Skip to main content
. 2020 Oct 5;6(10):e05117. doi: 10.1016/j.heliyon.2020.e05117

Table 3.

R2 and RMSE of the dependent variables as a function of different learning algorithm and connection types.

Model Learning Algorithms Connections Types Output Layer Transfer Function Input Layer Transfer Function Training
Testing
fR2 gRMSE R2 RMSE
2-6-3 BBPa MFFFb Hyperbolic Tangent Hyperbolic Tangent 0.9899 0.206 0.9871 1.78
2-6-3 IBPc MFFF Hyperbolic Tangent Sigmoid 0.9902 0.105 0.9900 1.49
2-7-3 IBP MNFFd Sigmoid Hyperbolic Tangent 0.9906 0.06 0.9902 0651
2-7-3 QPe MFFF Hyperbolic Tangent Hyperbolic Tangent 0.9710 4.025 0.9793 4.83
2-8-3 IBP MNFFd Sigmoid Hyperbolic Tangent 0.9907 0.064 0.9904 0.62
2-8-3 QPe MFFF Sigmoid Hyperbolic Tangent 0.9164 3.037 0.9174 3.09
2-8-3 BBP MFFF Hyperbolic Tangent Sigmoid 0.9897 0.113 0.9893 1.36
2-9-3 IBP MNFF Sigmoid Sigmoid 0.9915 0.0623 0.9904 0.337
2-9-3 IBP MFFF Sigmoid Hyperbolic Tangent 0.9906 0.0641 0.9905 0.314
a

Batch Back Propagation;

b

Multilayer Full Feed Forward;

c

Incremental back propagation;

d

Multilayer normal Feed Forward;

e

Quick Propagation;

f

Coefficient of determination;

g

Root mean square deviation.