined as “indeterminate,”
based on the lack of defining marker genes for these clusters. Through this merging
process, we arrived at 8 epithelial and 3 immune cell populations (Fig. 1a and
Supplementary Data 1 and 9).

Analysis of RNA-seq data from nasal cultures. Raw sequencing reads were
trimmed using a skewer with the following parameter settings: end-quality=15,
mean-quality=25, min=30. Trimmed reads were then aligned to the human reference
genome GRCh38 using HISAT281 (v2.1.0) using default parameter settings. Gene
quantification was performed with htseq-count using the GRCh38 Ensembl v84 gene
transcript model. After removing mitochondrial, ribosomal, and lowly expressed
genes (those not expressed in at least two samples), we carried out differential
expression analyses between paired IL-13-stimulated and control samples (n= 5
donors) and between paired HRV-infected and control samples (n= 5 donors) using
the DESeq2 R package (v1.22.2).

Analysis of scRNA-seq data from tracheal cultures. As with the nasal brushing
scRNA-seq data, 10× scRNA-seq data from ALI cultures grown from a single
tracheal donor that were either mock- or IL-13 stimulated for 10 days were pre-
processed using Cell Ranger (version 3.0, 10× Genomics). To safeguard against
doublets, we removed all cells with the gene or UMI counts exceeding the 99th
percentile. We also removed cells expressing fewer than 1,500 genes or for which
>30% of genes were mitochondrial (genes beginning with MTAT, MT-, MTCO,
MTCY, MTERF, MTND, MTRF, MTRN, MRPL, or MRPS), resulting in a total of
6,969 cells (2,715 IL-13-stimulated and 4,254 controls). After removing mito-
chondrial, ribosomal (RPL and RPS), and very lowly expressed genes (expressed in
<0.1% of cells), we integrated expression data from IL-13 and control cells using
the data set integration approach in Seurat82 (Supplementary Fig. 5). For the
integration analysis, we used the top 30 dimensions from a canonical correlation
analysis (CCA) based on SCTransform normalized expression of the top 3000 most
informative genes across the two datasets, where informativeness was defined by
gene dispersion (i.e., the log of the ratio of expression variance to its mean) across
cells, calculated after accounting for its relationship with a mean expression. We
then carried out PCA on the integrated data set and used the top 20 components
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for clustering and visualization. We used SNN (Louvain algorithm, Resolu-
tion=0.23, k.param=10) to cluster the integrated cells into 11 populations, which
we visualized in two dimensions using UMAP (Fig. 3d). These clusters were
assigned cell-type labels based their most upregulated genes, which were identified
by carrying out differential expression analysis between each cluster and all others
using Seurat’s logistic regression (LR) test, in which cell treatment was included as
a latent variable (Supplementary Data 10).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw and processed RNA-seq data used in this study are deposited in the National Center
for Biotechnology Information/Gene Expression Omnibus (GEO) accession number
GSE152004. Data originating from public repositories can be accessed at the following
locations: gnomAD database (version 2.1.1): [https://gnomad.broadinstitute.org/]; GO
Biological Process 2018 table [https://amp.pharm.mssm.edu/Enrichr/geneSetLibrary?
mode=text&libraryName=GO_Biological_Process_2018]; GO Molecular Function 2018
table [https://amp.pharm.mssm.edu/Enrichr/geneSetLibrary?mode=text&libraryName=
GO_Molecular_Function_2018]; GO Cellular Component 2018 table [https://amp.pharm.
mssm.edu/Enrichr/geneSetLibrary?mode=text&libraryName=GO_Cellular_Component_
2018]; Ligand Perturbations from GEO up table [https://amp.pharm.mssm.edu/Enrichr/
geneSetLibrary?mode=text&libraryName=Ligand_Perturbations_from_GEO_up]; Kyoto
Encyclopedia of Genes and Genomes 2019 Human table [https://amp.pharm.mssm.edu/
Enrichr/geneSetLibrarymode=text&libraryName=KEGG_2019_Human]; Reactome 2016
table [https://amp.pharm.mssm.edu/Enrichr/geneSetLibrary?mode=text&libraryName=
Reactome_2016]; Cell-type marker gene sets were obtained from Supplemental Table S4 in
Travaglini, et al. [https://www.biorxiv.org/content/biorxiv/early/2020/03/20/742320/DC1/
embed/media-1.xlsx]; TOPMed freeze 8 variant calls are available from dbGaP accession
phs000920.v2.p2; NCBI NT BLAST database was downloaded May 1st 2020 [https://ftp.
ncbi.nlm.nih.gov/blast/db/v5/]; and NCBI Taxonomy was accessed May 25th [https://ftp.
ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump/new_taxdump.tar.gz].

Code availability
The scripts used to perform the analyses described in the paper have been deposited to
the GitHub repository: https://github.com/seiboldlab/ACE2_TMPRSS2_Airway.
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