Table 3.
Dataset | Features Weights | Algorithm | Precison | Recall | F1-Score |
---|---|---|---|---|---|
SVM_RBF | 0.809 | 0.519 | 0.418 | ||
SVM_Linear | 0.792 | 0.698 | 0.705 | ||
tp | Random_Forest | 0.856 | 0.685 | 0.686 | |
Logistic_Regression | 0.792 | 0.698 | 0.705 | ||
KNeighbors | 0.304 | 0.500 | 0.378 | ||
SVM_RBF | 0.797 | 0.655 | 0.649 | ||
SVM_Linear | 0.815 | 0.735 | 0.747 | ||
VHA | tf | Random_Forest | 0.837 | 0.729 | 0.740 |
Logistic_Regression | 0.815 | 0.735 | 0.747 | ||
KNeighbors | 0.813 | 0.537 | 0.454 | ||
SVM_RBF | 0.720 | 0.562 | 0.512 | ||
SVM_Linear | 0.835 | 0.798 | 0.808 | ||
tf-idf | Random_Forest | 0.818 | 0.692 | 0.696 | |
Logistic_Regression | 0.759 | 0.599 | 0.571 | ||
KNeighbors | 0.680 | 0.664 | 0.668 | ||
SVM_RBF | 0.458 | 0.500 | 0.478 | ||
SVM_Linear | 0.458 | 0.500 | 0.478 | ||
tp | Random_Forest | 0.458 | 0.500 | 0.478 | |
Logistic_Regression | 0.458 | 0.500 | 0.478 | ||
KNeighbors | 0.458 | 0.500 | 0.478 | ||
SVM_RBF | 0.458 | 0.500 | 0.478 | ||
SVM_Linear | 0.460 | 0.500 | 0.475 | ||
VCU | tf | Random_Forest | 0.458 | 0.478 | 0.478 |
Logistic_Regression | 0.460 | 0.490 | 0.473 | ||
KNeighbors | 0.458 | 0.500 | 0.478 | ||
SVM_RBF | 0.458 | 0.500 | 0.478 | ||
SVM_Linear | 0.460 | 0.495 | 0.475 | ||
tf-idf | Random_Forest | 0.458 | 0.500 | 0.478 | |
Logistic_Regression | 0.458 | 0.500 | 0.478 | ||
KNeighbors | 0.457 | 0.490 | 0.473 |