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Abstract: In view of the harm of diabetes to the population, we have introduced an ensemble
learning algorithm—EXtreme Gradient Boosting (XGBoost) to predict the risk of type 2 diabetes and
compared it with Support Vector Machines (SVM), the Random Forest (RF) and K-Nearest Neighbor
(K-NN) algorithm in order to improve the prediction effect of existing models. The combination
of convenient sampling and snowball sampling in Xicheng District, Beijing was used to conduct a
questionnaire survey on the personal data, eating habits, exercise status and family medical history
of 380 middle-aged and elderly people. Then, we trained the models and obtained the disease
risk index for each sample with 10-fold cross-validation. Experiments were made to compare the
commonly used machine learning algorithms mentioned above and we found that XGBoost had the
best prediction effect, with an average accuracy of 0.8909 and the area under the receiver’s working
characteristic curve (AUC) was 0.9182. Therefore, due to the superiority of its architecture, XGBoost
has more outstanding prediction accuracy and generalization ability than existing algorithms in
predicting the risk of type 2 diabetes, which is conducive to the intelligent prevention and control of
diabetes in the future.

Keywords: ensemble learning; prediction of disease risk; XGBoost model; traditional machine
learning; comparative analysis

1. Introduction

Diabetes is a clinical syndrome that interacts with environmental and genetic factors and it is
also a typical chronic disease from which middle-aged and elderly people suffer a lot. Diabetes is
characterized by high blood sugar, with many complications such as microvascular complications,
large vascular complications and neurological complications that are really common. For example,
microvascular complications are able to cause diabetic eye lesions, resulting in blurred vision, blindness,
diabetic retinopathy and diabetic nephropathy. As for diabetic nephropathy, the proteinuria appears
first, later the kidney function gradually decreases and eventually kidney failure will show up and
develop into uremia, which badly harms human health. According to the recent research [1,2], more
than half of middle-aged and elderly people don’t have a strong prevention awareness of the disease,
and have no concept of self-management behavior for diabetes. Therefore, establishing a sound
warning system for the risk of diabetes will provide portable help for the middle-aged and elderly
people to prevent diabetes and pay more attention to it, which is of great significance to reduce the
incidence of diabetes in China [3].
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Statistical models are widely applied in the early warning of traditional chronic disease risk, such
as multilinear regression and multi-logistic regression, which are more often used [4]. The method
used a regression coefficient to indicate the correlation degree between risk factors and disease, but
its algorithm was relatively single and the results couldn’t accurately give specific probability values.
At present, with the development of artificial intelligence, machine learning is progressively used
to assess the risk of chronic diseases. It summarizes and learns the factors associated with chronic
diseases, and ultimately reaches an evaluation score on possible outcomes of the disease. For example,
Finkelstein et al. [5] predicted asthma attacks using Naive Bayes classifiers, adaptive Bayes networks,
and Support Vector Machines (SVM), with a sensitivity of 0.80, 1.00 and 0.84; a specificity of 0.77, 1.00
and 0.80, and an accuracy of 0.77, 1.00 and 0.80. Meanwhile, similar studies have been conducted in
the field of diabetes prediction. In recent years, Park et al. [6] applied reverse propagation learning
sequential multi-layer perceptron (SMLP) to obtain the prediction probability of diabetes, finding that
the results were superior to regression models. Zhu et al. [7] improved the logistic regression algorithm
intelligently, and the accuracy improved by 1.98% in diabetes prediction. In addition, Sudharsan et al. [8]
used machine learning models to predict hypoglycemia events occurring in 24 h in diabetics, resulting
in a sensitivity of 92% and a specificity of 70%. However, the prediction of diabetes through machine
learning is mainly based on traditional classification algorithms in current research, but reports on the
powerful Boosting algorithm application in this area are relatively scarce.

In view of the lack of embodiment of novel and efficient ensemble learning in the study of evaluating
type 2 diabetes risk, combined with its advantages in the field of data mining, we built a EXtreme
Gradient Boosting (XGBoost) model [9–12] to predict the risk of diabetes among 368 middle-aged and
elderly people, and finally drew the specific probability of each potential patient. To our knowledge,
this was an innovative application of the XGBoost algorithm in this field. At the same time, in order
to reflect the superiority of this method, we also compared it with the traditional machine learning
models in diabetes risk assessment. This study indicates that despite the small amount of data used for
training, the XGBoost model still exhibits stable and excellent performance.

2. Materials and Methods

The workflow of this paper is shown in Figure 1. The collected questionnaires were converted into
feature vectors in the form of binary codes after strict selection. Meanwhile, the research used 4 machine
learning models (XGBoost, SVM, Random Forest (RF) and K-Nearest Neighbor (K-NN)) to conduct
experiments, and evaluated the performance of various algorithms through 10-fold cross-validation.
Ultimately, we chose the optimal model to predict the risk of type 2 diabetes.
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2.1. Experimental Data

A questionnaire survey that combined convenient sampling with snowball sampling was
conducted in the Xicheng district of Beijing, and the main target population was the middle-aged
(between 45 and 54 years old) and elderly people (55 years and older). In our research, location and
time period of the survey, age, gender and illness of the respondents were chosen randomly. The survey
content can be divided into 4 categories of information, namely, personal information, eating habits,
exercise situation and family history, whereby each of them has multiple problems. Each question
except personal information and family history took the frequency as choices, including 3 times a day
and above, 2 times a day, 1 time a day, 4–6 times a week, 1–3 times a week, 1–3 times per month and
never. A total of 380 questionnaires were distributed in the survey, and 368 valid questionnaires were
eventually obtained after the data was cleaned.

It is worth noting that the type 2 diabetes prevalence of each respondent had been strictly confirmed
(referring to the World Health Organization standard, FPG greater than or equal to 7.0 mmol/L is
considered as diabetes). In addition, the questionnaire information filled by the investigators had been
strictly confirmed to prevent human errors caused by the investigators’ own reasons.

It must be emphasized that no human subjects were used in this study, we only adopted their
personal information for analysis with the permission of the questionnaire subjects. Meanwhile,
this work was approved by the Human Research Ethics Committee in China Agricultural University
(approval number: CAUHR-2020003).

2.2. Feature Vectors Representation

We needed to convert the questionnaire information into feature vectors that could be input
into the machine learning models. Here, a feature representation method based on binary coding
was provided. For personal information and family history, the experiment converted the yes/no
answer of each question (such as whether there is a family history, etc.) into a number 1/0. In addition,
eating habits and exercise situation were another way. More specifically, for the K questions on
eating habits, each question had 7 options, assuming that a patient met the first option, the expression
was f (q1) = (1, 0, . . . , 0); if it matched the second option, the expression was f (q1) = (0, 1, . . . , 0),
and so on. In the same way, for the M questions about exercise situations, the expression was similar.
The corresponding formula is as follows.

F = [ f (q1), f (q2), . . . , f (qk)] (1)

where F represents the feature vector of each sample’s eating habits and exercise situation. The total
feature vector also requires coding of personal information and family history.

2.3. EXtreme Gradient Boosting Algorithm

First, the answers to all questions in each sample were converted to a feature vector, which
acted as an input vector of the XGBoost model. This article was programmed with Python 3.8 and
was modeled and trained on the configuration of the Windows 10 (Microsoft, Redmond, WA, USA)
Operating System, and the CPU was Intel Core I7-6700HQ, 3.5 GHz, with a memory of 4 GB.

XGBoost is a novel machine learning algorithm that was born in February 2014. This algorithm has
gained wide attention because of its excellent learning effect and efficient training speed. The XGBoost
algorithm is an improvement of the gradient boosting decision tree (GBDT) and can be used for both
classification and regression problems. It is worth noting that XGBoost is also one of the boosting tree
algorithms, which is to integrate many weak classifiers together to form a strong classifier. The tree
model it uses is the classification and regression tree (CART) model.

The idea of this algorithm is to add trees continuously, and to split the features continuously
to grow a tree. Each time you add a tree, you actually learn a new function to fit the last predicted
residual. When we finish training to get k trees, we have to predict the score of a sample. In fact,
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according to the characteristics of this sample, a corresponding leaf node will fall in each tree, and each
leaf node corresponds to a score. The score corresponding to each tree needs to be added up to be the
predicted value of the sample. Specifically, the workflow of the algorithm is as follows.

1. Before starting to iterate the new tree, calculate the first and second derivative matrices of the loss
function corresponding to each sample.

2. Each iteration adds a new tree, and each tree fits the residual of the previous tree.
3. Count the split gain value of the objective function to select the best split point, and employ the

greedy algorithm to determine the best structure of the tree.
4. Add a new tree to the model and multiply it by a factor to prevent overfitting. When fitting

residuals, step size or learning rate are usually used to control optimization, so as to reserve more
optimization space for subsequent learning.

5. After training, a model of multiple trees is obtained, in which each tree has multiple leaf nodes.
6. In each tree, the sample falls on several leaf nodes according to the eigenvalues. The final

predicted value is the score of the leaf node corresponding to each tree multiplied by the weight
of the tree.

From the perspective of model expression, suppose we iterate t rounds, which means that we want
to generate t residual trees. At this time, the expression of the model prediction value is as follows:

ŷi =
T∑

t=1

ft(xi), ft ∈ F (2)

where ft(xi) represents the predicted value of the t-th residual tree for the t-th residual of xi. yi represents
the predicted value of the model, ft is the residual number of the t-th round, and F is the function
space of the residual tree. Additionally, the loss function is also an indispensable part of this algorithm,
and its error sources are mainly: training errors and model complexity. Its main formula is as follows:

obj =
n∑

i=1

l(yi, ŷi) +
K∑

k=1

Ω( fk) (3)

where l represents the loss function and Ω is the regularization term. For the t-th round of training,
the above loss expression satisfies the following relationship:

ŷt
i = ŷt−1

i + fi(xi) (4)

Ω( ft) =

T−1∑
k=1

Ω( fk)

+ Ω( ft) = const + Ω( ft) (5)

Therefore, the loss of the t-th round combined with the second-order Taylor expansion can be
simplified into the following form:

objt ≈
n∑

i=1

[
l
(
yi, ŷt−1

i

)
+ gi fi(xi) +

1
2 hi( ft(xi))

2
]
+ Ω( ft) + const

=
n∑

i=1

[
gi ft(xi) +

1
2 hi( ft(xi))

2
]
+ Ω( ft)+const

(6)

In this objective function, gi and hi are the parameters of the t-th residual tree, so the minimum
value of the function can be obtained only by determining the parameters according to the number
of leaf nodes. It should also be emphasized that the optimal result of the model also depends on the
structure of the tree, and XGBoost adopts the greedy algorithm to generate the specific architecture of
the tree. Specifically, the algorithm starts at the root node and traverses all features. For each feature,
if it is a continuous feature, it is arranged from small to large. There are 368 samples in this experiment,
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so there are 367 split points for this continuous feature, and a split gain value is calculated at each split
point. This value is employed to determine whether the current node needs to be split and to select the
best split point.

In our experiments, XGBoost was implemented in the scikit-learn machine learning library under
Python 3.8. We optimized the parameters of the model during the 10-fold cross-validation.

2.4. Baseline Algorithms

In order to reflect the superiority of XGBoost in the field of diabetes risk prediction, three commonly
used chronic disease prediction algorithms (SVM, RF, K-NN) were selected to make a comparison with
the methods above. The training process was made in Python 3.8 with 10 fold cross-validation, and the
parameters was adjusted to a relatively high level.

Specifically, this paper designed a nonlinear SVM model that performed a binary classification
task, and its kernel function was RBF. SVM can easily obtain the non-linear relationship between data
and features when the sample size is small. It can avoid the use of neural network structure selection
and local minimum problems. It has strong interpretability and can solve high-dimensional problems.

Random forest was employed as a classic ensemble learning algorithm to compare with XGBoost.
In this experiment, the Bootstraping method was used to randomly select a certain sample from the
original training set. A total of n_tree = 20 samples were sampled to generate n_tree = 20 training
sets. Each split of each decision tree model was based on information gain to select the best feature.
Each tree had been split in this way until all the training examples of the node belonged to the same
class. We decided the final classification result according to the votes of multiple tree classifiers.

Moreover, we adopted the K-NN algorithm to calculate the distance between the new data and
the feature values of the training data, and then selected K (K ≥ 1) nearest neighbors for classification
or regression. If K = 1, then the new data would be assigned to its neighbor class. After continuous
experiments, it was found that the model performed best when K = 5.

2.5. Parameters Adjustment

The experiment employed the GridSearchCV method for automatic parameters adjustment.
We used this method to select the optimal parameters of the above 4 models. The final key parameters
are shown in Tables 1–4. It must be emphasized that GridSearchCV is only suitable for smaller datasets,
while large datasets will have problems such as time-consuming training and slow search.

Table 1. Key parameters of the EXtreme Gradient Boosting (XGBoost) model.

Parameter Name Value

gamma 0.1
max_depth 0.5

lambda 3.0
subsample 0.7

silent 1.0
eta 0.1

seed 1000.0

Table 2. Key parameters of the Support Vector Machines (SVM) model.

Parameter Name Value

C 1.0
degree 3.0
epsilon 0.2
gamma auto

tol 0.001
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Table 3. Key parameters of the Random Forest (RF) model.

Parameter Name Value

n_estimators 60
max_depth 13

max_features 9
Random_state 20

oob_score True

Table 4. Key parameters of the K-Nearest Neighbor (K-NN) model.

Parameter Name Value

n_neighbors 5
n_jobs 1

2.6. Statistical Analysis

After training the model above, we predicted the probability of diabetes disease and made a
comparation and evaluation for the models through 10-fold cross validation. The evaluation indicators
were based on accuracy (Acc), sensitivity (Sens), specificity (Spec), precision (Prec), and Matthew
correlation coefficient t (MCC) (the corresponding calculation formulas are as follows). In addition,
the Receiver Operating Characteristics (ROC) curves and the AUC values were also taken into account.

Acc =
TN + TP

TN + TP + FN + FP
(7)

Sens =
TP

TP + FN
(8)

Spec =
TN

TN + FP
(9)

Prec =
TP

TP + FP
(10)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(11)

wherein, TP (true positive) is the proportion of the positive samples correctly classified, FP (false
positive) is the proportion of samples shown correctly classified as belonging to a specific class when
they actually do not belong to that class, TN (true negative) is the proportion of the negative samples
correctly classified and FN (false negative) represents the number of samples classified as not belonging
to a specific class when they actually do belong to that class.

3. Results

3.1. Statistics Results

We have collected 380 samples in total during this survey; after removing 12 cases that were
missing and obviously inconsistent, there were 368 samples left for analysis. Table 5 counts the
detailed information of the questionnaire, including the investigator’s personal information, eating
habits, exercise situation, and family medical history, and summarizes the number and proportion of
respondents at each point.
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Table 5. Detailed statistics of the questionnaire information.

Type of Information Classification Number of People
(Individual)

Proportion
(%)

Personal
Information

Education Level
High Educational Background 237 64.40

High School Degree or Even Lower 131 35.60

Marriage Married 304 82.61
Unmarried 64 17.39

Eating Habits

Rice
Three Times a Day or Even More 324 88.04

Twice a Day 20 5.43
Once a Day or Even Not 24 6.52

Buns
Three Times a Day or Even More 312 84.78

Twice a Day 32 8.70
Once a Day or Even Not 24 6.52

Noodles
Three Times a Day or Even More 38 10.33

Twice a Day 67 18.21
Once a Day or Even Not 263 71.47

Pork
Three Times a Day or Even More 156 42.39

Twice a Day 127 34.51
Once a Day or Even Not 85 23.10

Beef
Three Times a Day or Even More 120 32.61

Twice a Day 93 25.27
Once a Day or Even Not 155 42.12

Fish
Three Times a Day or Even More 145 39.40

Twice a Day 129 35.05
Once a Day or Even Not 94 25.54

Seafood
Three Times a Day or Even More 31 8.42

Twice a Day 54 14.67
Once a Day or Even Not 283 76.90

Dairy Products
Three Times a Day or Even More 62 16.85

Twice a Day 88 23.91
Once a Day or Even Not 218 59.24

Fruits
Three Times a Day or Even More 89 24.18

Twice a Day 172 46.74
Once a Day or Even Not 107 29.08

Vegetables
Three Times a Day or Even More 217 58.97

Twice a Day 102 27.72
Once a Day or Even Not 49 13.32

Exercise
Situation

Leisure Sports
Twice a Day or Even More 102 27.72

Once a Day 132 35.87
4 To 6 Times a Week or Even Less 134 36.41

Vigorous Sports
Twice a Day or Even More 22 5.98

Once a Day 43 11.68
4 To 6 Times a Week or Even Less 303 82.34

Family Medical History Have 101 27.45
Don’t Have 267 72.55

3.2. Training and Testing Sets Distribution

In this paper, 10-fold cross validation method was employed, that is, the dataset was divided
into 10 parts, 9 of which were taken in turn as the training set, 1 as the test set, and the average
value of the 10 results was used as the evaluation value of the algorithm performance. Meanwhile,
the experiment repeated the above process 10 times and 10 evaluation values were obtained for each
model, and their mean values and corresponding 95% confidence intervals were counted. Additionally,
the whole dataset had 108 experimental positive samples and 260 negative samples. Positive and
negative samples were proportionally divided into training and test sets during cross-validation.
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3.3. Models Comparison

3.3.1. XGBoost Model Results

After adjusting parameters, the XGBoost model achieved relatively excellent performance through
10-fold cross validation, with a training accuracy of 0.9492. Then, we evaluated the results of
10 cross-validations, and the test found that the model had a good predictive effect on the diabetes disease
of 37 random potential patients (randomly assigned test set during cross-validation). The average
prediction accuracy was 0.8909, the sensitivity was 0.9388, the specificity was 0.7571, the precision was
0.7944, the Matthew correlation coefficient was 0.6589 and the AUC value was 0.9182.

3.3.2. Comparison with Baseline

The experiment also compared the proposed model with the baseline models (SVM, RF, K-NN).
The parameters were well adjusted and the average value of the 10 test results were used as the final
model evaluation value, as shown in Table 6. It is not difficult to find that traditional machine learning
algorithms were not as good as XGBoost algorithms in terms of prediction accuracy or AUC values.
Among traditional algorithms, SVM had the highest accuracy (0.8158), highest specificity (0.6364),
highest precision (0.8111) and highest Matthew correlation coefficient (0.5410) while K-NN had the
highest sensitivity (0.9630). Additionally, SVM (0.8550) had the highest AUC value among traditional
machine learning, but it was lower than the AUC value of XGBoost (0.9182). The ROC curves of each
model are as shown in Figure 2.Healthcare 2020, 8, x  11 of 14 
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Table 6. Comparison of effects for each model.

Machine
Learning Model

Evaluation Indicators

Acc Sens Spec Prec MCC AUC

XGBoost 0.8909 ± 0.0177 0.9388 ± 0.0251 0.7571 ± 0.0405 0.7944 ± 0.0296 0.6589 ± 0.0537 0.9182 ± 0.0130
SVM 0.8158 ± 0.0112 0.8889 ± 0.0255 0.6364 ± 0.0239 0.8571 ± 0.0227 0.5410 ± 0.0650 0.8550 ± 0.0479
RF 0.7895 ± 0.0308 0.9259 ± 0.0219 0.4545 ± 0.0328 0.8065 ± 0.0365 0.4451 ± 0.0921 0.7167 ± 0.0356

K-NN 0.7368 ± 0.0225 0.9630 ± 0.0199 0.1818 ± 0.0240 0.7429 ± 0.0294 0.2548 ± 0.0554 0.6397 ± 0.0295

Notes: the values represent average values and their 95% confidence intervals.

3.4. Diabetes Risk Prediction

In view of the accuracy of XGBoost in the prediction of type 2 diabetes risk, we counted the
predicted probability values of the test set during the cross-validation process after the model was
trained. That is, using the ensemble learning model can determine the probability of positive and
negative samples of unknown data. It can also provide portable, intelligent self-management and early
warning for the vast number of middle-aged and elderly groups in the future, which is conducive to
preventing the occurrence of diabetes reducing the incidence of diabetes.

4. Discussion

Previous studies have shown that logistic regression models are often applied in single-element
or multi-element diabetes risk assessment, such as Abdullah et al. [13] making use of environmental
and genetic risk factors to predict the risk of type 2 diabetes in Malaysia with a fitted multiple logistic
regression model and as a result, the AUC value was 0.75–0.83. However, the logistic regression model
can’t both carry out feature study of sample data and obtain the prediction results of unknown samples,
which means it has great limitations. With the development of artificial intelligence, many machine
learning models have been employed in the research of predicting the risk of diabetes early. The most
commonly used is the SVM supervision model. It selects the feature space to construct the optimal
superplane on the basis of the summary of structural risk minimization theory, enabling the classifier
to obtain global optimization, and meeting a certain upper bound with a certain probability value in
the sample space expectation. Previous studies have shown that SVM has a strong generalization
ability and performed excellently on many forecasting issues [14–16]. SVM is also widely used in
the field of diabetes prediction, for example, Xiong et al. [17] utilized machine learning algorithms to
build a prediction model of type 2 diabetes, finding the result was really satisfied. In our research,
SVM performed best in traditional machine learning algorithms, with a sensitivity of 0.8889 and an
AUC value of 0.8550. RF is a classic Bagging integrated learning algorithm, which can handle higher
dimensional data while and reducing the impact of unbalanced data at the same time, but sometimes it
is easily over-fitting when it comes to the classification issues of over-loud noise. Meanwhile, RF is
widely used in the field of diabetes risk prediction [18,19]. In our experiment, RF didn’t perform as well
as SVM after integration; the reason may be situated in the poor classification effect when processing
small amounts of data or low-dimensional data. K-NN is another commonly used algorithm in diabetes
prediction research with a simple algorithm, unsophisticated training process and weak interpretability,
but it has a low accuracy of prediction for rare categories when the sample is unbalanced. The type 2
diabetes data set in our study was unbalanced and the number of positive samples was relatively
small, so the sensitivity of the experiment was high (0.9630) while the specificity was extremely low
(0.1818). Therefore, the sample could not be well predicted.

In this paper, a novel ensemble learning algorithm was used to predict the risk of type 2 diabetes,
and this is a successful example of XGBoost’s application in the study of chronic disease risk assessment.
We believe this may be inseparable from the superiority of the algorithm itself. XGBoost is an
ensemble learning algorithm, which belongs to the boosting algorithm category in three commonly
used ensemble methods (bagging, boosting, stacking). It is an addition model, and its base learner
can be either a CART model or a linear classifier [20]. Specifically, XGBoost is improved by the GBDT
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algorithm. Its basic idea is to fit the deviation of the previous model through the new base model,
thereby continuously reducing the deviation of the addition model. In this experiment, it has the
following advantages. First of all, XGBoost adds regularization terms to the objective function, which
avoids overfitting the model due to insufficient sample size in diabetic patients. Second, the algorithm
takes into account the fact that the training data is sparse. You can specify the default direction of
the branch for missing values or specified values, which can greatly improve the efficiency of the
algorithm. This advantage reduces the difficulty of training. Moreover, it also borrows from the
practice of random forests—it supports column sampling, which can not only reduce overfitting,
but also reduce calculations. Compared with the simplicity and singularity of traditional algorithm
architecture, XGBoost has the advantage of principle, which made it stand out in the prediction of type
2 diabetes risk.

Although the XGBoost model performed better than the traditional algorithm in this paper,
it is undeniable that it adopts the pre-sorting principle. Before the iteration, the model pre-sorts the
characteristics of the nodes and traverses to select the optimal split point. This results in finding that
the optimal greedy algorithm takes a long time and the training difficulty increases when the amount
of data is large. Therefore, the XGBoost algorithm is more suitable for small sample training similar to
this task.

Our research also has certain flaws, which deserve to be improved in the future. Firstly,
the experimental sample size should be further expanded so that more reliable conclusions can be
drawn. Secondly, the patient information input into the model needs to be further improved, because
only comprehensive information can predict type 2 diabetes more accurately. Thirdly, because machine
learning has a “black box” feature, we cannot explain how it works at the moment. Future efforts in
this direction will be required. In addition, cross-sectional data has inherent defects, and large-scale
prospective or retrospective research will continue to be carried out in the future.

5. Conclusions

The study aimed at working out the problem that the prediction accuracy and the generalization
performance of models are not satisfied in the field of predicting the risk of suffering from diabetes.
Our study made use of the XGBoost model, one of the ensemble learning algorithms, to make a
disease risk assessment of type 2 diabetes for potential patients, and then compared it with the current
mainstream algorithms (SVM, RF and K-NN). The prevalence of random samples were predicted
based on the personal information, eating habits, exercise condition and family history of diabetes
of the middle-aged and elderly people surveyed, and then calculated the index of suffering from
diabetes. The results showed that XGBoost has the strongest generalization ability and prediction
accuracy, which can better estimate the risk of potential patients and provides new ideas for intelligent
prevention of chronic diseases in the future.
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