Skip to main content
. 2020 Aug 14;8(3):272. doi: 10.3390/healthcare8030272

Table 3.

Model-2 selection results for severity categorization using traditional machine learning approach. Results reported are macro-averaged. Bold values indicated best results generated by feature weights and algorithms combination.

Dataset Features Weights Algorithm Precison Recall F1-Score
SVM_RBF 0.809 0.519 0.418
SVM_Linear 0.792 0.698 0.705
tp Random_Forest 0.856 0.685 0.686
Logistic_Regression 0.792 0.698 0.705
KNeighbors 0.304 0.500 0.378
SVM_RBF 0.797 0.655 0.649
SVM_Linear 0.815 0.735 0.747
VHA tf Random_Forest 0.837 0.729 0.740
Logistic_Regression 0.815 0.735 0.747
KNeighbors 0.813 0.537 0.454
SVM_RBF 0.720 0.562 0.512
SVM_Linear 0.835 0.798 0.808
tf-idf Random_Forest 0.818 0.692 0.696
Logistic_Regression 0.759 0.599 0.571
KNeighbors 0.680 0.664 0.668
SVM_RBF 0.458 0.500 0.478
SVM_Linear 0.458 0.500 0.478
tp Random_Forest 0.458 0.500 0.478
Logistic_Regression 0.458 0.500 0.478
KNeighbors 0.458 0.500 0.478
SVM_RBF 0.458 0.500 0.478
SVM_Linear 0.460 0.500 0.475
VCU tf Random_Forest 0.458 0.478 0.478
Logistic_Regression 0.460 0.490 0.473
KNeighbors 0.458 0.500 0.478
SVM_RBF 0.458 0.500 0.478
SVM_Linear 0.460 0.495 0.475
tf-idf Random_Forest 0.458 0.500 0.478
Logistic_Regression 0.458 0.500 0.478
KNeighbors 0.457 0.490 0.473