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Abstract

Background: Preeclampsia and preterm delivery (PTD) are believed to affect women’s long-term health including
cardiovascular disease (CVD), but the biological underpinnings are largely unknown. We aimed to test whether
maternal postpartum metabolomic profiles, especially CVD-related metabolites, varied according to PTD subtypes
with and without preeclampsia, in a US urban, low-income multi-ethnic population.

Methods: This study, from the Boston Birth Cohort, included 980 women with term delivery, 79 with medically
indicated PTD (mPTD) and preeclampsia, 52 with mPTD only, and 219 with spontaneous PTD (sPTD). Metabolomic
profiling in postpartum plasma was conducted by liquid chromatography-mass spectrometry. Linear regression
models were used to assess the associations of each metabolite with mPTD with preeclampsia, mPTD only, and
sPTD, respectively, adjusting for pertinent covariates. Weighted gene coexpression network analysis was applied to
investigate interconnected metabolites associated with the PTD/preeclampsia subgroups. Bonferroni correction was
applied to account for multiple testing.

Results: A total of 380 known metabolites were analyzed. Compared to term controls, women with mPTD and
preeclampsia showed a significant increase in 36 metabolites, mainly representing acylcarnitines and multiple
classes of lipids (diacylglycerols, triacylglycerols, phosphocholines, and lysophosphocholines), as well as a decrease
in 11 metabolites including nucleotides, steroids, and cholesteryl esters (CEs) (P < 1.3 × 10−4). Alterations of
diacylglycerols, triacylglycerols, and CEs in women with mPTD and preeclampsia remained significant when
compared to women with mPTD only. In contrast, the metabolite differences between women with mPTD only
and term controls were only seen in phosphatidylethanolamine class. Women with sPTD had significantly different
levels of 16 metabolites mainly in amino acid, nucleotide, and steroid classes compared to term controls, of which,
anthranilic acid, bilirubin, and steroids also had shared associations in women with mPTD and preeclampsia.
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Conclusion: In this sample of US high-risk women, PTD/preeclampsia subgroups each showed some unique and
shared associations with maternal postpartum plasma metabolites, including those known to be predictors of
future CVD. These findings, if validated, may provide new insight into metabolomic alterations underlying clinically
observed PTD/preeclampsia subgroups and implications for women’s future cardiometabolic health.

Keywords: Preterm delivery, Preeclampsia, Medically indicated preterm delivery, Spontaneous preterm delivery,
Postpartum, Metabolome

Background
Pregnancy is believed to be a vulnerable time period for
women’s long-term health. While ample evidence sug-
gests that preterm delivery (PTD) and other pregnancy
complications such as preeclampsia are important risk
factors for the health of the offspring, much less appreci-
ated is that these same traits may also affect the long-
term health of the mother. Pregnancy complications and
PTD are associated with risk of having the same condi-
tions in subsequent pregnancies, but also lead to an in-
creased long-term risk of adverse health outcomes,
including cardiovascular diseases (CVDs) [1–4], the lead-
ing causes of death for women in the USA [5].
All-cause PTDs are associated with a 1.5- to 3-fold

higher risk of CVD [1–4, 6]. Previous studies have
shown that much of this association is accounted for by
metabolic disorders during pregnancy, especially pre-
eclampsia (which explains about 24-26% of the associ-
ation) [1], or by metabolic disorders postpartum (which
may explain about 13-15% of the association) [3]; how-
ever, a substantial portion of the risk remains un-
accounted for. The PTD-CVD associations persist even
in pregnancies uncomplicated by preeclampsia or hyper-
tensive disorders [3, 6, 7], indicating the need to explore
other pathways via which PTD and CVD are linked.
PTD is heterogeneous, with a variety of different PTD
subtypes (i.e., spontaneous vs. medically indicated PTD),
with and without preeclampsia, which may affect CVD
risk through different pathways. However, such data are
quite limited.
We hypothesized that women who experienced differ-

ent PTD subtypes with and without preeclampsia may
exhibit CVD risk factors or biomarkers early in the post-
partum period, long before the development of CVD.
The identification of such early biomarkers may provide
new insight into the biological underpinning of the link
between PTD/preeclampsia and women’s future cardio-
metabolic health and provide targets for prevention and
intervention in high-risk women. Metabolomic profiling,
via the high-throughput assessment of a large number of
circulating small molecule metabolites across multiple
pathways, may offer advantages in elucidating biological
pathways and biomarker discovery. Recent metabolomic
studies have successfully identified multiple metabolites

of different classes as early biomarkers for CVD, includ-
ing branched-chain and aromatic amino acids (i.e., leu-
cine, isoleucine, valine, phenylalanine, and tyrosine) [8–
10], short- and medium-chain acylcarnitines [11–13],
and metabolites of lipid classes [14–17]. Little is known
about whether such metabolites vary in women with
PTD vs. term delivery with or without preeclampsia.
In this study, by applying state-of-the-art metabolomic

approaches, we quantified maternal metabolomic pro-
files in postpartum plasma (collected within 1–3 days
after delivery) of 1411 women enrolled from the Boston
Birth Cohort (BBC), an inner-city multi-ethnic longitu-
dinal study cohort. We aimed to identify both shared
and divergent metabolomic patterns (especially in those
metabolites associated with CVD risk) for different PTD
subtypes with and without preeclampsia, and further to
test whether such PTD/preeclampsia-associated metabo-
lomic patterns may vary by maternal characteristics such
as ethnicity and parity.

Methods
Study population
The study population was a subset of the BBC, an on-
going longitudinal cohort study begun in 1998 at the
Boston Medical Center in Massachusetts. Detailed infor-
mation about the BBC has been reported elsewhere [18,
19]. Briefly, mothers who delivered singleton live births
were eligible for the study and were invited to participate
within 1 to 3 days after delivery. We excluded pregnan-
cies that were a result of in vitro fertilization, multiple
gestations, those with fetal chromosomal abnormalities
or major birth defects, and preterm deliveries due to
non-obstetric factors (such as trauma). The BBC is a
low-income patient population, with a relatively high
proportion of PTD and preeclampsia. After obtaining
written informed consent, each mother was interviewed
using a standardized questionnaire to gather dietary and
epidemiologic data, and their electronic medical records
(EMRs) were abstracted. Maternal blood samples were
obtained within 24–72 h after delivery. The study proto-
col was approved by the Institutional Review Boards of
Boston University Medical Center and the Johns Hop-
kins Bloomberg School of Public Health.
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Definition of preterm delivery and preeclampsia
Gestational age was assessed by early prenatal ultra-
sound (< 20 weeks) or based on the first day of the last
menstrual period as recorded in maternal EMRs if early
prenatal ultrasound was not available [19]. Medically in-
dicated PTD (mPTD) was defined as a delivery by med-
ical induction or Cesarean section (c-section) at < 37
weeks without uterine contractions or rupture of mem-
branes. The indications for medical induction or c-
section included gestational complication (mainly pre-
eclampsia), placenta abruption, placenta previa, oligohy-
dramnios, previous c-section, intrauterine growth
restriction, absent end diastolic flow, not reassuring fetal
heartbeat, fetal distress, signs of reduced amniotic fluid
index, or persistent fetal tachycardia. Spontaneous PTD
(sPTD) was defined as a delivery occurring secondary to
documented active preterm labor (uterine contractions
with cervical effacement and dilation at < 37 weeks) or
premature rupture of membranes at < 37 weeks without
uterine contractions or both. We further divided sPTD
as early sPTD (spontaneous delivery at < 33 weeks) or
late sPTD (spontaneous delivery at 33–366/7 weeks).
Physician-diagnosed preeclampsia, eclampsia, and
hemolysis, elevated liver enzymes, and low platelet syn-
dromes (HELLP) were extracted from the maternal
EMRs and were further confirmed by review of all rele-
vant medical records to meet the definition of pre-
eclampsia according to the recent American College of
Obstetricians and Gynecologist (ACOG) criteria [20].
We classified all participating women into one of the

following PTD/preeclampsia subgroups: (1) women of
term delivery without preeclampsia (including physician-
diagnosed preeclampsia, eclampsia, and HELLP), as term
controls; (2) women with both mPTD and preeclampsia;
(3) women with mPTD but no preeclampsia (referred to
as “mPTD only” hereafter); and (4) women with sPTD
but no preeclampsia (referred to as “sPTD” hereafter,
and further subdivided by early or late sPTD in supple-
mental analyses). Among the 1411 women with available
metabolomic profiles, 9 were removed due to missing
preeclampsia status and 72 (61 preeclamptic women
with term delivery and 11 preeclamptic women with
sPTD) were removed as they did not meet the criteria
for either the control or the PTD subgroups as described
above.

Epidemiological and clinical data
Using a standard maternal questionnaire interview [18],
maternal epidemiological factors were collected includ-
ing race/ethnicity, maternal age at delivery, highest edu-
cation level, parity, smoking during pregnancy, alcohol
drinking during pregnancy, illicit drug use during preg-
nancy, lifetime stress, previous history of PTD, and ma-
ternal birthplace (US-born/non-US-born). Maternal

pregestational body mass index (BMI), calculated as self-
reported weight (kg) divided by height squared (m2), was
categorized into four groups: normal weight (< 25.0 kg/
m2), overweight (25–29.9 kg/m2), obesity (≥ 30 kg/m2),
and unknown. Clinical complication before pregnancy,
including chronic hypertension and pregestational dia-
betes, was defined based on archived EMRs.

Metabolomic profiles and data processing steps
Maternal plasma samples, randomly distributed in each
plate, were shipped to the Broad Institute of MIT and
Harvard (Cambridge, MA, USA) for metabolomic profil-
ing. Details of this technique can be found elsewhere [21,
22]. Briefly, two liquid chromatography tandem mass
spectrometry techniques were applied, including hydro-
philic interaction liquid chromatography (HILIC) analyses
of water-soluble metabolites in the positive ionization
mode and C8 chromatography with positive ion mode
analyses of polar and non-polar plasma lipids. Metabolites
in different lipid classes, including cholesterol esters (CEs),
diacylglycerols (DAGs), triacylglycerols (TAGs), lysopho-
sphatidylcholines (LPCs), lysophosphatidylethanolamines
(LPEs), phosphatidylcholines (PCs), and phosphatidyletha-
nolamines (PEs), were further classified based on the
number of total acyl chain carbon atoms and double bond
contents and were annotated as “C[number of total acyl
chain carbon atoms]:[number of double bonds in fatty
acid meoeties] [lipid class],” accordingly.
A pooled plasma study reference sample, comprised

from all of the studied plasma samples, was evenly dis-
tributed throughout the study samples (every ~ 20 study
samples) as a quality control step. Using these reference
samples, a coefficient of variance (CV) was calculated for
each metabolite. Internal standard peak areas were mon-
itored for quality control and to ensure system perform-
ance throughout the analyses. A total of 432 known
metabolites were successfully quantified, and 40 metabo-
lites with CV > 20%, 10 metabolites unquantifiable in
> 10% participants, and 2 xenobiotics were removed
from downstream analyses. The remaining 380 metabo-
lites, with any non-detectable values being imputed as
one half of the minimal value, were inverse normally
transformed to render the distributions approximately
Gaussian and to remove the impact of outliers.

Data analyses
Maternal characteristics were compared between each of
the three PTD/preeclampsia subgroups (as defined
above) and term controls, using ANOVA tests for con-
tinuous variables and χ2 tests (or Fisher’s exact tests,
when necessary) for categorical variables. To identify
whether metabolites varied significantly in each PTD/
preeclampsia subgroup compared to term controls, we
fit a linear regression model with each metabolite as the
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outcome and the four-categorical index variable (term
controls/mPTD and preeclampsia/mPTD only/sPTD) as
the exposure, adjusting for conventional and clinical co-
variates including maternal age at delivery, maternal eth-
nicity/race, maternal birthplace (US-born versus non-
US-born), pregestational BMI category, pregestational
diabetes, chronic hypertension, marital status, highest
education level, parity, maternal smoking during preg-
nancy, illicit drug use, lifetime stress, and fetal sex. Bon-
ferroni correction was used to account for multiple
testing.
We then performed weighted gene coexpression

network analysis (WGCNA) using the WGCNA pack-
age in R [23], to reduce the number of comparisons
made and minimize issues of metabolite collinearity.
This method utilizes an unsupervised network-based
approach to group metabolites into “modules” based
on their correlation patterns. After hierarchical clus-
tering, highly interconnected metabolites were
assigned to the same module and was annotated as a
unique color. The remaining metabolites (n = 51) that
were not assigned to any of the established modules
were removed from the subsequent analyses. For each
module, the top hub metabolite was identified, which
was the metabolite having the highest connectivity
with other metabolites in the same module. Each par-
ticipant was then assigned a “score” for each module,
which was calculated as the first principal component
of the metabolites within the module. The score for
each module was then analyzed as the outcome in
the subsequent analyses, using the linear regression
models with the adjustment of covariates as described
above. All analyses were performed using R Software,
version 3.6.1.

Results
Population characteristics of the study participants
This study included 980 women with term delivery (or
term controls) and 350 women with any of the following
three PTD/preeclampsia subgroups: (1) mPTD and pre-
eclampsia (n = 79), (2) mPTD only (n = 52), and (3)
sPTD (n = 219). The population characteristics across
the four study groups are summarized in Table 1. Com-
pared to term controls, women with both mPTD and
preeclampsia were older and were more likely to be
obese before pregnancy, be stressed, and have chronic
hypertension and pregestational diabetes, while women
with sPTD were more likely to be unmarried, to be US-
born, to smoke during pregnancy, and to have illicit
drug use than term controls (all P < 0.05). As expected,
c-section was significantly more common in women
with mPTD, either with (65.8%) or without preeclampsia
(80.8%) than in term controls (31.8%).

Altered plasma metabolites in relation to different PTD/
preeclampsia subgroups
Figure 1 and Table 2 present the metabolites that were
significantly different from term controls in at least one
PTD/preeclampsia subgroup. After Bonferroni correc-
tion for multiple testing (P < 1.3 × 10−4) and with term
controls as the reference, women with mPTD and pre-
eclampsia had significantly different patterns in 47 me-
tabolites, including higher levels of 36 metabolites that
were mainly amino acids (n = 7), total carnitine or acyl-
carnitines (C2, C3, C5-DC, C8, n = 4), nucleotides (n =
4), DAGs (C34:1, C34:1 DAG/TAG fragment, C34:2,
C36:2, C36:3, C38:4, and C38:5, n = 7), TAGs (C50:2,
C52:2, C52:3, n = 3), LPCs (C22:5 and C22:6, n = 2), and
PCs (C38:6, C40:6, and C40:9, n = 3) and lower levels of
11 metabolites including CEs (C14:0, C16:0, C18:0, C18:
2, and C18:3, n = 5), anthranilic acid, bilirubin, cytosine,
1-methylguanine, and 2 steroids (Table 2 and Add-
itional file 1: Table S1). However, metabolomic differ-
ences were modest in women with mPTD only, who had
lower levels of 4 PEs (C32:1, C34:2, C36:2, and C36:4)
than term controls. In comparison, women with sPTD
had significantly lower plasma levels of 13 metabolites (3
amino acids, 3 nucleotides, 2 steroids, C9 carnitine,
anthranilic acid, bilirubin, 4-acetamidobutanoate, and
trimethylamine-N-oxide) and higher levels of 3 metabo-
lites (pyroglutamic acid, niacinamide, and phosphocho-
line), compared to the term controls. No significant
associations were observed between sPTD and lipid me-
tabolites. The identified associations remained largely
unchanged when we further adjusted for the timing of
maternal blood collection (postpartum day 1, 2, or 3 and
above) in the regression models (data not shown).
We further examined the 47 metabolites that were as-

sociated with the group of mPTD and preeclampsia,
compared to women with mPTD only. At P < 0.001,
women with both mPTD and preeclampsia had higher
levels of four DAGs (C34:1, C34:2, C38:4, and C52:2)
and two TAGs (C50:2 and C52:2) and lower levels of
four CEs (C16:0, C18:0, C18:2, and C18:3) than women
with mPTD only, suggesting specific associations with
preeclampsia.

Metabolite patterns related to PTD/preeclampsia
subgroups by metabolomic network analyses
With WGCNA network analysis, 329 metabolites were
grouped into 8 metabolic network modules, annotated
as different colors. Metabolites in each module are pre-
sented in Additional file 1: Table S2. Figure 2 presents
the correlations between each PTD/preeclampsia sub-
group and each module score. With the adjustment of
covariates and with P < 0.006 (= 0.05/8 modules) as the
significance cutoff, we observed that women with mPTD
and preeclampsia had significantly higher scores for the
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“yellow” (C16:0 CE as the top hub metabolite that was
inversely correlated with the module score, P = 7.8 ×
10−7), “black” (C14:1 carnitine as the top hub metabolite,
P = 1.6 × 10−5), and “green” modules (pseudouridine as
the top hub metabolite, P = 0.0007) than term controls

(Table 3). Women with mPTD only had a significantly
lower score of the “blue” module (P = 0.004), while
women with sPTD had a significantly lower score of the
“green” module (P = 0.003, Table 3), compared to term
controls.

Table 1 Population characteristics of the 1330 women enrolled in the Boston Birth Cohort, stratified by preterm delivery subgroups

Variables Term
delivery

Preterm delivery (PTD) subgroupsa

mPTD + preeclampsia mPTD only sPTD

N 980 79 52 219

Maternal age (years), M ± SD 28.1 ± 6.6 31.1 ± 6.5** 30.2 ± 7.2 28.6 ± 6.4

Ethnicity

African American 621 (63.4) 61 (77.2) 27 (51.9) 148 (67.6)

White 40 (4.1) 2 (2.5) 2 (3.9) 12 (5.5)

Hispanic 200 (20.4) 12 (15.2) 17 (32.7) 45 (20.5)

Others 119 (12.1) 4 (5.1) 6 (11.5) 14 (6.4)

Maternal birthplace: non-US-born 620 (63.3) 50 (63.3) 33 (63.5) 115 (52.5)**

Married 338 (34.5) 26 (32.9) 17 (32.7) 54 (24.7)*

Pregestational BMI (kg/m2) category

Normal 470 (48.0) 21 (26.6)** 16 (30.8) 104 (47.5)

Overweight 258 (26.3) 24 (30.4) 17 (32.7) 62 (28.3)

Obese 208 (21.2) 32 (40.5) 16 (30.8) 43 (19.6)

Unknown 44 (4.5) 2 (2.5) 3 (5.8) 10 (4.6)

Highest education level

< High school 273 (27.9) 12 (15.2) 21 (40.4) 62 (28.3)

High school 362 (36.9) 39 (49.4) 18 (34.6) 86 (39.3)

College or above 340 (34.7) 28 (35.4) 13 (25.0) 70 (32.0)

Missing 5 (0.5) 0 (0.0) 0 (0.0) 1 (0.5)

Nulliparity 430 (43.9) 34 (43.0) 17 (32.7) 97 (44.3)

Maternal smoking during pregnancy

Never 840 (85.7) 62 (78.5) 41 (78.8) 161 (73.5)***

Quitter 64 (6.5) 8 (10.1) 3 (5.8) 20 (9.1)

Current 64 (6.5) 8 (10.1) 8 (15.4) 38 (17.4)

Unknown 12 (1.2) 1 (1.3) 0 (0.0) 0 (0.0)

Alcohol drinking during pregnancy 73 (7.4) 3 (3.8) 5 (9.6) 20 (9.1)

Stress during lifetime

Mild 410 (41.8) 29 (36.7)* 16 (30.8) 76 (34.7)

Average 490 (50.0) 36 (45.6) 30 (57.7) 118 (53.9)

Stressful 80 (8.2) 14 (17.7) 6 (11.5) 25 (11.4)

Chronic hypertension 37 (3.8) 28 (35.9)*** 6 (11.5)* 12 (5.5)

Gestational diabetes 69 (7.0) 9 (11.4) 4 (7.7) 16 (7.3)

Pregestational diabetes 37 (3.8) 12 (15.2)*** 4 (7.7) 12 (5.5)

Illicit drug use during pregnancy 66 (6.7) 9 (11.4) 6 (11.5) 34 (15.5)***

Mode of delivery, c-section 311 (31.8) 52 (65.8)*** 42 (80.8)*** 65 (29.7)

Infant’s sex, male 497 (50.7) 30 (38.0)* 31 (59.6) 123 (56.2)
amPTD, medically indicated PTD; the “mPTD + preeclampsia” group refers to women with mPTD and preeclampsia (including preeclampsia, eclampsia, and
hemolysis, elevated liver enzymes, and low platelet syndrome (HELLP)); sPTD, spontaneous preterm delivery
*P < 0.05; **P < 0.01; ***P < 0.001 for the difference of population characteristics in women of different PTD subgroups compared to term controls, via ANOVA tests
and chi-squared tests for continuous and categorical variables, respectively
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Stratified analyses were further performed by maternal
ethnicity and maternal parity. As shown in Additional file
1: Table S3 and Table S4, the associations between the
PTD/preeclampsia subgroups and each metabolite module
were largely comparable between Black and non-Black
mothers and between nulliparity and multiparity mothers.

Exploratory analyses of early and late sPTD
When women with sPTD were split into early (< 33
weeks of gestation, n = 67) and late sPTD (33–366/7

weeks of gestation, n = 152), and compared to term con-
trols, we observed that the identified sPTD-associated
differences in 16 individual metabolites were predomin-
antly observed in women with early sPTD rather than in
women with late sPTD (Additional file 1: Table S5). In
addition, another 20 metabolites were significantly dif-
ferent in women with early sPTD, including 6 lipids (4
CEs and 2 LPCs) that were higher and 4 lipids (3 PEs
and C36:2 phosphatidylinositol) that were lower in
mothers with early sPTD (Additional file 1: Table S5
and Additional file 2: Fig. S1). Of note, the identified
two LPCs (C22:5 and C22:6) were also significantly
higher in women with mPTD and preeclampsia, and two
PEs (C34:2 and C36:2) that were lower in women with
early sPTD were also significantly lower in women with
mPTD only. In the WGCNA analyses, women with early
sPTD had significantly lower scores of the “yellow” (C16:
0 CE as the top hub metabolite) and “green”

(pseudouridine as the top hub metabolite) modules than
term controls (Additional file 1: Table S6).

Discussion
To our knowledge, this study represents the largest to date
to explore postpartum metabolomic profiles significantly
associated with PTD/preeclampsia subgroups from a high-
risk US multi-ethnic population. A total of 47, 4, and 16
metabolites were significantly different in women with
mPTD and preeclampsia, in women with mPTD only, and
in women with sPTD, respectively, compared with term
controls. The broad-scale metabolite differences in women
with mPTD and preeclampsia predominantly involve acyl-
carnitines and lipids. The neutral lipids, including DAGs,
TAGs, and CEs, were significantly higher in women with
mPTD and preeclampsia than in women with mPTD only,
suggesting potential specific associations with preeclampsia.
This finding is in line with clinically observed significant
and independent adverse impact of preeclampsia-related
PTD on maternal cardiometabolic health [1, 3]. We also
observed significant lipid metabolite alteration in mothers
with early sPTD, including those lipids (LPCs and PEs) that
were associated with medically indicated PTD, indicating
shared pathways among different PTD subtypes in affecting
maternal metabolic health. While a comprehensive discus-
sion on the differences of all the metabolites identified in
this study is beyond the word limit of this report, below we
just highlight the major findings and relevant literature.

Fig. 1 Manhattan plot for the metabolomic differences in women with each preterm delivery (PTD) subgroup compared to women with term
delivery. The upper panel presents metabolites that were higher, and the lower panel presents metabolites that were lower in women with
medically indicated PTD and preeclampsia (a), in women with medically indicated PTD only (b), and in women with spontaneous PTD (c),
respectively. The analyses were adjusted for maternal age at delivery, maternal ethnicity/race, maternal birthplace, pregestational BMI category,
pregestational diabetes, chronic hypertension, marital status, highest education level, parity, smoking during pregnancy, illicit drug use, lifetime
stress, and fetal sex. X-axis represents the metabolite classes. AA amino acid, AC acylcarnitine, FA fatty acid and conjugate, QA quaternary amine,
CE cholesterol ester, DAG diacylglycerol, LPC lysophosphatidylcholine, LPC_P lysophosphatidylcholine plasmalogen, LPE
lysophosphatidylethanolamine, MAG monoacylglycerol, PC phosphatidylcholine, PC_P phosphatidylcholine plasmalogen, PE
phosphatidylethanolamine, PE_P phosphatidylethanolamine plasmalogen, PI phosphatidylinositol, SM sphingomyelin, TAG triacylglycerol
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Table 2 Maternal metabolites that were significantly different in women of each preterm delivery (PTD) subgroups, compared to
women with term delivery

Maternal metabolitesa Metabolite classes mPTD + preeclampsiab mPTD only sPTD

Beta ± SEc P Beta ± SEc P Beta ± SEc P

Alloisoleucine Amino acid − 0.02 ± 0.12 0.88 − 0.32 ± 0.14 0.02 − 0.31 ± 0.07 2.2 × 10−5

Creatine Amino acid 0.98 ± 0.12 1.4 × 10−15 0.34 ± 0.14 0.01 0.28 ± 0.07 1.5 × 10−4

Creatinine Amino acid 0.27 ± 0.12 0.02 − 0.03 ± 0.14 0.82 − 0.29 ± 0.07 7.8 × 10− 5

Cystine Amino acid 0.70 ± 0.12 6.4 × 10−9 0.08 ± 0.14 0.56 0.02 ± 0.07 0.82

Glutamine Amino acid 0.52 ± 0.12 2.3 × 10−5 0.21 ± 0.14 0.13 0.01 ± 0.07 0.88

Homocitrulline Amino acid 0.47 ± 0.12 1.2 × 10−4 − 0.03 ± 0.14 0.84 − 0.09 ± 0.07 0.22

N-Acetyltryptophan Amino acid 0.68 ± 0.12 2.8 × 10−8 − 0.10 ± 0.14 0.47 − 0.10 ± 0.07 0.19

N-Acetylputrescine Amino acid 0.55 ± 0.12 7.7 × 10−6 0.22 ± 0.14 0.12 − 0.13 ± 0.07 0.07

N6,N6,N6-trimethyllysine Amino acid 0.62 ± 0.12 3.5 × 10−7 0.29 ± 0.14 0.04 0.08 ± 0.07 0.31

Pyroglutamic acid Amino acid 0.31 ± 0.12 0.01 0.18 ± 0.14 0.22 0.29 ± 0.08 1.3 × 10−4

C3 carnitine Acylcarnitine 0.57 ± 0.12 4.6 × 10−6 0.09 ± 0.14 0.54 0.13 ± 0.08 0.08

C5-DC carnitine Acylcarnitine 0.63 ± 0.12 2.0 × 10−7 0.13 ± 0.14 0.37 − 0.09 ± 0.07 0.21

C8 carnitine Acylcarnitine 0.54 ± 0.12 7.3 × 10−6 0.30 ± 0.14 0.03 − 0.05 ± 0.07 0.52

C9 carnitine Acylcarnitine − 0.16 ± 0.12 0.18 − 0.15 ± 0.14 0.28 − 0.36 ± 0.07 1.4 × 10−6

Anthranilic acid Aminobenzoic acid − 0.63 ± 0.12 2.9 × 10−7 − 0.52 ± 0.14 2.4 × 10−4 − 0.33 ± 0.08 1.0 × 10−5

Bilirubin Cofactors − 0.52 ± 0.12 1.4 × 10−5 0.15 ± 0.14 0.29 − 0.44 ± 0.07 2.9 × 10−9

Niacinamide Cofactors 0.18 ± 0.12 0.15 0.07 ± 0.14 0.60 0.29 ± 0.08 1.2 × 10−4

4-Acetamidobutanoate Fatty acid 0.57 ± 0.12 2.2 × 10−6 − 0.03 ± 0.14 0.84 − 0.30 ± 0.07 4.8 × 10−5

Imidazole propionate Imidazole 0.56 ± 0.12 2.8 × 10−6 0.39 ± 0.14 0.004 0.27 ± 0.07 2.1 × 10−4

Cytosine Nucleotide − 0.56 ± 0.12 3.7 × 10−6 0.16 ± 0.14 0.25 − 0.21 ± 0.07 0.01

6,8-Dihydroxypurine Nucleotide 0.60 ± 0.12 8.8 × 10−7 0.24 ± 0.14 0.09 0.09 ± 0.07 0.23

1-Methyladenosine Nucleotide − 0.04 ± 0.12 0.72 − 0.00 ± 0.14 0.97 − 0.29 ± 0.07 1.0 × 10−4

1-Methylguanine Nucleotide − 0.48 ± 0.12 8.6 × 10−5 0.04 ± 0.14 0.77 − 0.23 ± 0.08 0.003

7-Methylguanine Nucleotide − 0.29 ± 0.12 0.02 − 0.10 ± 0.14 0.48 − 0.35 ± 0.07 3.6 × 10−6

Urate Nucleotide 0.65 ± 0.12 6.5 × 10−8 0.29 ± 0.14 0.03 − 0.31 ± 0.07 1.7 × 10−5

Carnitine Quaternary amine 0.58 ± 0.12 2.9 × 10−6 0.12 ± 0.14 0.42 − 0.09 ± 0.08 0.24

Phosphocholine Quaternary amine 0.23 ± 0.12 0.06 0.18 ± 0.14 0.21 0.43 ± 0.08 1.21 × 10−8

Cortisol Steroid − 0.95 ± 0.12 3.1 × 10−15 − 0.35 ± 0.14 0.01 − 0.39 ± 0.07 1.61 × 10−7

Lipids

C14:0 CE Cholesteryl ester − 0.52 ± 0.11 4.2 × 10−6 − 0.33 ± 0.13 0.01 − 0.07 ± 0.07 0.28

C18:2 CE Cholesteryl ester − 0.66 ± 0.12 3.4 × 10−8 0.00 ± 0.14 0.98 0.09 ± 0.07 0.22

C16:0 Ceramide Ceramide 0.55 ± 0.12 3.4 × 10−6 0.26 ± 0.14 0.06 0.07 ± 0.07 0.30

C34:1 DAG/TAG fragment Diacylglycerol 0.64 ± 0.12 1.2 × 10−7 0.28 ± 0.14 0.04 − 0.01 ± 0.07 0.85

C36:2 DAG Diacylglycerol 0.78 ± 0.12 4.4 × 10−11 0.10 ± 0.13 0.47 − 0.05 ± 0.07 0.47

C38:5 DAG Diacylglycerol 0.79 ± 0.12 4.5 × 10−11 0.15 ± 0.14 0.28 0.09 ± 0.07 0.23

C22:6 LPC LPC 0.65 ± 0.12 7.7 × 10−8 0.41 ± 0.14 0.003 0.25 ± 0.07 7.6 × 10−4

C22:6 LPE LPE 0.62 ± 0.12 3.1 × 10−7 0.39 ± 0.14 0.01 0.24 ± 0.07 0.001

C40:6 PC PC 0.65 ± 0.12 3.8 × 10−8 0.38 ± 0.14 0.01 0.12 ± 0.07 0.10

C34:2 PE PE − 0.06 ± 0.11 0.62 − 0.74 ± 0.13 2.4 × 10−8 − 0.25 ± 0.07 4.8 × 10−4

C52:2 TAG Triacylglycerol 0.71 ± 0.12 1.1 × 10−9 0.06 ± 0.13 0.63 − 0.15 ± 0.07 0.04
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Differences in acylcarnitine associated with mPTD and
preeclampsia
Significantly higher levels of multiple acylcarnitines (me-
tabolites related to cellular energy production) were
mainly observed in women with mPTD and preeclampsia.
Acylcarnitines are responsible for the transport of long-
chain fatty acids from the cytoplasm into the mitochon-
dria for β-oxidation. Fatty acids play an important role
during pregnancy as metabolic fuel for the placenta [24].
Elevated acylcarnitines have been reported as potential
biomarkers for preeclampsia [25–27]. Using the network
analyses via WGCNA, acylcarnitines together with metab-
olites in purine metabolism (6,8-dihydroxypurine,
xanthine, and xanthosine), which all were higher in
women with mPTD and preeclampsia, were classified into
the “black” module, suggesting coexpression of these
metabolites.

Alterations in lipid metabolites among PTD/preeclampsia
subgroups
Neutral lipids, including DAGs, TAGs, and CEs, consti-
tute the most abundant group of lipids and serve as en-
ergy and carbon storage. These lipids, or the score for
the “yellow” module, were significantly altered in women
with mPTD and preeclampsia compared to women with
mPTD only, suggesting preeclampsia-specific associa-
tions. Accumulation of DAGs has been reported to play
a role in insulin resistance in cell [28]. DAGs are precur-
sors to TAGs which play an important role in the stor-
age of energy and fatty acids. In our study, the major
TAGs that were higher in women with mPTD and pre-
eclampsia included TAG C50:2, C52:2, and C52:3. These
TAGs are of short- or medium-carbon chains which are
likely hydrolyzed to release saturated (i.e., C16:0 palmitic
acid or C18:0 stearic acid) and monounsaturated (i.e.,

Table 2 Maternal metabolites that were significantly different in women of each preterm delivery (PTD) subgroups, compared to
women with term delivery (Continued)

Maternal metabolitesa Metabolite classes mPTD + preeclampsiab mPTD only sPTD

Beta ± SEc P Beta ± SEc P Beta ± SEc P

Others

Methylguanidine Others 0.56 ± 0.12 5.2 × 10−6 − 0.17 ± 0.14 0.23 − 0.10 ± 0.07 0.16

Trimethylamine-N-oxide Others − 0.05 ± 0.12 0.70 0.04 ± 0.14 0.78 − 0.31 ± 0.07 3.5 × 10−5

LPC lysophosphatidylcholine, LPE lysophosphatidylethanolamine, PC phosphatidylcholine, PE phosphatidylethanolamine
aThis table includes metabolites significantly different in any of the three PTD subgroups compared to the term controls, after Bonferroni adjustment for multiple
testing (P < 1.3 × 10−4). For two or more highly correlated metabolites (with r > 0.60), only one representative metabolite is included in the table, and the others
are shown in Supplementary Table S1
bIncluding preeclampsia, eclampsia, and hemolysis, elevated liver enzymes, and low platelet syndrome (HELLP)
cAdjusted for an array of conventional and clinical factors, including maternal age at delivery, maternal ethnicity/race, maternal birthplace pregestational BMI category,
pregestational diabetes, chronic hypertension, marital status, highest education level, parity, smoking during pregnancy, illicit drug use, lifetime stress, and fetal sex

Fig. 2 Correlations and p-values (in parentheses) of each coexpressed metabolite module with different preterm delivery (PTD) subgroups. The
metabolite modules were built via the WGCNA analysis on 1330 women using the “unsigned” network
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C18:1 oleic acid) fatty acids. Oxidation of saturated and
monounsaturated fatty acids provides more energy than
oxidation of polyunsaturated fatty acids of the same
length [29]. Accumulation of such short- or medium-
carbon chain TAGs may indicate dysfunctional energy
metabolism and may induce pro-inflammatory signaling
[30], which has been proposed as a feature of multiple
PTD-related diseases, including diabetes [22, 31] and
CVD [14]. Another type of neutral lipid, CEs, was in-
versely correlated with DAGs and TAGs, which may
partly explain the lower levels of CEs (C14:0, C16:0,
C18:0, C18:2, and C18:3) that we observed in women
with mPTD and preeclampsia. Consistently, lower CEs
have been linked to unhealthy lifestyles including a lack
of physical activity (including C16:0 and C18:2) [32] and
an insulinemic dietary pattern (including C14:0 and C18:
3) [33]. However, the relationships between CEs and
CVD risk have been inconclusive, including both posi-
tive [14] and inverse associations [34, 35]. In compari-
son, we observed that multiple CEs (C18:0, C20:3, C20:4,
and C22:4) were positively associated with early sPTD
and that the score for the "yellow" module was inversely
associated with early sPTD in this study. Future studies
are needed to explore whether and how differences in
levels of such neutral lipids may explain the adverse im-
pact of preeclampsia-related PTD and early sPTD on
CVD risk.

Altered metabolites of amino acids and nucleotides by
different PTD/preeclampsia subgroups
Different levels of amino acids and nucleotides were ob-
served in women with mPTD and preeclampsia and in
women with sPTD (especially those with early sPTD),
including both shared and unique metabolites. For

example, anthranilic acid and bilirubin were lower across
the different PTD subtypes. Anthranilic acid is the me-
tabolite of tryptophan. Tryptophan level during preg-
nancy was lower in mothers with PTD [36]. Anthranilic
acid derivatives have been reported to have anti-
inflammatory function [37, 38]. Collectively, this evi-
dence may help to explain the inverse relationship be-
tween PTD and anthranilic acid. Bilirubin is a bile
pigment with potent antioxidant properties that inhibit
lipid oxidation and atherosclerotic development [39, 40].
A number of studies have reported an inverse associ-
ation between bilirubin levels and risk of hypertension,
diabetes, and CVD [41, 42]. Taken together, these find-
ings suggest the hypothesis that inflammation and ele-
vated oxidative stress are potential mechanisms via
which both preeclampsia-related mPTD and early sPTD
may influence future cardiometabolic health.
The main strengths of our study included a large sam-

ple size, a well-validated metabolomic platform and de-
tailed information on covariates, and more importantly,
our ability to define PTD/preeclampsia subgroups, which
are clinically and pathogenically important to gain new
insight. Some limitations of our study should also be ac-
knowledged. First, the BBC was particularly designed to
study preterm delivery in an inner-city, predominantly
minority population; therefore, caution is needed when
generalizing our findings to other populations. Second,
there is lack of a replication cohort in this study. We
cannot exclude the possibility that some of these find-
ings may not be replicated in another cohort. Third, ma-
ternal metabolites were measured in plasma collected
within 1–3 days after delivery, which was at a time of
significant flux with respect to molecules in the circula-
tion. Future studies are needed to investigate whether

Table 3 Associations of the eight metabolite modules with each preterm delivery (PTD) subgroup, compared to women with term
delivery

Modulea Nmetabolite Top hub metaboliteb mPTD + preeclampsia mPTD only sPTD

Beta ± SEc P Beta ± SEc P Beta ± SEc P

Blue 54 C44:1 TAG 0.000 ± 0.003 0.98 − 0.011 ± 0.004 0.004* − 0.003 ± 0.002 0.10

Yellow 38 C16:0 CE or C36:2 DAGd 0.016 ± 0.003 7.8 × 10–7* − 0.001 ± 0.004 0.86 − 0.004 ± 0.002 0.06

Pink 26 C18:1 LPC 0.009 ± 0.003 0.007 0.005 ± 0.004 0.24 0.005 ± 0.002 0.03

Red 36 C32:2 PC 0.001 ± 0.003 0.76 − 0.008 ± 0.004 0.03 − 0.002 ± 0.002 0.30

Turquoise 63 C16:0 sphingomyelin − 0.001 ± 0.003 0.74 0.001 ± 0.004 0.71 0.000 ± 0.002 0.85

Black 34 C14:1 carnitine 0.015 ± 0.003 1.6 × 10–5* 0.009 ± 0.004 0.02 0.002 ± 0.002 0.33

Brown 41 Valine 0.003 ± 0.003 0.38 0.001 ± 0.004 0.77 0.001 ± 0.002 0.66

Green 37 Pseudouridine 0.011 ± 0.003 7.0 × 10–4* 0.002 ± 0.004 0.54 − 0.006 ± 0.002 0.003*

mPTD medically indicated PTD, CE cholesteryl ester, DAG diacylglycerol, LPC lysophosphatidylcholine, PC phosphatidylcholine, TAG triacylglycerol
aThe WGCNA analysis was conducted on 1330 samples using the “unsigned” network, where the highly correlated (either positive or negative) metabolites were
grouped into the same module
bThe top hub metabolite was defined as the one with the highest mean correlation with the other metabolites in the same module
cAdjusted for maternal age at delivery, maternal ethnicity/race, maternal birthplace, pregestational BMI category, pregestational diabetes, chronic hypertension,
marital status, highest education level, parity, smoking during pregnancy, illicit drug use, lifetime stress, and fetal sex
dC16:0 CE is negatively correlated with the “yellow” module score while C36:2 DAG is positively correlated with the “yellow” module score
*Significant after Bonferroni corrections for multiple testing on 8 metabolite modules
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the identified metabolite differences (especially those as-
sociated with mPTD and preeclampsia) are persistent
across different time periods postpartum and whether
they are associated with future CVD risk. Fourth, we
could not distinguish early-onset versus late-onset pre-
eclampsia in this study. Given the possibility that pro-
longed exposure to preeclampsia may be associated with
an increased risk of CVD, further studies are needed to
test whether early-onset preeclampsia and late-onset
preeclampsia have different associations with maternal
postpartum metabolomic profiles. Fifth, pregestational
cardiovascular risk factors are important risk factors of
gestational complications including preeclampsia [43–
45] and they may also lead to metabolomic differences
postpartum. To minimize potential confounding effects,
we adjusted for pregestational overweight/obesity, hyper-
tension, and diabetes in our analyses. Pregestational dys-
lipidemia is another potential risk factor of preeclampsia
[44, 45]. However, information on pregestational dyslip-
idemia was not available in this study. Future studies are
needed to assess potential confounding by pregestational
dyslipidemia. Finally, we were only able to further strat-
ify preterm delivery into early vs. late for the sPTD
group, but not for other mPTD/preeclampsia subgroups
due to limited sample size.

Conclusion
We demonstrated individual and clusters of maternal
postpartum metabolites that were significantly and specif-
ically associated with clinically observed subgroups:
mPTD and preeclampsia, mPTD only, and sPTD, as well
as some metabolites that were shared among the sub-
groups. Some of the identified lipid metabolites and/or re-
lated pathways, especially those associated with the mPTD
and preeclampsia subgroup, have been reported as early
predictors of future risk of CVD. Our study represents an
early attempt to better understand metabolomic under-
pinnings of PTD/preeclampsia. Additional studies are
warranted to confirm our findings and further investigate
the link of these identified metabolites in mediating or
modifying a woman’s future cardiometabolic risk. A better
understanding of the pathways from PTD/preeclampsia,
postpartum metabolomic profiles, to maternal future car-
diometabolic risk may lead to new risk assessment and
intervention strategies and help to identify at-risk women
early in the disease process when intervention may delay
or prevent the onset of cardiometabolic disease.
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