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Abstract 

Background:  Alternative splicing (AS), a crucial post-transcriptional regulatory mechanism in expanding the coding 
capacities of genomes and increasing the diversity of proteins, still faces various challenges in the splicing regulation 
mechanism of acute myeloid leukemia (AML) and microenvironmental changes.

Results:  A total of 27,833 AS events were detected in 8337 genes in 178 AML patients, with exon skip being the 
predominant type. Approximately 11% of the AS events were significantly related to prognosis, and the prediction 
models based on various events demonstrated high classification efficiencies. Splicing factors correlation networks 
further altered the diversity of AS events through epigenetic regulation and clarified the potential mechanism of the 
splicing pathway. Unsupervised cluster analysis revealed significant correlations between AS and immune features, 
molecular mutations, immune checkpoints and clinical outcome. The results suggested that AS clusters could be 
used to identify patient subgroups with different survival outcomes in AML, among which C1 was both associated 
with good outcome in overall survival. Interestingly, C1 was associated with lower immune scores compared with C2 
and C3, and favorable-risk cytogenetics was rarely distributed in C2, but much more common in C1.

Conclusions:  This study revealed a comprehensive landscape of AS events, and provides new insight into molecular 
targeted therapy and immunotherapy strategy for AML.
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Background
The clinical of acute myeloid leukemia (AML) from 
initial diagnosis to recurrent/refractory status is char-
acterized by the acquisition of drug resistance and pro-
gressive immune dysfunction [1]. Chemotherapy, target 
drugs, hematopoietic stem cell transplantation, and 
immunotherapy are the current treatment options for 

patients with AML [2]. The 5-year relative survival rate 
in adolescents is 66%, but it declines to 54%, 32%, and 
7% among patients aged 20–49  years, 50–64  years, and 
over 65  years, respectively [3]. Despite significant pro-
gresses in diagnostic approach and therapeutic strate-
gies in the recent years, few patients could benefit from 
these advances [4]. Recent studies indicated that several 
phenotypic and genetic changes in bone marrow micro-
environment could support the genesis of leukemia, facil-
itate leukemic cells survival and mediate chemotherapy 
resistance [5, 6]. Therefore, the molecular mechanisms of 
AML and the related microenvironmental regulation are 
still critical issues.
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With recent developments in next generation sequenc-
ing techniques, molecular evolutionary mechanisms 
underlying the occurrence and clinical progression of 
AML are better understood, and could optimize indi-
vidualized treatment [7, 8]. Alternative splicing (AS) 
is a crucial post-transcriptional regulatory mechanism 
that converts only 20,000 genes in eukaryotic cells into 
approximately 95,000 different proteins for generat-
ing protein diversity [9]. Recent studies have found that 
variations in tumor transcriptome due to AS changes 
and dysregulation of AS were closely related to tumor 
progression, drug resistance, metastasis and other car-
cinogenic processes [10]. Additionally, occurrence of 
some peculiar AS events may represent the pheno-
typic characteristics of specific malignancies. Ghigna 
et al. identified that the exon skip events of MST1R was 
related to acquisition of cellular motility during cell inva-
sion [11]. Bechara et  al. suggested that changes in an 
exon of NUMB can activate proliferation of lung cancer 
cells [12]. Nevertheless, the molecular mechanism of AS 
mainly depends on the regulation of splicing factors [13]. 
Tumor genome sequencing data demonstrated that mul-
tiple mutations have been found in spliceosomal complex 
members, while common in hematologic malignancies 
and usually occurs in SRSF2, SF3B1, ZRSR2 and U2AF1 
[14]. Therefore, a good understanding of the potential 
function of AS could help researchers to identify new 
oncogenic mechanisms and therapeutic targets.

In recent decades, significant advances have been 
achieved in the field of tumor immunotherapy [15, 16]. 
Bone marrow microenvironment has been identified as a 
major sanctuary of leukemic stem cells (LSCs) to protect 
these cells from conventional therapies, immune cells, 
hematopoietic cells and some cytokines, chemokines, 
etc. [17]. Moreover, increasing evidence suggested that 
AS is another hallmark in immune microenvironment 
formation [18]. Studies have shown that splicing changes 
can be used to distinguish different types or subtypes 
of tumors and are related to clinical stages and progno-
sis [19, 20]. Therefore, better evaluation of bone mar-
row microenvironment and distribution and function of 
splicing events are essential to improve the efficacy of 
immunotherapy.

Currently, RNA-seq for detecting AS events is fre-
quently used, and specific implementation focuses on 
bioinformatics analysis of data [21]. With rapid accu-
mulation of sequencing data, public databases provide 
wealthy resources for systemic biology. In this study, we 
systematically assessed genome-wide AS patterns and 
evaluated their associations with clinical outcomes of 
AML. Furthermore, we discerned distinct clusters of 
AML based on survival-associated events and inves-
tigated the relationship between clusters and clinical 

characteristics of bone marrow immune microenviron-
ment. Our study revealed a comprehensive landscape of 
AS events, and provided new insight into molecular tar-
geted therapy and immunotherapy strategy for AML.

Results
Overview of AS events in AML
The profile of AS events for 178 patients with AML were 
analyzed from TCGA cohort. The clinical and molecu-
lar characteristics of these cases were summarized in 
Additional file 1: Table S1. The median age at diagnosis 
was 55 years (range, 18 to 88), and the median follow-up 
duration was 16.4 months (range, 1 to 118).

After preprocessing procedure, integrated RNA-Seq 
data with AS events in seven splicing types were included 
in the present study. We detected a total of 27,833 AS 
events of 8,337 genes, comprising 2,136 AA in 1641 
genes, 1724 AD in 1367 genes, 5588 AP in 2760 genes, 
6317 AT in 3173 genes, 9985 ES in 4762 genes, 135 ME in 
133 genes, 1948 RI in 1335 genes, as illustrated in Fig. 1a. 
A schematic diagram of AS events are shown in Fig. 1b. 
It should be noted that several mRNA splicing events 
may be detected in a single gene, and up to 6 types of AS 
events were observable for one gene (Fig. 1c). In addition, 
most genes have more than one type of AS events. ES 
was the predominant type of AS events in AML (36.12%), 
and these events may provide perhaps a critical process 
for enriching transcriptome diversity.

AS events associated with prognosis of AML
We performed univariate Cox analysis to evaluate the 
impact of AS type on OS in AML patients. A total of 
3016 survival-related AS events within 1992 genes were 
identified. Hazard ratios (HRs) greater than or less than 
1 accounted for 2.74% and 5.88% of the total AS events, 
respectively (Additional file 2: Table S2). Meanwhile, sev-
eral survival-associated AS events can also be detected 
in one single gene, and different spliceosomes of a few 
parent genes (such as NBPF11, LRRC23, etc.) exhibited 
opposite prognostic effects in AML (Additional file  3: 
Figure S1). Top 20 most significant survival-associated 
AS events of each type were presented in Fig. 2.

Subsequently, independent prognostic AS events for 
seven types were used to construct prognostic predictors 
models. LASSO analysis was used to screen the optimal 
combination (Additional file  9: Figure S3). The Kaplan–
Meier analysis indicated that these molecular signatures 
of AS events can be used to differentiate patients with 
distinct prognosis. To compare the efficiency of eight 
predictive models, ROC curves were applied into each 
model. The AUC of AA, AD, ES, AT, AP, RI, ME and 
marge-AS models was 0.912, 0.875, 0.834, 0.829, 0.820, 
0.819, 0.738, and 0.867, respectively. AA was related with 
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better predictive performance in AML, showed in Addi-
tional file 4: Figure S2. Detailed data of models based on 
each type of AS signature is listed in Additional file  5: 
Table S3.

Clinical characteristics of bone marrow immune 
microenvironment
To evaluate the relationship between AS and bone mar-
row microenvironment, we analyzed immune scores of 
AML patients by using a bioinformatics tool. Immune 
scores ranged from 1645.34 to 4145.87, and stromal 
scores form −1809.22 to 333.04. To assess the correla-
tion of OS and DFS with scores, we divided patients 
into low- and high-score groups using the median of 
immune/stromal scores as cutoff. As shown in Fig. 3, the 
survival distribution curves showed that high immune 

scores correlated with worse OS (P value = 0.0215) and 
DFS (P-value = 0.0058) than low immune scores (Fig. 3a, 
b). However, patients with lower stromal scores only 
had numerically longer OS (P-value = 0.6896) and DFS 
(P-value = 0.1138) (Figure c, d). Since previous studies 
have indicated that immune conditions are associated 
with clinical characteristics, we investigated the relation-
ships of gender, age and cytogenetic risk classification 
with immune and stromal scores. Immune scores were 
greater in the elderly group (P-value = 0.0013), while stro-
mal scores were independent of age (P-value = 0.1196) 
and gender (P-value = 0.5156) (Fig.  3e-h). Intriguingly, 
the average immune scores of the favorable cytogenetics 
subtypes ranked the lowest in risk classification, which 
is consistent with findings above (Fig.  3i, k). To reveal 
the biological basis involved in different bone marrow 

Fig. 1  Overview of AS events profiling in AML. a Number of AS events and parent genes from 178 patients with AML. b Schematic representation 
for seven types of AS events. AA Alternate Acceptor site, AD Alternate Donor site, AP Alternate Promoter, AT Alternate Terminator, ES Exon Skip, ME 
Mutually Exclusive Exons, RI Retained Intron. c Upset plot of parent gene interactions between the seven types of AS events in AML
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microenvironments, we performed GSEA analysis in the 
high and low immune scores groups. Multiple pathways 
(Fig. 3J), including RNA degradation, nucleotide excision 
repair, hematopoietic cell lineage, and several metabo-
lism related pathways were identified.

Network of survival‑associated AS events and splicing 
factors
Splicing factors (SFs) are the key players of AS events 
and promote differential splicing patterns under stress 
conditions [22]. To understand the regulatory pattern of 
SFs in AML, we constructed the interaction networks of 
OS-related AS events and SFs (Fig. 4). A total of 117 AS 
events including 56 AS events with inferior prognosis 
(red dots) and 61 AS event with protective activity (green 
dots) were identified and correlated significantly with 
the levels of SF expression (purple triangle). Figure  5a 
shows several examples of the relationship between 
SF expression levels and PSI values for AS events, with 
more details provided in Additional file 6: Table S4. We 
observed that many SFs were correlated with different 
type of AS events and may have opposite effects, indicat-
ing that SFs may negatively (green line) or positively (red 
line) regulates OS-related AS events. Similarly, partial AS 
events could be regulated by multiple SFs simultaneously, 
this phenomenon partly explains the multiple AS events 
that can occur in the same transcript.

Since abnormal expression of SFs in cancer is a poten-
tial mechanism for regulating AS events, we analyzed the 
relationship between the observed changes in SFs expres-
sion and promoter methylation. Among the 89 SFs, the 
promoters of 72 SFs were highly hypermethylated and 
negatively correlated with their corresponding mRNA 
expression in AML patients. Figure 5b shows some highly 
relevant examples including FAM50B, SRSF8, HNRNPF, 
CPSF6, etc., with more details provided in Additional 
file 7: Table S5. In addition, we observed that 19.46% of 
cases in the AML cohort had at least one SF copy number 
variation. Circos plot shows the chromosome position 
information of partial SFs (Fig.  5c). This result revealed 
that SFs could be regulated by epigenetics, and further 
increase the diversity of AS events.

AS‑based clustering was associated with clinical 
characteristics and immune features
Our research observed that the PSI values of each AS 
event varied among AML individuals. To better under-
stand the molecular heterogeneity of AML, we explored 
patterns of AS based on survival-associated events by 
performing consensus unsupervised analysis of all sam-
ples. As a result, three clusters of samples were deter-
mined (Fig. 6a, b): C1 (n = 60, 33.7%), C2 (n = 29, 16.3%), 
C3 (n = 89, 50.0%). To discern the characteristics of dif-
ferent subtypes, we first investigated the relationships 
between AS clusters and immune microenvironment. 

Fig. 2  Survival-associated AS events in AML patients. a-g Bubble plots of the top 20 significant survival-associated AS events for AA, AD, AP, AT, ME, 
ES and RI. h Volcano plot of survival-associated AS events (red dot) and survival-irrelated AS events (black dot)
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The results showed that C1 was associated with lower 
immune scores compared with C2 and C3 (C1 vs. C2, 
P-value = 0.0188; C1 vs. C3, P-value = 0.0463), see 
Fig.  6c. However, no significant difference was found 
between clusters and stromal scores (Fig.  6d). Addi-
tionally, we compared clinical characteristics (gender, 
age, cytogenetics risk category, FAB subtype) between 
clusters. As showed in Fig.  6e, favorable-risk cytoge-
netics was rarely distributed in C2 (3.57%), but much 
more common in C1 (30.0%). To explore the association 
between AS clusters and immune features, the landscape 
of 22 immune cells abundance within the bone mar-
row microenvironment of each AML case were plotted. 
Furthermore, Kaplan–Meier analysis was performed to 
assess the relationship between clusters and survival sta-
tus (OS and DFS). The results suggested that AS clusters 
could be used to identify patient subgroups with differ-
ent  survival outcomes (Fig. 6f, g), among which C1 was 
both associated with good outcome in OS (C1 vs. C2, 
P-value < 0.0001; C1 vs. C3, P-value < 0.0001) and DFS 
(C1 vs. C2, P-value = 0.0159; C1 vs. C3, P-value = 0.0338) 

analysis, followed by C3 and C2. The overall median sur-
vival for clusters (C1–C3) was 31.5 months, 7.16 months, 
and 14.13 months, respectively.

To further reveal the molecular characteristics of sam-
ples with AML in TCGA cohort, we performed a com-
prehensive molecular analysis of the mutation pattern 
SNPs, mutation information of each gene was exhibited 
according to different classified categories. Among all 
variant classification, missense mutations accounted for 
the largest proportion, followed by frame shift mutation 
and nonsense mutation (Fig.  7a); insertion or deletion 
occurred less frequently than single nucleotide poly-
morphism (Fig. 7b). The C > T transversions was the pre-
dominant of single nucleotide variants (SNVs) in AML 
(Fig. 7c). The most frequently mutated genes were exhib-
ited in Fig.  7d, e, and the top ten includes DNMT3A, 
NPM1, TP53, KIT, RUNX1, FLT3, IDH2, WT1, TTN, and 
IDH1. Based on the AS events clustering, we found that 
the distribution of common mutated genes was incon-
sistent in different clusters (Additional file 8), the muta-
tion frequency of DNMT3A in cluster C1-C3 was 10%, 

Fig. 3  Immune scores and stromal scores are associated with clinical features in AML. a-b Kaplan–Meier curves of OS and DFS for patients with 
high vs. low immune scores. c-d Kaplan–Meier curves of OS and DFS for patients with high vs. low stromal scores. (e–f, i) Distribution of immune 
scores for age (under 60 yrs vs. over 60 yrs), gender (female vs. male) and cytogenetic risk classification (favorable, intermediate, and poor). (g-h, k) 
Distribution of stromal scores for age, gender and cytogenetic risk classification. j GSEA delineates biological pathways correlated with immune 
scores. Several enrichment results with significant associations between high- and low-immune scores groups are shown
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Fig. 4  Correlation network of splicing factors (SFs) and the PSI values of survival-associated AS events in AML. A node represents a splicing factor or 
AS event, which is distinguished by the shape of the node, the color of the lines represents the trend of SFs regulation

Fig. 5  A representative diagram of the regulatory splicing events in AML. a Representative dot plots of the relationship between SFs expression 
and PSI values of AS events. b Representative dot plots of the relationship between SFs promoter methylation and SFs expression. c Representative 
dot plots of the chromosome position information of SFs



Page 7 of 14Zhang et al. Cell Biosci          (2020) 10:118 	

13.8% and 11.2%, respectively (Fig.  7f ); and NPM1 was 
5%, 13.4% and 10.1%, respectively (Fig.  7g). Notably, no 
TP53 mutations were detected in C1 (Fig.  7h), which 
might be related to the good prognosis of C1 or the insuf-
ficient number of TP53 mutations samples. These results 
indicate that distinct patterns of AS are associated with 
different molecular characteristics.

Immune checkpoint inhibitors are considered a prom-
ising treatment strategy in AML [23]. We investigated the 
relationship between the expression of immune check-
points and AS clusters. As shown in Fig.  8a, CD279, 
CD276, CD27 were significant different in expression 
distribution among the three clusters of samples. To 
explore the immune characteristics in bone marrow 
microenvironment, we generated a bar chart to illus-
trate the distribution of 22 immune cells in each sample 
by CIBERSORT algorithm (Fig. 8b). The results revealed 
that the most representative cell composition in bone 
marrow microenvironment of AML patients were mono-
cytes, T cells CD4 memory resting, mast cells resting, 
B cells naive, and eosinophils. We observed that the 
composition of mast cells resting and B cells naive were 
slightly higher in C2 than C1 or C3. Collectively, these 
findings suggested that AML displayed distinct patterns 

of survival-associated AS events, and splicing events are 
ubiquitous and influence clinical outcome. Our findings 
provide new insight into molecular targeted therapy and 
immunotherapy strategy for AML.

Discussion
AML is the most common hematologic malignancy, with 
multiple molecular subtypes and cellular heterogeneity 
[24]. Over the last decade, significant efforts have been 
made to elucidate the molecular changes in genome-wide 
profiling involved in AML oncogenesis. Such studies 
have contributed to the determination of relevant bio-
markers and even therapeutic targets, including protein 
coding genes, microRNAs and long non-coding RNAs 
[25–27]. In addition, as a crucial post-transcriptional 
regulatory mechanism in expanding the coding capacities 
of genomes and increasing the diversity of proteins, AS 
events have been shown to have the potential in predict-
ing clinical outcomes.

Our whole workflow is shown in Fig.  9, this study 
revealed a comprehensive landscape of AS events and 
explored the relationship between splicing patterns and 
the prognosis of AML patients. A total of 27,833 AS 
events were detected in 8337 genes, of which ES events 

Fig. 6  AS-based clustering is associated with clinical characteristics and immune features. a Elbow method and Gap statistic method analysis for 
different numbers of clusters (k = 2 to 9). b Consensus matrix heatmap defined three clusters of samples, C1 (n = 60, 33.7%), C2 (n = 29, 16.3%), C3 
(n = 89, 50.0%). c, d Distribution of immune scores and stromal scores between three clusters. e Heatmap of clinical characteristics (gender, age, 
cytogenetics risk category, FAB subtype, immune features) between three clusters. f, g Kaplan–Meier curves of OS and DFS for three AS-based 
clusters. Depicted P-values are from log-rank tests
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were the predominant type, accounting for more than 
1/3 of the total AS events. Subsequently, we performed 
the univariate analysis for OS to evaluate the prognostic 
impact, and found that approximately 11% of AS events 
were significantly related to the clinical outcomes in 
AML. We found that several AS events from the same 
parent gene had the opposite prognosis effects. Among 
the survival-related AS events, AA was found to have 
the optimal performance in the prediction models with 
high classification efficiencies. AS event changes have 
been widely recognized in tumors that affect the pro-
tein interaction networks regulated by SFs [22, 28]. We 
constructed SF correlation networks to elucidate the 
potential mechanism of splicing pathway, and found that 
SFs influence disease progression by regulating the AS 
of downstream target genes simultaneously. Moreover, 
we calculated microenvironment scores by ESTIMATE 
algorithm. The results showed that a high immune 
score was an unfavorable prognostic factor for AML, 
and younger groups or favorable cytogenetic subtypes 
had lower immune scores. This is consistent with the 
findings of current research and supports the reliability 
of our results [29]. In addition, we also determined the 

association of AS events with immune/stromal scores to 
reveal the pathways involved in low- and high-immune 
groups. More importantly, due to the biologic and 
genetic heterogeneity of AML, three AS-based clusters 
were identified (C1–C3). Interestingly, we found that the 
AS-based clusters presented distinct immune features, 
and the outcome of survival changed accordingly, just as 
the C1 subgroups with low immune scores having poor 
clinical outcome (OS and EFS). To further reveal the 
association between molecular characteristics and AS-
based clusters, we performed a comprehensive analysis 
of the mutation pattern SNPs, and investigated the rela-
tionship between the expression of immune checkpoints 
and AS clusters, which may be helpful in determining the 
ideal candidates for treatment and the optimal immuno-
therapy strategy.

At present, a growing number of researchers are 
working to develop therapies for AS. Neoantigens 
derived from AS have greatly expanded the pool of 
tumor-specific target antigens [30]. Although the iden-
tification, screening and clinical use of neoantigens still 
face various challenges, neoantigens with tumor tis-
sue specificity and high immunogenicity are expected 

Fig. 7  Summary of the mutation information with AML in TCGA cohort. a Missense mutations accounted for the largest proportion, followed 
by frame shift mutation and nonsense mutation. b Insertion or deletion occurred less frequently than single nucleotide polymorphism. c The 
C > T transversions are the predominant of single nucleotide variants (SNVs). d) The top 10 mutated genes in AML. e Cloud plots of the most 
frequently mutated genes. f–h The distribution of common mutated genes between three clusters



Page 9 of 14Zhang et al. Cell Biosci          (2020) 10:118 	

to benefit more patients as potential targets for cellu-
lar immunotherapy [31, 32]. Previously, TCGA as the 
principal guide to understanding of the complex tumor 
biology [33], large-scale sequencing data were used to 
identify prognostic AS events and revealed pathogen-
esis through regulatory splicing networks in colorectal 
cancer and head-neck carcinoma [34, 35]. More and 
more AS-related prognostic models have been estab-
lished, showing excellent efficacy in various cancers. 
Researcher have used splicing changes to construct 
predictive models for different types of tumors, such 
as hepatocellular carcinoma, glioblastoma, cervical 
cancer, sarcoma, and esophageal carcinoma [36–40]. 
Interestingly, AML has been identified to share some 
common prognostic markers of AS with other tumors. 
Chen et al. demonstrated the survival-related AS events 
based on TCGA database, and they provided an over-
view of misregulated AS events in different types of 
AML [41]. In the meantime, Jin et  al. reported that 
the AUC of ROC curve for the final prediction model 
constructed with 15 AS events was 0.931, which might 
refine risk stratification of the European Leukemia 
Net (ELN) [42]. But they did not explore the associa-
tion between the AS events and the clinical character-
istics of AML patients. This work was actually greatly 

increases the confidence in this important break-
through [43]. Another argument for AS events was crit-
ical to improve the understanding of tumor resistance 
as the destruction of the activity of the splicing factor 
SRSF3 could lead to drug resistance in the immuno-
therapy of leukemia [44]. Although a large number of 
tumor-specific AS events can be obtained through tran-
scriptome data analysis, not all splicing events can be 
translated into proteins. Further analysis is required to 
determine the presence of splicing isomers by protein 
spectroscopy. Currently, there are two application strat-
egies for AS events as a therapeutic target, one being 
to design an antisense nucleotide for specific AS events 
to restore the phenotype of normal cells [12, 45], and 
the other being to apply small-molecular compound to 
regulate SFs [46]. However, splicing itself can also be 
used as a direct drug target, MET exon14-skipping have 
been found in non-small-cell lung cancer patients who 
are sensitive to MET targeted therapy [47]. Moreover, 
these therapeutic strategies may have different effects 
depending on the tumor type and SFs expression or 
mutation [14, 22]. Our study reflects some manifesta-
tions of AML, we have highlighted focused on subtype 
clustering of AML patients with AS events. For adop-
tive immunotherapy, the tumor specificity of antigen 

Fig. 8  Correlation between AS-based and immune features. a The relationship between the expression of immune checkpoints in three clusters, 
including PDCD1, CD274, PDCD1LG2, CTLA4, CD276, and CD27. b A bar chart to illustrate the distribution of 22 immune cells in each sample
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and cross-reactivity of T cell receptor are the two most 
important factors affecting clinical safety. Therefore, 
targeted therapies based on AS may bring new hopes 
when existing targeted drugs fail.

Conclusions
Our study analyzed the landscape of AS events and 
identified their association with clinical outcome. Our 
findings support the notion that splicing events are ubiq-
uitous in AML patient. SFs correlation networks further 
altered the diversity of AS events through epigenetic 
regulation and clarified the potential mechanism of the 
splicing pathway. Moreover, clustering based on prog-
nostic AS signature revealed the clinical characteristics of 
bone marrow immune microenvironment. This discov-
ery provided new insight into molecular targeted therapy 
and immunotherapy strategy for AML.

Methods
Data curation process
RNA sequencing profiles and corresponding clinical 
information were available at TCGA portal data (https​

://porta​l.gdc.cance​r.gov/). Meanwhile, we evaluated the 
RNA splicing patterns from 178 AML patients using 
SpliceSeq software (https​://bioin​forma​tics.mdand​erson​
.org/TCGAS​plice​Seq/) and generated the AS profiles 
of genes for each patient [48]. The ratio between reads 
including or excluding exons, also known as Percent 
Spliced In (PSI) value, was calculated for each detected 
AS events [49]. Seven different types of splice events were 
identified including Alternate Acceptor site (AA), Alter-
nate Donor site (AD), Alternate Promoter (AP), Alternate 
Terminator (AT), Exon Skip (ES), Mutually Exclusive 
Exons (ME), and Retained Intron (RI). We set strict selec-
tion criteria (Percentage of samples with PSI value ≥ 0.75, 
and average PSI value > 0.05) to generate a reliable set of 
AS events. To describe an AS event precisely, every AS 
event was assigned a unique annotation with gene sym-
bol, the ID number from SpliceSeq database and splicing 
pattern.

Prognostic signatures for alternative splicing events
We used Perl language (https​://www.perl.org/; version 
5.30.0) to extract the matrix file and match array with 

Fig. 9  Flowchart of the systematic profiling of alternative splicing in the study design

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://bioinformatics.mdanderson.org/TCGASpliceSeq/
https://bioinformatics.mdanderson.org/TCGASpliceSeq/
https://www.perl.org/
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clinical follow-up data. Univariate Cox regression analy-
sis was performed to screen prognostic related AS events 
in AML. The z-score is positive if the value lies above the 
mean, and negative if it lies below the mean [50], and 
bubble plots were used to visualize data. The interac-
tive sets between seven types of AS were drawn by the 
‘UpsetR’ package in R 3.5.2 software (https​://www.r-proje​
ct.org/). The major codes used in this study could be 
found in the Additional file 8. The least absolute shrink-
age and selection operator (LASSO) regression were per-
formed to screen the most significant AS events, and all 
variables left after elimination are considered selected 
[51]. We performed the penalty parameter lambda by 
the cross-validation using the R package ‘glmnet’. The 
optimal lambda value corresponding to the minimum 
value of the cross-validation error mean was screened to 
determine the potential survival-related AS events (Addi-
tional file 9: Figure S3). The optimal survival-related AS 
events in each AS types were used to constructed pre-
dictive models by using multivariate cox regression. Fur-
thermore, AML patients were divided into two groups 
by using the median risk score, the formula is as follows: 
RiskScore = PSI of AS1*β1AS1 + PSI of AS2*β2AS2 +…
PSI of ASn*βnASn. Kaplan–Meier (K-M) survival analy-
sis, receiver operating characteristic (ROC) curves and 
the area under the curve (AUC) were used to assess the 
predictive accuracy for each prognostic signature. The 
P-value was computed using log-rank test.

Splicing factor regulated network construction
A list of 382 splicing factors(SF) genes were referenced 
from a previous study and relevant databases [52, 53]. 
The expression profiles of SFs were obtained from TCGA 
and normalized by using all housekeeping genes with log 
base 2 transformed. Pearson correlation test was used to 
evaluate the correlation between SFs expression and PSI 
values of survival-associated AS events, and P-values 
were adjusted by Benjamini & Hochberg (BH) correlation 
(P-value < 0.05, |Pearson’s coefficient| > 0.65). Cytoscape 
(version 3.7.1, http://www.cytos​cape.org/) is a helpful 
tool for visualizing molecular interaction network and 
observing the correlation between molecules, we used 
to plot the AS regulatory network. The methylation 
beta values of samples measured by the infinium human 
methylation 450  K platform were downloaded from 
TCGA portal. Moreover, correlation analysis was per-
formed between SFs methylation and SFs mRNA expres-
sion, and the copy number variation (CNV) of SFs was 
calculated in AML.

Immune characteristics analysis
The immune and stromal scores of each sample were 
calculated by applying the ESTIMATE algorithm [54] to 

assess bone marrow immune activity, and AML cases 
were divided into low- and high-score groups accord-
ing to the median of immune/stromal scores. Gene set 
enrichment analysis (GSEA, version 4.0.1, http://softw​
are.broad​insti​tute.org/gsea/) is a knowledge-based 
method which determines whether a particular set of 
functionally related genes shows statistically significance, 
and we used it to verify the differences in molecular path-
ways between low- and high-immune score groups [55]. 
The ‘c2.cp.kegg.v7.1.symbols.gmt’ was selected as the 
database of gene-sets and 1000 permutations were per-
formed to generate the null distributions. In order to 
evaluate the bone marrow microenvironment in AML 
patients, we estimated the abundance of various types of 
immune cell by using the CIBERSORT algorithm [56], 
which is a versatile computational method for quanti-
fying 22 immune cell types from bulk tissue transcrip-
tomes. Each sample in the data set were performed 100 
times for further study, and samples with a P-value < 0.05 
was set as the cutoff.

Evaluation of the correlation with clinical features
To visualize the associations between survival-associated 
AS events and the heterogeneity of AML patients, we 
clustered the AML into different groups with hierarchical 
consensus clustering by using the R package ‘Consensus 
Cluster Plus’ [57]. In our study, the cumulative distribu-
tion function (CDF) curve was used to determine the best 
number of clusters, parameters were set as default except 
that max K was set at 9. We selected three sub-types 
(k = 3, C1–C3) that optimally fit the data. The associa-
tion between clinical variables and sub-types, including 
gender, age, cytogenetics risk category, French American 
British (FAB) subtype, and bone marrow immune fea-
tures, was analyzed. Kaplan–Meier curves and log-rank 
test were used to compare the overall survival (OS) and 
disease free survival (DFS) of different subtypes. Moreo-
ver, single nucleotide polymorphism (SNP) and molecu-
lar alteration of AML were described by using R package 
‘maftools’ (version 2.2.10). Molecules with high mutation 
frequencies (DNMT3A, NPM1, and TP53) were included 
in the evaluation subtype.

Statistical analyses
GraphPad Prism (version 8.02) and R software (version 
3.5.2) were used for analysis. Pearson’ s correlation test 
and spearman’ s correlation test were employed in the 
correlation analysis. The Student’s t-test was utilized to 
compare the differences in variables between groups, 
and P-value less than 0.05 were deemed statistically 
significant.

https://www.r-project.org/
https://www.r-project.org/
http://www.cytoscape.org/
http://software.broadinstitute.org/gsea/
http://software.broadinstitute.org/gsea/
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Additional file 1: Table S1. Clinical characteristics of patients with AML.

Additional file 2: Table S2. The detailed information and prognostic 
signature of the detected AS events in AML.

Additional file 3: Figure S1. Upset plot and survival diagram for seven 
types of AS events in AML. a Upset plot of parent gene interactions 
between the seven types of survival-associated AS events. b-e Repre-
sentative Kaplan–Meier curves for OS according to PSI value of AS events 
of a parent gene showing the opposite prognosis. Depicted P-values are 
from log-rank tests.

Additional file 4: Figure S2. Kaplan–Meier plots and ROC curves of 
prognostic predictors for AML patients. a-h Kaplan–Meier plots of predic-
tion models associated with OS constructed with AA, AD, AP, AT, ES, ME, RI 
events and all types of AS events, respectively. i The ROC curves with AUCs 
of the predictive models for each AS markers.

Additional file 5: Table S3. Details of prediction models for acute myelo-
cytic leukemia based on each type of splicing event.

Additional file 6: Table S4. Correlation between splicing factor and 
survival-associated alternative splicing events in AML.

Additional file 7: Table S5. Correlation between splicing factor (SF) 
expression and SF methylation in AML.

Additional file 8:. Major R codes and some indirect results

Additional file 9: Figure S3. Selection of the optimal survival-related 
AS events used for construction of the final prediction model by LASSO 
regression. (A, C, E, G, I, K, M, O) Dotted vertical lines were drawn at the 
optimal values by using the minimum criteria. (B, D, F, H, J, L, N, P) LASSO 
coefficient profiles of the candidate survival-related AS events.
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