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Abstract: The widespread use of social media provides a large amount of data for public sentiment
analysis. Based on social media data, researchers can study public opinions on human papillomavirus
(HPV) vaccines on social media using machine learning-based approaches that will help us understand
the reasons behind the low vaccine coverage. However, social media data is usually unannotated,
and data annotation is costly. The lack of an abundant annotated dataset limits the application of deep
learning methods in effectively training models. To tackle this problem, we propose three transfer
learning approaches to analyze the public sentiment on HPV vaccines on Twitter. One was transferring
static embeddings and embeddings from language models (ELMo) and then processing by bidirectional
gated recurrent unit with attention (BiGRU-Att), called DWE-BiGRU-Att. The others were fine-tuning
pre-trained models with limited annotated data, called fine-tuning generative pre-training (GPT)
and fine-tuning bidirectional encoder representations from transformers (BERT). The fine-tuned GPT
model was built on the pre-trained generative pre-training (GPT) model. The fine-tuned BERT model
was constructed with BERT model. The experimental results on the HPV dataset demonstrated the
efficacy of the three methods in the sentiment analysis of the HPV vaccination task. The experimental
results on the HPV dataset demonstrated the efficacy of the methods in the sentiment analysis of the
HPV vaccination task. The fine-tuned BERT model outperforms all other methods. It can help to find
strategies to improve vaccine uptake.

Keywords: transfer learning; HPV vaccines; social media; ELMo; GPT; BERT

1. Introduction

With the rapid development of social media, the public can share their emotion, opinion,
medical experience, and professional knowledge on public health issues such as infectious disease
prevention [1,2], drug safety supervision [3,4], health promotion [5–7], and vaccination [8–11].

Human papillomavirus (HPV) is the most widespread sexually transmitted infection (STI) around
the world. It has been established that approximately 4% of all cancers are associated with HPV [1].
HPV vaccines can prevent most cancers and diseases caused by HPV infections [8]. Despite the
recommendation about the vaccine’s safety and effect, HPV vaccination rates in many countries are still
far lower than the goal set by Healthy People 2020 of 80% series completion for both adolescent males
and females [9]. We need to explore the public sentiments towards HPV vaccination and then take
corresponding measures to improve the vaccination rate further. Du et al. [10] collected and manually
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annotated 6000 tweets related to the HPV vaccine. Then, they constructed a hierarchical SVMs (support
vector machines) and evaluated different feature combinations. Finally, they optimized the model
parameters to maximize the model performance in analyzing public attitudes. Zhou et al. [11] used the
connection information on social networks to improve the recognition of the negative emotions towards
HPV vaccination.

However, most of these works were based on machine learning methods. These conventional
methods cost significant time and labor on task-specific feature engineering [12]. Differently, deep
learning methods can automatically extract features by unsupervised or semi-supervised learning
algorithms [13]. Moreover, it can generate high-quality vector representations that differ from the
low-quality vector representations generated by feature engineering [14]. However, the application
of deep learning methods needs a large amount of annotated data. In some domains, such as public
health, it is challenging to construct a large-scale annotated dataset because of the costly expense of
data acquisition and annotation.

Transfer learning can solve the problem by leveraging knowledge obtained from a large-scare
source domain to improve the classification performance in the target domain [15]. At its simplest,
migrating pre-trained word vectors initializes the input of the deep learning model. The pre-trained
word vectors obtained based on massive text data are an essential part of the learned semantic
knowledge that can significantly improve natural language processing tasks based on deep learning.
In natural language processing (NLP) tasks, there are several ways to employ transfer learning
strategies. Generally, we can initialize input words by transferring pre-trained word embedding.
The pre-trained word embeddings on large-scare corpus contain abundant syntactic and semantic
knowledge, which significantly promotes the NLP tasks based on deep learning methods [16].
However, static word vectors such as Word2Vec only produce a fixed vector representation. They cannot
solve the problem that the same word may have different meanings when it appears in different
positions in the text. The emergence of deep neural networks allows language models to dynamically
generate word vectors to solve the ambiguity of words in different situations.

With the emergence of pre-trained language models such as bidirectional encoder representations
from transformers (BERT) [17], the model can generate dynamic word embeddings to tackle the
polysemy. Recently, fine-tuning the pre-trained language model with limited annotated domain-specific
data has achieved excellent performance in a series of NLP tasks [18]. Adhikari et al. [19]
established stated-of-the-art results for four accessible datasets (Reuters, AAPD, IMDB, Yelp 2014) by
fine-tuning BERT for document classification.

To find a transfer learning system that is able to extract comprehensive public sentiment on HPV
vaccines on Twitter with satisfying performance, three transfer learning approaches were proposed to
tackle the limitation of annotated data in the public health area. (i) One was separately transferring
diverse word embeddings and then processing by bidirection gated recurrent unit with attention
mechanism (BiGRU-Att), called DWE-BiGRU-Att (Diverse Word Embeddings Processed by BiGRU-Att).
In this way, we could exploit the syntax and semantics in the pre-trained word embeddings to improve
the deep learning model’s performance. (ii) As the static word embeddings could not solve the
polysemy, we proposed the other two transferring learning methods. These two were fine-tuning
pre-trained models with limited annotated data, called fine-tuning generative pre-training (GPT) and
fine-tuning BERT.

2. Related Work

Nowadays, anyone with access to the Internet can express their opinions on various social media.
Especially on public health issues such as infectious disease prevention, drug safety supervision,
and vaccination, the public tends to post their medical experience or search for professional medical
information online. Because of the public’s open participation, the information related to public health
issues can be spread on the Internet in a fast way.
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Many studies have analyzed public opinions based on social media data. Salathe et al. collected
publicly available tweets during the outbreak of H1N1 influenza [20]. They manually annotated part of
the collected tweets. Each tweet was annotated with negative, positive, or neutral sentiment towards
influenza vaccination. Then, they trained a machine learning model with the labeled data. The model
was used to classify the sentiment of the remaining unlabeled tweets automatically. Finally, they used
the fully classified dataset to study the sentiment distribution of influenza vaccination.

Myslín et al. [5] used support vector machines, Naive Bayes, and k-Nearest Neighbors to analyze
the public opinions towards tobacco and tobacco-related products based on Twitter data. Ginn et al. [21]
manually annotated 10,822 tweets and then trained two machine learning models to monitor adverse
drug reactions.

However, these works were mostly based on machine learning methods. These methods need
sophisticated feature engineering. Moreover, the sparse vectors generated by feature engineering are
inferior to the dense vectors generated by deep learning methods. However, high-quality, dense vectors
need to be trained on a large corpus. In this way, we transferred the dense vectors pre-trained on
the large-scare corpus to improve the deep learning model’s performance. Pre-trained dense vectors,
containing learned syntax and semantics, can offer significant improvements over deep learning NLP
tasks. Kim [22] initialized embeddings to pre-trained word vectors pre-trained on 100 billion words
of Google News. Zhang et al. [23] treated multiple pre-trained word embeddings (Word2Vec, GloVe,
and Syntactic embedding) as distinct groups and then applied convolutional neural networks (CNNs)
independently to each group. The corresponding feature vectors (one per embedding) were then
concatenated to form the final feature vector.

Transferring the learned semantics and syntax knowledge from the other missions has aroused a
great interest in natural language processing (NLP) [24]. As an essential component of learned semantic
knowledge, pre-trained word embeddings can offer significant improvements over deep learning NLP
tasks. The generalization of word embeddings, sentence embeddings, or paragraph embeddings was
also used as features in downstream missions like sentiment analysis, text classification, clustering,
and translation [10]. Even though pre-trained word embeddings can improve the performance, the static
word embeddings, such as Word2Vec, GloVe, and FastText [25], only produce fixed embedding and
cannot solve the polysemy. With the emergence of deep neural networks, language models can
yield dynamic word embedding to tackle the polysemy. McCann et al. [26] proposed contextualized
word vectors (CoVe) by computing contextualized representations with neural machine translation
encoder. Embeddings from language models (ELMo) [27] generated dynamic word embeddings by
the concatenation of independently trained left-to-right and right-to-left long short-term memory
networks (LSTM).

Bidirectional encoder representations from transformers (BERT) is a technique for NLP (natural
language processing) pre-training developed by Jacob Devlin and his colleagues from Google [17].
The BERT model has achieved better performance in many sentiments analysis tasks of social
media [28–33]. For example, in the work of Wang et al. [29], the BERT model was used to identify
public negative sentiment categories in China regarding COVID-19 on Sina Weibo. In the work of
Müller et al. [30], the COVID-Twitter-BERT model was a transformer-based model that pre-trained on a
large corpus of Twitter messages on the topic of coronavirus disease 2019 (COVID-19). It outperformed
the BERT-Large model on five different classification datasets. A Framework for twitter sentiment
analysis based on BERT has been proposed in the work of Azzouza et al. [31]. The framework achieved
high performance on the SemEval 2017 dataset. A knowledge enhanced BERT Model was proposed
for depression and anorexia detection on social media in the work of [33].

In addition, the method of fine-tuning pre-trained language models has made a breakthrough
in a series of NLP tasks. It can tackle the polysemy and only need a little annotated data to train the
model. Howard et al. [18] proposed ULMFiT, the first universal method for text classification by the
fine-tuning pre-trained language model. In the work of Biseda et al. [34], BERT models were fine-tuned
for three pharmacovigilance of adverse drug reactions (ADRs) tasks and achieved high performance.
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Myagmar et al. [32] fine-tuned pre-trained language models of BERT and XLNet for the cross-domain
sentiment classification. The experimental results showed that fine-tuning methods outperformed
previous state-of-the-arts methods while exploiting up to 120 times fewer data.

3. Methods

In this section, we described in detail our three transfer learning approaches. One is transferring
diverse word embeddings passed through BiGRU-Att (Section 3.1). The others are fine-tuning
pre-trained models processed by a fully connected softmax layer (Section 3.2).

3.1. Diverse Word Embeddings Processed by BiGRU-Att

We proposed the diverse word embeddings processed by BiGRU-Att (DWE-BiGRU-Att).
Our four transfer learning methods are ELMo-BiGRU-Att, GloVe-BiGRU-Att, FastText-BiGRU-Att,
and Word2Vec-BiGRU-Att. As shown in Figure 1, the architecture of our DWE-BiGRU-Att contains
four components: embedding Layer, BiGRU Layer, attention Layer, and output Layer. For example,
we took the sentence “I think the vaccine has side effects” as our method’s input.
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Figure 1. The architecture of diverse word embeddings processed by BiGRU-Att (DWE-BiGRU-Att).

3.1.1. Embedding Layer

This layer maps each word into a dense dimension vector through transferring pre-trained word
embedding. In this paper, we compared the results of static word embedding Word2Vec, GloVe,
FastText, and contextualized word embedding ELMo.

The static word embeddings are separately 3 million 300-dimension Word2Vec word embedding
trained on GoogleNews, 1 million 300-dimension FastText word embedding trained on Wikipedia,
and 1.2 million 200-dimension GloVe word embedding trained on Twitter. If the word is concluded
in the pre-trained embedding, we can get the word vector directly. If not, we generate the word
vector randomly.
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Deep contextualized word embeddings supposed by language model ELMo improve word
representation quality and handle the polysemy problem to a certain extent. Different from the static
word embeddings, it represents a word according to its context.

ELMo embedding is a combination of multiple layer representations in the bidirectional language
model (biLM). Language model (LM) is the maximum likelihood of multiple sequences of K tokens,
(t1, t2, . . . , tK). The forward LM computes the probability of the next word tn given the history
(t1, t2, . . . , tn−1).

p(t1, t2, . . . , tN) =
K∏

n=1

p(tn|t1, t2, . . . , tn−1) (1)

Similarly, a backward LM predicts the before token based on the future context.

p(t1, t2, . . . , tN) =
K∏

n=1

p(tn|tn+1, tn+2, . . . , tK) (2)

A biLM combines the forward LM and backward LM and then maximizes the log-likelihood
of the forward and backward LM. Θx and Θs are respectively the token representation and softmax

parameters, which are shared in the forward and backward directions.
→

ΘLSTM and
←

ΘLSTM are the
parameters of biLM.

biLM =
K∑

n=1

(logp
(
tn|t1, . . . , tn−1; Θx,

→

ΘLSTM, Θs

)
+ logp(tn|tn+1, . . . , tK; Θx,

←

ΘLSTM, Θs)) (3)

For each token tn, a L-layer biLM computes a set of 2L + 1 representations:

Rn =

{
xLM

n ,
→

h
LM

n, j ,
←

h
LM

n, j | j = 1, . . . , L
}
=

{
hLM

n, j | j = 0, . . . , L
}

(4)

hLM
n, j is calculated by hLM

n, j =

[
→

h
LM

n, j ;
←

h
LM

n, j

]
for each biLSTM layer. ELMo integrates the output Rn

of multilayer biLM into a single vector, ELMon = E(Rn, Θe). The simplest case is that ELMo uses
only the topmost output, E(Rn) = hLM

n, j . Here, our ELMo adds the output of all biLM layer multiplied

by the softmax-normalized weights stask. γtask is a hyperparameter for optimization and scaling the
ELMo vector.

ELMotask
n = E

(
Rn; Θtask

)
= γtask

L∑
j=0

stask
j hLM

n, j (5)

3.1.2. BiGRU Layer

This layer is built to aggregate the word representations containing the bidirectional information.
The BiGRU layer takes the dense word embeddings V ∈ Rt×d as input. t is the number of words in the
input context and d is the dimension of the word vector. The BiGRU layer consists of two GRU layers
that process the information from both forward GRU neuron and backward GRU neuron.

Figure 2 shows the structure of the cell unit in the GRU. Two new gates ri and zi are added to the
cell unit to solve the gradient disappearance problem of standard RNN. ri determines how much of
the past information needs to be retained, and zi helps the model determine how much of the past
information needs to be passed to the candidate hidden state. The calculation process of the reset gate
ri is as follows:

ri = σ(Wrxi + Urhi−1) (6)

where σ is the activation function, xi is the input, hi−1 is the hidden state of the previous cell unit, and
Wr and Ur are the weight matrix.



Healthcare 2020, 8, 307 6 of 18

Healthcare 2020, 8, x  6 of 19 

 

ELMo embedding is a combination of multiple layer representations in the bidirectional 
language model (biLM). Language model (LM) is the maximum likelihood of multiple sequences of ܭ tokens, (ݐଵ, ,ଶݐ … ,   given theݐ ). The forward LM computes the probability of the next wordݐ
history (ݐଵ, ,ଶݐ … , ,ଵݐ) .(ିଵݐ ,ଶݐ … , (ேݐ = ∏ ,ଵݐ|ݐ) ,ଶݐ … , ିଵ)ୀଵݐ   (1) 

Similarly, a backward LM predicts the before token based on the future context. ݐ)ଵ, ,ଶݐ … , (ேݐ = ∏ ,ାଵݐ|ݐ) ,ାଶݐ … , )ୀଵݐ   (2) 

A biLM combines the forward LM and backward LM and then maximizes the log-likelihood of 
the forward and backward LM. Θ௫ and Θ௦ are respectively the token representation and softmax 
parameters, which are shared in the forward and backward directions. ΘሬሬԦௌ்ெ  and Θശሬሬௌ்ெ  are the 
parameters of biLM. ܾ݅ܯܮ = ∑ ,ଵݐหݐ൫݈݃) … , ;ିଵݐ Θ௫, ΘሬሬԦௌ்ெ, Θ௦൯ + ,ାଵݐ|ݐ)݈݃ … , ;ݐ Θ௫, Θശሬሬௌ்ெ, Θ௦))ୀଵ   (3) 

For each token ݐ, a ܮ-layer biLM computes a set of 2ܮ + 1 representations: ܴ = ൛ݔெ, ℎሬԦ,ெ, ℎശሬ,ெ ห ݆ = 1, … , {ܮ = {ℎ,ெ | ݆ = 0, … , ℎ,ெ is calculated by ℎ,ெ (4)  {ܮ = [ℎሬԦ,ெ; ℎശሬ,ெ] for each biLSTM layer. ELMo integrates the output ܴ of 
multilayer biLM into a single vector, ܯܮܧ = ,ܴ)ܧ Θ). The simplest case is that ELMo uses only 
the topmost output, ܧ(ܴ) = ℎ,ெ. Here, our ELMo adds the output of all biLM layer multiplied by 
the softmax-normalized weights ݏ௧௦. ߛ௧௦ is a hyperparameter for optimization and scaling the 
ELMo vector. ܯܮܧ௧௦ = ;ܴ)ܧ Θ௧௦) = ௧௦ߛ ∑ ௧௦ୀݏ ℎ,ெ  (5) 

3.1.2. BiGRU Layer 

This layer is built to aggregate the word representations containing the bidirectional 
information. The BiGRU layer takes the dense word embeddings ܸ ∈ ܴ௧×ௗ as input. ݐ is the number 
of words in the input context and ݀ is the dimension of the word vector. The BiGRU layer consists 
of two GRU layers that process the information from both forward GRU neuron and backward GRU 
neuron. 

Figure 2 shows the structure of the cell unit in the GRU. Two new gates ݎ and ݖ are added to 
the cell unit to solve the gradient disappearance problem of standard RNN. ݎ determines how much 
of the past information needs to be retained, and ݖ helps the model determine how much of the past 
information needs to be passed to the candidate hidden state. The calculation process of the reset gate ݎ is as follows: 

 
Figure 2. The architecture of the gated recurrent unit (GRU). 

hi-1

hi

σ σ tanh

1-

ri zi

+
ih

Figure 2. The architecture of the gated recurrent unit (GRU).

Similarly, the update gate zi is calculated as follows:

zi = σ(Wzxi + Uzhi−1) (7)

Formally, the formula of current hidden state hi can be formalized as

ht = (1− zt) × ht−1 + zt × h̃t (8)

The formula for calculating h̃t is as follows:

h̃t = tan h(Wxt + rtUWht−1) (9)

The forward GRU extracts the word feature as
→

hl, and the backward GRU extracts the feature

as
←

hl. The resulting hidden states of each GRU cell for both directions
→

hl and
←

hl are concatenated
together for each time step i = 1 . . . t. The t is the number of input tokens. Then, we obtain the final

sequence of word features H = (h1, h2, hi, . . . , hn) where hi is calculated by hi= [
→

hl,
←

hl]. hi concatenates
the bidirectional information to summarize the information of the whole context centered around
the word.

3.1.3. Attention Layer

Because not all words make the same contribution in understanding the sentence’s meaning,
we employed the attention mechanism to implement the contribution of important words.

The resulted concatenation of the representations of the forward and backward GRU, hi =
[
→

hl ,
←

hl

]
,

is then converted to Formula (10) through a fully connected layer.

ui = tan h(Wwhi + bw) (10)

Then, the probability distribution αi, representing the importance of each sentence in the context,
is obtained by calculating the similarity between ui and the context vector uw and softmax operation.

αi =
exp(uiuw)∑
t exp(uiuw)

,
t∑

i=1

αi = 1 (11)

At last, the document representation si is the weighted sum of αi and hi.

si =
∑

t

αihi (12)
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3.1.4. Output Layer

The vector representation of the input text generated by the attention layer represents the
probability distribution that si gets the public’s opinion labels on public health issues through the
fully connected Softmax layer. Figure 3 shows the multi-class fully connected and Softmax layers
corresponding to the output layer. The function of the fully connected and Softmax layer is to map the
n dimension vector composed of n real numbers between negative infinity to positive infinity into
the K dimension vector composed of K real numbers between 0 and 1. Moreover, the sum of K real
numbers is equal to 1. The calculation process is shown in Formula (13).

ŷ = so f tmax(z) = so f tmax
(
WTx + b

)
(13)
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The Softmax is calculated as follows:

so f tmax
(
z j
)
=

ez j∑
K ez j

(14)

The specific probability of each category is calculated as follows, where w j represents the weight
vector composed of the same color in the Figure 3.

ŷ j = so f tmax
(
z j
)
= so f tmax

(
w j·x + b j

)
(15)

The representation si generated from the attention layer is fed into a fully connected softmax layer
to obtain the distribution of class probability. We minimized categorical cross-entropy loss function
J in which loss increases as the ith predicted probability pi deviates from the actual label yi. the loss
function J is calculated as follows:

J = −
K∑

i=1

yi log(pi) (16)

3.2. Fine-Tuning Pre-trained Models

Although transferring word embeddings can offer significant improvements in many NLP tasks,
it is more efficient to fine-tune pre-trained language models with a little labeled target-domain data.
In this section, we respectively described our fine-tuned GPT and fine-tuned BERT public sentiment
analysis classifier.
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3.2.1. Fine-Tuning GPT

In Figure 4, GPT uses multi-layer transformer decoders as a feature extractor. The transformer
decoders are more powerful than the LSTM in handling long-term dependency. Our fine-tuned GPT
public sentiment analysis classifier must apply the same structure as GPT pre-training. We also need to
process the input context differently.
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We assumed a labeled dataset C in which each case contains a sequence of words, (x1, . . . , xn), along
with a label y. For our classification task, our inputs need to add randomly initialized start and end
tokens (<s>, <e>). The pre-trained GPT model processes the recombined inputs. Then, we obtained hn

l ,
which was the output of the final transformer block. The hn

l is then fed into a fully connected softmax
layer with matrix Wy to predict y.

P
(
y|x1, . . . , xn

)
= so f tmax

(
hn

l Wy
)

(17)

Lastly, we got the optimization objective to maximize:

L2(C) =
∑
(x,y)

logP(y|x1, . . . , xn) (18)

3.2.2. Fine-Tuning BERT

Unlike GPT employing a left-to-right transformer, BERT utilizes a bidirectional transformer. In this
paper, we fine-tuned BERTbase. It contains 12 transformer blocks, 12 self-attention heads, and 768
hidden units. As seen in Figure 5, BERT base takes a sequence of no more than 512 tokens as input and
outputs the representation of the sequence.



Healthcare 2020, 8, 307 9 of 18

1 

 

 

Encoder

Self-Attention

Feed-

Forward

Feed-

Forward

Feed-

Forward

1 2 512

…

…

…

…

…1 2 512

Encoder1

Encoder12

Fully connected +softmax layer

…

[CLS] I …

…

Figure 5. The architecture of fine-tuning bidirectional encoder representations from transformers (BERT).

In our classification task, BERT base takes the final hidden state C ∈ RH of the first token [CLS] as
the representation of the whole sequence. We introduced a fully connected softmax layer over the final
hidden state C. The softmax classifier parameter matrix is W ∈ RK×H, where H is the dimension of the
hidden state vectors and K is the number of classes.

P = so f tmax
(
CWT

)
(19)

We minimized the categorical cross-entropy loss and fine-tune all the parameters from BERT as
well as W to maximize the probability of the correct label.

4. Experiments and Results

4.1. Data Source and Data Processing

4.1.1. Data Source

Experiments were conducted on 6000 annotated HPV-related tweets [10]. The combinations of
keywords (HPV, human papillomavirus, Gardasil, and Cervarix) are used to collect public tweets using
the official Twitter application programming interface (API) [35]. 33,228 English tweets containing HPV
vaccines related keywords in total were collected from 15 July 2015 to 17 August 2015. Then, the URLs
and duplicate tweets were removed. 6000 tweets were selected for annotation randomly. In Table 1,
we divided the dataset into eight categories through the hierarchical structure. Then, each tweet
had one category label. The hierarchical structure was based on the subdivision of unbalanced data.
First, according to whether the tweet was related to HPV or not, we divided the tweet into a related
class or unrelated class. Next, the tweets that belong to the related class were divided into positive
class, neutral class, and negative class. Last, the negative tweets were classified into NegSafety class,
NegEfficacy class, NegResistant class, NegCost class, and NegOthers class based on some most common
worries about the vaccination like side effects, efficacy, cost, and culture-related issues. The detailed
proportion of each category is shown in Table 1.
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Table 1. The detailed proportion of each category.

Category Topic
(HPV) Sentiment Sentiment

(Subclass)
Tweet Numbers

(Proportion) Example

1 Unrelated / /
2016

(33.6%)

Only three U.S. states mandate
recommended HPV vaccine
http://t.co/YCInira89m via @Reuters

2

Related

Positive /
1153

(19.2%)

RT @GlowHQ: Dear #HPV Vaccination.
You are safe & effective. Why don’t
more states require you? @VICE
http://t.co/QRL26SA4GO http://t.co/gY.

3 Neutral /
1386

(23.1%)

Gardasil HPV Vaccine Safety Assessed
In Most Comprehensive Study To Date
http://t.co/4g3ztZdSU4 via @forbes.

4

Negative

NegSafety 912
(15.2%)

Worries about HPV vaccine: European
Union medicines agency investigating
reports of rar http://t.co/bMOr3XveVC
http://t.co/jZeHFkCDpl.

5 NegEfficacy 46
(0.77%)

ACOG is now “recommending”
ob/gyn’s to push HPV vaccine despite
its ineffectiveness & it’s notorious track
record of killing &maiming ppl.

6 NegResistant 6
(0.1%)

#HPVvaccine “would introduce sexual
activity in young women, that would
inappropriately introduce promiscuity”
http://t.co/zEnDdyVP8a.

7 NegCost 6
(0.1%)

RT @kylekirkup: I’m no public health
expert, but huh?! If you’re male & want
free HPV vax in BC, you have to come
out. At age 11. http://.

8 NegOthers 475
(7.93%)

Sanofi Sued in France over Gardasil
#HPV #Vaccine –http://t.co/LruYf4c0co.

4.1.2. Data Processing

There were some essential data cleaning and pre-processing work we had done, including
lowercase letter replacement, deleting punctuation, excluding hashtags, user names (e.g., @user),
and replacing all URLs (e.g., ‘http://xx.com’) with ‘URL’. Table 2 showed two processed sentences.

Table 2. The process of data cleaning.

Unprocessed Tweets Processed Tweets

@margin What’s your attitude about the vaccination?
https://stamp.jsp?tp=&arnumber=897
Please write me back @Daviadaxa soon!!!!!
http://#view=home&op=translate&sl=auto

What’s your attitude about the vaccination url
please write me back soon url

4.2. Experimental Setup

We applied 10-fold cross-validation to make full use of the small dataset and ensure the same
evaluation indicators with the work of [10]. So, leave one out cross-validation is not applied in this
paper. For each category, we treated it as a binary classification and assessed consequence with the
F1-score. The F1-score is defined as the harmonic mean of the precision and recall of a binary decision
rule [36]. For overall performance, we used micro-F1 as multiclass classification assessment indexes.
The Formula (20) showed the specific calculation process:

Micro_F1 =
2×Micro_P×Micro_R

Micro_P + Micro_R
, Micro_P =

∑m
i=1 TPi∑m

i=1 TPi +
∑m

i=1 FPi
,

Micro_R =

∑m
i=1 TPi∑m

i=1 TPi +
∑m

i=1 FNi

(20)

http://t.co/YCInira89m
http://t.co/QRL26SA4GO
http://t.co/4g3ztZdSU4
http://t.co/bMOr3XveVC
http://t.co/jZeHFkCDpl
http://t.co/zEnDdyVP8a
http://
http://t.co/LruYf4c0co
http://xx.com
https://stamp.jsp?tp=&arnumber=897
http://#view=home&op=translate&sl=auto
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Micro_F1 calculates the proportion of instances predicted correctly in the predicted samples
(regardless of the category) with Formula (20) where Micro_P is micro-average of precision, Micro_R
is micro-average of recall, TPi is the true positive sample, FPi is the false positive sample, and FNi is
false negative sample.

The optimal parameter settings are given in Table 3.

Table 3. The values of all parameters.

Parameter Value

Loss Function Categorical cross-entropy
Train-Test Split 10-fold cross-validation

Optimizer Adam
Learning Rate 0.001

Back-Propagation ReLu
Batch Size 32
Dropout 0.25

Hidden State GRU 64

4.3. Baselines

We compared our transfer learning methods with traditional machine learning models, including
plain support vector machines (SVMs) and hierarchical SVMs, and general deep learning models
(i.e., attention-based BiGRU model [37]). The plain SVM classification used word-ngrams as features and
chose default SVMs parameters. The hierarchical SVMs used three SVMs models trained independently
and chose word-ngrams as features. The results of these models came from [10].

4.4. Results

4.4.1. Average of Micro Index

The micro-average can be a useful measure when your dataset varies in small size. In Table 4,
the 10-fold cross-validation performance of the average of micro index on the baseline models (plain SVM
and hierarchical SVMs and BOW-BiGRU-Att) and our transfer learning models are shown. The plain
SVM classification results used word-ngrams as the feature and chose default SVMs parameters and
the hierarchical SVMs that used three SVMs models trained independently and chose word-ngrams as
the feature are the official numbers from [10]. The columns of BOW-BiGRU-Att, Word2Vec-BiGRU-Att,
FastText-BiGRU-Att, GloVe-BiGRU-Att, and ELMo-BiGRU-Att are our experiment results of
bidirectional long short-term memory combined with bag-of-word, Word2Vec, pre-trained FastTest
embedding, GloVe embedding, and ELMo embedding respectively. The columns of FT-GPT-FC
and FT-BERT-FC are the results of fine-tuning GPT and fine-tuning BERT models, respectively.
FT-GPT-FC and FT-BERT-FC respectively represent the fine-tuned model with a fully connected
neural network. The row of Average/Method represents the average of micro-F1 score of 10-fold
cross-validation on each method. The column of Average/Fold represents the average of micro-F1

score of each fold on all methods. The FT-BERT-FC gets the best performance with the bold number.
The result of FT-BERT-FC is 0.769. It makes 14.8% and 6.95% increase than the plain SVM and
the hierarchical SVMs score (0.670 and 0.719), respectively. The ELMo-BiGRU-Att and FT-GPT-FC
also increase by 2.68% and 1.53% more than hierarchical SVMs on micro-F1 average, respectively.
The better performance of FT-BERT-FC can be attributed to the fact that the left-to-right and right-to-left
transformers of BERT is more powerful than the left-to-right transformer of GPT. The bidirectional
transformer concentrates on the left and right context of the word, but the left-to-right transformer
can only focus on the left context of the word. Thus, pre-trained BERT can extract more high-quality
feature vectors. The other results are 0.654, 0.697, 0.708, and 0.702 are all lower than hierarchical SVMs.
However, the performance of all except the BOW-BiGRU-Att is better than plain SVM.
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Table 4. The 10-fold cross-validation Micro-F1 score on all methods.

Fold
Methods-Other Teams Methods-Our Works

Average/FoldPlain
SVM [10]

Hierarchical
SVMs [10]

BOW-
BiGRU-Att

Word2Vec-
BiGRU-Att

FastText-
BiGRU-Att

GloVe-
BiGRU-Att

ELMo-
BiGRU-Att FT-GPT-FC FT-BERT-FC

F-1 0.682 0.739 0.658 0.710 0.728 0.719 0.750 0.743 0.7891 0.724

F-2 0.671 0.698 0.650 0.699 0.701 0.704 0.724 0.722 0.755 0.702

F-3 0.639 0.682 0.643 0.677 0.673 0.680 0.707 0.721 0.750 0.686

F-4 0.693 0.743 0.669 0.724 0.737 0.727 0.745 0.768 0.778 0.732

F-5 0.658 0.721 0.645 0.681 0.712 0.691 0.722 0.730 0.762 0.702

F-6 0.677 0.728 0.662 0.700 0.680 0.703 0.731 0.735 0.771 0.710

F-7 0.642 0.690 0.631 0.686 0.719 0.695 0.712 0.721 0.753 0.694

F-8 0.669 0.729 0.660 0.712 0.723 0.719 0.736 0.744 0.776 0.719

F-9 0.690 0.735 0.668 0.703 0.718 0.702 0.749 0.747 0.791 0.723

F-10 0.678 0.723 0.649 0.681 0.691 0.677 0.721 0.730 0.762 0.701

Average/Method 0.670 0.719 0.654 0.697 0.708 0.702 0.730 0.736 0.769 /

1 The FT-BERT-FC gets the best performance with the bold number in each fold.
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Among all DWE-BiGRU-Att models (ELMo-BiGRU-Att, GloVe-BiGRU-Att, FastText-BiGRU-Att,
and Word2Vec-BiGRU-Att), ELMo-BiGRU-Att obtain the highest micro-F1 average. The results
indicate that dynamic word embedding (ELMo) is more efficient than static word embeddings (GloVe,
FastText, and Word2Vec). Meantime, ELMo can solve the polysemy that cannot be handled by
static word embeddings. However, the Micro−F1 average of FT-GPT-FC are increased by 0.82%
than ELMo-BiGRU-Att.

Compared with BOW-BiGRU-Att, the micro-F1 average of Word2Vec-BiGRU-Att is still increased
by 6.57%. The significant improvement means that transferring pre-trained word embedding is efficient
in promoting the classification performance of deep learning methods.

4.4.2. Standard Deviation and Root Mean Square Error

The standard deviation (SD) of the micro-F1 score for all methods is given in the row of SD to
measure the variance of a model’s performance. Root mean square error (RMSE) is applied as an error
analysis. The RMSE is calculated as follows where m is the sample size, y(i)test is observed values, ŷ(i)test is
expected values.

RMSE =

√√
1
m

m∑
i=1

(
y(i)test − ŷ(i)test

)2
(21)

The SD and RMSE are shown in Table 5. The SD and RMSE of FT-BERT-FC are lower than the
values of the plain SVM and hierarchical SVMs in average of micro index. The performance of the
plain SVM and hierarchical SVMs depend on the feature extracting from the training data set, so the
performance of each fold is more different. The SD and RMSE of the dynamic embeddings model
(such as FT-BERT-FC and FT-GPT-FC) are lower than that of the static embeddings model (such as
FastText-BiGRU-Att and GloVe-BiGRU-Att). Generally, the static embeddings model requires much
larger amounts of data. They can get major improvements when trained on millions or more annotated
training examples. However, the BERT model trained general-purpose language representation
models using the enormous piles of unannotated text on the web (this is known as pre-training).
The FT-BERT-FC method is not needed to extract high-quality language features from the text data,
we fine-tuned the model with BERT on the HPV vaccination task to produce state-of-the-art predictions.

Table 5. Standard deviation and root mean square error.

Research Team Methods SD RMSE

Other Teams
Plain SVM [10] 0.018 0.017

Hierarchical SVMs [10] 0.022 0.021

Our Works

BOW-BiGRU-Att 0.013 0.012
Word2Vec-BiGRU-Att 0.014 0.013
FastText-BiGRU-Att 0.023 0.021
GloVe-BiGRU-Att 0.017 0.016
ELMo-BiGRU-Att 0.016 0.015

FT-GPT-FC 0.016 0.015
FT-BERT-FC 0.015 0.014

5. Discussion

5.1. Micro-F1 Scores in Each Fold

Table 4 shows the specific micro-F1 scores of different models in each fold (F-1, F-2, . . . , F-10).
We sum up the true positives (TP), false positives (FP), and false negatives (FN) of the system for
different sets and apply them to get the statistics. The bold number denotes the largest number in
that row. In all folds, FT-BERT-FC gains the highest scores all, which indicates the robustness of
the model. The micro-F1 score of FT-GPT-FC and ELMo-BiGRU-Att are relatively close in each fold.
The difference between their scores of each fold does not exceed 0.02. Furthermore, the performance of
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Word2Vec-BiGRU-Att, FastText-BiGRU-Att, and GloVe-BiGRU-Att is similar in each fold. It indicates
that the Word2Vec, FastText, and GloVe.embedding mechanisms have similar effects on the HPV dataset.

The worst overall performance of all methods emerges in the third fold F-3, which means the
overall micro index performance of all models is the worst. The average micro-F1 score of the third
ford is 0.686. Correspondingly, the highest average micro-F1 score of each ford is 0.732 in the fourth
fold F-4. That means the overall micro index performance of all models is the best in this fold.

5.2. Statistical Test

We chose the Friedman test with the Nemenyi post hoc test based on [38]. The Friedman test is a
non-parametric statistical test developed by Milton Friedman [39]. It can be used to detect differences
in multiple methods across multiple test data sets. The steps of the Friedman test and the Nemenyi
test for this paper are given as follows.

(1) Define Null and Alternative Hypotheses
H0: There is no difference between the nine methods; H1: There is a difference between the

nine methods.
(2) Calculate Test Statistic
First, from Table 5, We ranked the methods for each fold (F-1, F-2, . . . , F-10) separately on micro-F1

score. Second, we replaced our original values with the rankings as shown in Table 6. Let r j
i be the

rank of the j− th of k methods on the i− th of N fold. The Friedman test compares the average ranks

(mean ranks) of methods, R j =
1
N

N∑
i=1

r j
i . The Friedman statistic is distributed according to χ2

F with k −

1 degrees of freedom.

χ2
F =

12N
k(k + 1)

 k∑
j=1

R j
2
−

k(k + 1)2

4

 (22)

Table 6. The 10-fold cross-validation rank of Micro-F1 score.

Fold Methods-Other Teams Methods-Our Works

Plain
SVM [10]

Hierarchical
SVMs [10]

BOW-
BiGRU-

Att

Word2Vec-
BiGRU-

Att

FastText-
BiGRU-

Att

GloVe-
BiGRU-

Att

ELMo-
BiGRU-

Att

FT-GPT-
FC

FT-BERT-
FC

F-1 8 4 9 7 5 6 2 3 1

F-2 8 7 9 6 5 4 2 3 1

F-3 9 4 8 6 7 5 3 2 1

F-4 8 4 9 7 5 6 3 2 1

F-5 8 7 9 6 5 4 2 3 1

F-6 8 4 9 7 5 6 3 2 1

F-7 8 4 9 6 7 5 3 2 1

F-8 8 6 9 7 3 5 4 2 1

F-9 8 7 9 6 5 4 2 3 1

F-10 8 4 9 7 5 6 3 2 1

R j 8.1 5.1 8.9 6.5 5.2 5.1 2.7 2.4 1.0

R j
2 65.61 26.01 79.21 42.25 27.04 26.01 7.29 5.76 1.00

R j ±
CD
2 8.1 ± 1.90 5.1 ± 1.90 8.9 ± 1.90 6.5 ± 1.90 5.2 ± 1.90 5.1± 1.90 2.7± 1.90 2.4± 1.90 1.0 ± 1.90

Friedman’s χ2
F is undesirably conservative and derived a better statistic was proposed by Iman

and Davenport [40].

FF =
(N − 1)χ2

F

N(k− 1) − χ2
F

(23)
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FF is distributed according to the F-distribution with k − 1 and (k − 1) (N − 1) degrees of freedom.
The table of critical values can be found in any statistical book. In this paper, N = 10, k = 9. With nine
algorithms and 10-fold cross-validation data sets, FF is distributed according to the F distribution with
9 − 1 = 8 and (9 − 1) × (10 − 1) = 72 degrees of freedom. The critical value of F (8,72) for α = 0.05 is
2.07. We got χ2

F = 73.57, FF = 103.03 with Equations (23) and (24). FF > F0.05(8, 72) where α = 0.05.
So, we reject the null hypothesis. We proceed with a post hoc test using the Nemenyi test [41].

(3) Nemenyi test
The performance of different methods is significantly different if the corresponding average ranks

differ by at least the critical difference (CD).

CD = qα

√
k(k + 1)

6N
(24)

At p-value = 0.05, q0.05 = 3.102 were obtained from a F-distribution table in any statistical book
where α = 0.05. Then, CD is 3.80 calculated with Equation (25).

CD = 3.102×

√
9× 10
6× 10

= 3.80 (25)

All the R j ±
CD
2 were got and shown in Table 6. The critical difference (CD) diagrams are shown

in Figure 6. We can identify the performance of FT-BERT-FC is significantly better than that of
plain SVM [10], hierarchical SVMs [10], BOW-BiGRU-Att, Word2Vec-BiGRU-Att, FastText-BiGRU-Att,
and GloVe-BiGRU-Att. We cannot tell that there is a significant difference between FT-BERT-FC,
ELMo-BiGRU-Att, and FT-GPT-FC. We can conclude that the post hoc test is not powerful enough to
detect any significant differences between the ELMo-BiGRU-Att, FT-GPT-FC, and hierarchical SVMs at
p-value is equal to 0.05.
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5.3. Limitations and Future Researches

We have demonstrated how the methods of the sentiment analysis of the HPV vaccination
task. However, only one dataset with 6000 tweets is verified. One of the next steps is to study the
performance of these methods working on different sizes and multi-domain.

The plain SVM, hierarchical SVMs, BOW-BiGRU-Att, Word2Vec-BiGRU-Att, FastText-BiGRU-Att,
GloVe-BiGRU-Att, and ELMo-BiGRU-Att are based on annotated Twitter data whereas FT-GPT-FC
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and FT-BERT-FC are not. However, FT-GPT-FC and FT-BERT-FC are pre-trained models, so they need
more high-performance computing resources to conduct experiments.

Some tweets are not be processed by FT-BERT-FC shown in Table 7. The current methods
usually neglect to consider commonsense knowledge for public opinions on public health issues.
Knowledge enhanced ensemble learning models on social media should be tried to address this problem.

Table 7. Some tweets are not processed correctly by FT-BERT-FC.

No. Tweet Annotated
Category

The Category Identified
by FT-BERT-FC

1 Warts are cause by HPV Unrelated Neutral

2
@handronicus she is not pleased with me. She hasn’t
been this mad since I got the cervical cancer vaccine
(only sluts get HPV duh)

NegResistant NegOthers

3
RT @kylekirkup: I’m no public health expert, but huh?!
If you’re male & want free HPV vax in BC, you have to
come out. At age 11. http:// . . .

NegCost NegSafety

. . . . . . . . .

Furthermore, uneven data distribution is an excellent challenge for the current models. There are
only 6 NegResistant and 6 NegCost tweets in the dataset. Some deep learning approaches for processing
imbalanced data should be studied as [7].

6. Conclusions

We try to find a transfer learning system that can extract comprehensive public sentiment on HPV
vaccines on Twitter with satisfying performance. We proposed three transfer learning approaches to
analyze public sentiments towards public health issues for the goal. To exploit syntax and semantics
pre-trained on a large corpus, a method of transferring diverse word embeddings was combined with
BiGRU-Att layer. As the static word embeddings could not solve the polysemy, we proposed the other
two methods of fine-tuning GPT and fine-tuning BERT. In this way, we could take advantage of the
strong feature extraction capability of large neural networks by using a little annotated target-domain
data to fine-tune the language model. The experimental results showed the superiority of FT-BERT-FC
for the HPV vaccination issue. With the success of this work, our transfer learning approaches were
expected to be further applied to other public sentiments tasks towards public health issues.
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