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Abstract

have a synergistic killing effect.

Background: Multidrug resistant (MDR) Gram-negative bacterial infections are a serious threat to human health
due to the lack of effective treatments. In this study, we selected 50 Gram-negative bacterial strains, including 26
strains of Klebsiella pneumoniae and 24 strains of Escherichia coli, to explore whether resveratrol and polymyxin B

Results: MIC values against polymyxin B were = 4 ug/mL for 44 of the strains and were 2 ug/mL for the other 6

strains. MICs against polymyxin B in the isolates tested were significantly reduced by the addition of resveratrol. The
degree of decline depended on the bacteria, ranging from 1/2 MIC to 1/512 MIC, and the higher the concentration
of resveratrol, the greater the decrease. Checkerboard analysis indicated a synergistic effect between resveratrol and

resveratrol was more effective in killing bacteria.

polymyxin B; the optimal drug concentration for different bacteria was different, that of resveratrol ranging from
32 ug/ml to 128 pg/ml. Subsequent time-kill experiments showed that a combination of polymyxin B and

Conclusions: Our in vitro studies have shown that resveratrol can increase the sensitivity of MDR bacterial strains to
polymyxin B, suggesting a potential new approach to the treatment of MDR infections.
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Background

In recent years, the emergence of Gram-negative bac-
teria that are resistant to multiple antibiotics has put a
lot of pressure on healthcare centers around the world
[1]. Infections caused by multidrug-resistant (MDR)
Gram-negative bacteria not only have a higher mortality
rate [2], but also impose greater economic burdens than
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infections caused by susceptible Gram-negative bacteria
[3]. New antibiotics or more effective therapies are
therefore urgently needed to solve this problem. In many
situations, colistin and polymyxin B are considered the
last antibiotics of choice [4].

Polymixin B has high affinity for the lipopolysaccharides
(LPS) of Gram-negative bacilli and has been re-applied in
the clinic. Polymixin B induces LPS aggregation, increas-
ing the charge on cell membrane surfaces, and making it
internalize and bind to the cell membrane, resulting in the
leakage of cell contents [5]. Polymyxin B interacts directly
with the lipid A component of lipopolysaccharide, thereby
increasing the permeability of bacterial cell membranes
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[6]. Plasmids carrying anti-polymyxin B genes, including
mcr-1, mcr-2 and mcr-3, have been reported [7]; however,
polymyxin combination therapy can improve bacterial
killing and prevent the emergence of drug resistance [8].

Resveratrol is a natural polyphenolic compound that is
found in large amounts in grapes, peanuts, and other plant
sources, and in red wine [9]. Reports indicate that resvera-
trol can be used as a phytoalexin against fungal infections,
and that it is a promising multi-target anticancer drug for
the prevention and treatment of cancer [10-12]. Recent
studies have demonstrated that it has potent antibacterial
activity [13], and that it can significantly enhance the ef-
fect of aminoglycoside antibiotics (such as tobramycin,
gentamicin, amikacin and netilmicin) on Pseudomonas
aeruginosa biofilms [14]. Studies have shown that resvera-
trol can inactivate ATP synthase, thereby enhancing the
sensitivity of S.aureus to polymyxin B [15].

In this study, we selected 50 strains of K. pneumoniae
(Klebsiella pneumoniae) and E. coli (Escherichia coli) to
study whether resveratrol and polymyxin B have syner-
gistic effects.

Results

Bacterial isolates

We selected the strains for this study from a hospital in
2018, and screened out the experimental strains using
drug sensitivity tests. We selected 50 multi-drug resist-
ant strains (26 strains of K. pneumoniae and 24 strains
of E. coli) for analysis (Table 1); six strains were sensitive
to polymyxin B, and 44 strains were resistant. Resistance
to polymyxin B was divided into two major categories,
either due to an mcr-1 gene carrying plasmid, or due to
other reasons. Resistance to polymyxin B in E. coli was
due to the mcr-1 gene, while only one strain of resistant
K. pneumoniae carried the mcr-1 gene, the reasons for
resistance in the other strains being unknown.

Resveratrol may be able to increase sensitivity to
polymyxin B

Table 1 shows the MIC values of the 50 strains against
polymyxin B and resveratrol. The MIC value against res-
veratrol in all strains was >512 pg/mL, and the MICs of
polymyxin B it were reduced in all strains after the
addition of resveratrol. In K. pneumoniae, after adding
32 pg/mL of resveratrol, in addition to the sensitive
strains, strain 15 and strain 2 were highly resistant to
polymyxin B, their MIC values for polymyxin B being
decreased. The range of the drop was from 1/2 MIC to
1/8 MIC. When 64 or 128 ug/mL of resveratrol was
added, the MIC values of polymyxin B against all strains
decreased, and the degree of decline increased with
increasing concentration of resveratrol. The situation
observed in E. coli was very similar to that observed in
K. pneumoniae; resveratrol seems to have a similar effect
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on different strains, regardless of the source of the strain
and the cause of resistance to polymyxin B. This sug-
gests that resveratrol may be able to increase the sensi-
tivity of strains to polymyxin B (Table 1).

Polymyxin B and resveratrol have a synergistic effect
Chequerboard assays can be used to detect synergy be-
tween two drugs. The Fractional Inhibitory Concentration
(FIC) in the 14 bacterial strains selected for this experiment
was less than 0.5, indicating the presence of a synergistic ef-
fect between polymyxin B and resveratrol (Table 2).

Time-killresults of polymyxin B and resveratrol against K.
pneumoniae and E. coli

We deduced the optimal concentration of resveratrol
combined with polymyxin B from the chequerboard as-
says. With the exception of strains 12 and 47, the opti-
mal concentration of polymyxin B for the other 13
bacterial strains tested when the concentration of resver-
atrol ranged from 32 to 128 ug/mL was 1/4 MIC poly-
myxin B. At a concentration of 128 pg/mL resveratrol,
however, the DMSO in the drug solution exceeded 0.1%
and was toxic to cells. For this reason, we chose the 1/4
MIC polymyxin B and 64 pg/mL intermediate concen-
tration of resveratrol for time-kill experiments (Fig. 1).
Some differences were observed between strains. 64 pg/
mL resveratrol alone had no killing effect on bacteria.
Strains 1 and 7 were killed after 1h of treatment with
the two drugs (1/4 MIC polymyxin B and 64 ug/mL res-
veratrol), strains 3 and 11 after 2 h, and strains 19 and
12 after 4 and 6h respectively. Neither of the drugs
alone had a significant killing effect on the strains tested.
While strains 23 and 47 were not completely killed, the
killing effect of the two drugs together was more pro-
nounced in the early time than either drug alone. The
number of colonies of these two strains reached the level
of the untreated group at 24 h.

Discussion

In view of the rapid emergence of multi-drug resistance
and the general lack of new effective antibiotics devel-
oped in the last two decades, new methods for the treat-
ment of MDR Gram-negative bacterial infections are
urgently needed [1, 16]. Polymyxin B is considered to be
the last choice of drug for the treatment of multi-drug
resistant infections, but bacterial strains resistant to
polymyxin B are increasing in prevalence [17]. Many
studies have shown that other antibiotics or non-
antibiotics combined with polymyxin B can improve its
antibacterial activity [8, 18]. Resveratrol (trans-3,4",5-tri-
hydroxystilbene) is a polyphenolic compound that was
first mentioned in an article in 1940 and isolated from
the plant cucurbits by root separation [19]. Many reports
indicate that resveratrol has an antiviral effect on HIV-1



Liu et al. BMIC Microbiology

(2020) 20:306

Page 3 of 8

Table 1 Strain information and minimum inhibitory concentrations (MIC) of polymyxin B and resveratrol against bacterial isolates in

this study
Isolate Source MIC Polymyxin
Res PB PB in the presence PB in the presence PB in the presence susceptibility
of 32 pg/ml Res of 64 ug/ml Res of 128 ug/ml Res rann:chanism of
resistance
Klebsiella pneumoniae
1 human 512 16 8 4 2 mcr-1
2 human 512 >512 >512 128 2 Uncharacterized
3 human 512 8 2 2 2 Uncharacterized
4 human > 2048 4 2 1 1 Uncharacterized
5 human > 2048 4 2 1 1 Uncharacterized
6 human 512 >512 >512 256 8 Uncharacterized
7 human 1024 8 2 2 2 Uncharacterized
8 human > 2048 >512 256 16 1 Uncharacterized
human 2048 4 1 0.5 1 Uncharacterized
10 human 2048 4 1 1 1 Uncharacterized
11 human 512 4 2 2 1 Uncharacterized
12 human > 2048 16 1 1 1 Uncharacterized
13 human 2048 4 2 0.5 1 Uncharacterized
14 human 2048 4 2 1 1 Uncharacterized
15 human 2048 16 4 2 1 Uncharacterized
16 human 2048 32 4 4 05 Uncharacterized
17 human 2048 64 16 4 1 Uncharacterized
18 human 512 4 1 0.5 05 Uncharacterized
19 human > 2048 4 1 0.5 0.5 Uncharacterized
20 human 512 256 128 32 1 Uncharacterized
21 human 2048 16 2 2 05 Uncharacterized
22 human > 2048 2 0.5 0.5 1 Susceptible
23 human 512 2 1 0.5 1 Susceptible
24 human 2048 2 2 0.5 0.5 Susceptible
25 human > 2048 2 1 0.5 1 Susceptible
26 human > 2048 2 1 1 1 Susceptible
Escherichia coli
27 animal > 2048 4 2 2 1 mcr-1
28 animal > 2048 4 2 2 1 mcr-1
29 animal 2048 >512 64 8 4 mcr-1
30 animal > 2048 4 2 2 1 mcr-1
31 animal > 2048 4 2 2 1 mcr-1
32 animal > 2048 >512 >512 256 32 mcr-1
33 animal > 2048 4 2 2 1 mcr-1
34 animal > 2048 4 2 2 1 mcr-1
35 animal 2048 4 4 2 1 mcr-1
36 animal > 2048 4 2 2 1 mcr-1
37 animal > 2048 4 2 2 1 mcr-1
38 animal > 2048 4 2 2 1 mcr-1
39 animal > 2048 >512 >512 128 8 mcr-1
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Table 1 Strain information and minimum inhibitory concentrations (MIC) of polymyxin B and resveratrol against bacterial isolates in

this study (Continued)

Isolate Source MIC Polymyxin
Res PB PB in the presence PB in the presence PB in the presence susceptibility
of 32 pg/ml Res of 64 ug/ml Res of 128 ug/ml Res rann:chanism of
resistance
40 animal 2048 32 16 4 1 mcr-1
41 animal > 2048 4 2 2 1 mcr-1
42 animal > 2048 4 2 2 1 mcr-1
43 animal > 2048 >512 >512 256 2 mcr-1
44 animal > 2048 4 2 2 05 mcr-1
45 animal 2048 64 4 4 0.5 mcr-1
46 animal > 2048 4 2 2 0.5 mcr-1
47 human 2048 4 1 0.5 05 mcr-1
48 human > 2048 4 2 1 1 mcr-1
49 animal 2048 32 8 2 1 Uncharacterized
50 human 2048 2 2 1 1 Susceptible

PB Stands for polymyxin B and Res stands for resveratrol

[20] and herpes simplex virus [21, 22]. Resveratrol also
has antibacterial effects [23]. In this study we explored
the difference between resveratrol and polymyxin B
combination therapy and monotherapy.

Resistance to polymyxin B in Gram-negative bacilli
arises through different mechanisms, including alter-
ations in their lipopolysaccharides, which have an overall
negative charge and are the initial targets of polymyxin
[24], activation of the PhoP/PhoQ and PmrA/PmrB two-
component systems (TCS) by environmental stimuli,
and specific mutations within the TCS also leads to con-
stitutive activation and subsequent overexpression of the
LPS modified gene [25-27]. In addition, the mutation/
inactivation of the mgrB gene leads to the emergence of
K. pneumoniae resistance [28]. The role of efflux in
polymyxin resistance is unclear, but some studies have
shown that efflux pumps are involved [29, 30]. In recent
years, studies have shown that a plasmid-carried mcr-1
gene is also involved in polymyxin resistance. The mcr-1
gene encodes lipid A phosphoethanolamine transferase,
an enzyme that inactivates polymyxin [31]. In general,
polymyxin B drug resistance mechanisms are divided
into two major classes: plasmid mcr-I mediated and
non-plasmid mediated.

In this study, we found that combination therapy with
polymyxin B and resveratrol is much more effective than
monotherapy of either drug. MIC values are an indicator
of drug activity. Our study found that the drug concen-
trations of polymyxin B and resveratrol required for
combination therapy were much lower than those re-
quired for monotherapy. The combination of the two
drugs had a similar effect on polymyxin B sensitive and
resistant strains of K. pneumoniae and E. coli, suggesting

that combination therapy with resveratrol and poly-
myxin B may have a relatively universal applicability.
Checkerboard assays can be used to determine whether
there is synergy between drugs. The FIC index of resver-
atrol and polymyxin B in the 14 strains selected for
checkerboard analysis in our study (Table 2) was less
than or equal to 0.5, indicating that resveratrol and poly-
myxin B have a synergistic antibacterial effect. The pur-
pose of combination therapy is to increase the ability of
the drugs to kill the bacteria, achieving a synergistic ef-
fect that the two antibiotics do not have when used
alone [32]. We performed a time-kill experiment on 8
bacterial strains, finding that 6 of the strains were com-
pletely killed after 24h of combined use of the two
drugs. The growth of strains treated with monotherapies
of the two drugs was almost the same as that of the un-
treated group. Although regrowth occurred in two
strains resistant to polymyxin B, the combination of the
two drugs still enhanced the initial bacterial killing and
may thus help to remove bacteria from the body [8].
Our findings together indicate that the combination of
polymyxin B and resveratrol significantly enhances bac-
terial killing. This is similar to the results of previous
studies that resveratrol can enhance the sensitivity of
S.aureus to polymyxin B [15].We speculate that resvera-
trol may destroy the cell envelope, allowing polymyxin B
to bind to more targets in the bacterial outer membrane.

Conclusions

In summary, our study has revealed a synergistic effect
between resveratrol and polymyxin B. Resveratrol can
increase the sensitivity of multi-drug resistant K. pneu-
moniae and E. coli to polymyxin B, enhancing the killing
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Table 2 FIC index values for polymyxin B and resveratrol against MDR bacterial isolates

Isolate FIC of Polymyxin B FIC of Resveratrol FIC index Interpretation
1 0.25 0.125 0.375 Synergistic
3 0.25 0.125 0.375 Synergistic
5 0.25 0.125 0.375 Synergistic
7 0.25 0.03125 0.28125 Synergistic
10 0.25 0.0625 03125 Synergistic
11 0.25 0.125 0.375 Synergistic
12 0.125 <0.0625 <0.1875 Synergistic
15 0.125 0.03125 0.15625 Synergistic
18 0.25 0.0625 03125 Synergistic
19 0.25 0.0625 03125 Synergistic
22 0.25 0.0625 03125 Synergistic
23 0.25 0.25 0.5 Synergistic
47 0.125 0.0625 0.1875 Synergistic
50 0.25 0.03125 0.28125 Synergistic

power of polymyxin B. We have only drawn a prelimin-
ary conclusion. Further experiments will be needed to
substantiate our conclusion. Our findings may provide a
potential method for the clinical treatment of multi-drug
resistant Gram-negative bacilli infections. Further inves-
tigations of why resveratrol has different effects on poly-
myxin B sensitive and resistant strains and on the
different causes of polymyxin B resistance are warranted.

Materials and methods

Bacteria strains and reagents

The strains used in this study were isolated from clinical
samples and from animals, and included 26 strains of K.
pneumoniae and 24 strains of E. coli. These strains were
isolated from the First Affiliated Hospital of Wenzhou
Medical University. Polymyxin B and resveratrol powder
were purchased from Solarbio (Beijing, China). Poly-
myxin B and resveratrol were dissolved in deionized
water and dimethyl sulfoxide (DMSO) to prepare stock
solutions with a final concentration of 10 mg/mL and
100 mg/mL, respectively, and sterilized using a 0.20-um
cellulose acetate syringe filter. The stock solution was
stored at — 20 °C for no more than 1 month.

MIC assays

MIC determinations were performed by the broth
microdilution method according to the Clinical and La-
boratory Standards Association (CLSI) protocol [33].
MICs were determined in 96-well microtiter plates using
freshly prepared Mueller-Hinton broth (Solarbio, Beijing,
China). The final volume of bacterial samples was
200 ul, and the bacterial concentration was 5 x 107
CFU/ml. Microtiter plates were read visually after

incubation at 37°C for 20h. E. coli ATCC 25922 was
used as an internal quality control strain. As resveratrol
has no CLSI breakpoint, and the CLSI breakpoint of K.
pneumoniae and E. coli to polymyxin B has not yet been
established by CLSI, therefore, the European Antimicro-
bial Susceptibility Testing Committee (EUCAST)
showed that the breakpoint of Enterobacter to poly-
myxin B is 2 pg/mL (European Antimicrobial Suscepti-
bility Testing Committee [EUCAST], 2020).

Chequerboard assays

96-well sterile microplates were used for the checkerboard
dilution assays. Each antibacterial drug was diluted with
bactericidal MH broth to a maximum concentration of 2-
times the MIC concentration of the drug. Eight concentra-
tions of each drug were prepared by dilution. Fifty microli-
ters of the appropriate drug dilution was added to the
wells of the plates, together with 100 pl of the bacterial so-
lution (giving a final inoculum of 5 x 10° CFU/mL). MICs
were recorded as the minimum drug concentration with-
out bacterial growth. The interaction between the drugs
was judged by calculating the FIC index according to the
formula: FIC index = FIC(gyg a) + FIC(dryg B), Where FIC =
the MIC of the drug when in the combination/MIC of
drug tested individually. FIC index values were interpreted
as follows: “synergistic effects” = FIC index <0.5, “anta-
gonism” = FIC index >4.0, and “no interaction” = FIC
index > 0.5—-4.0 [34].

Time-kill assays

Time killing experiments were performed using a slightly
modified method [8]. Briefly, bacteria were grown over-
night in 20 mL MHB (Mueller-Hinton Broth). The over-
night broth culture was transferred to 20mL of fresh
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Fig. 1 Time-kill experiments. Bacterial colony forming units in the absence of drug, and in the presence of 1/4 MIC polymyxin B, in the presence
of 64 ug/ml resveratrol and in the presence of both drugs, after different periods of incubation PB = polymyxin B, Res = resveratrol. Data
presented are Log;o CFU/mL mean values from the results of two independent experiments. Error bars represent standard deviations. Results for
all 8 strains tested are presented (strain numbers are given above each figure panel)

MHB at a dilution of ~50-100 fold and incubated for an
additional 3—4h to produce log phase cultures of about
0.55 McFarland units. Log phase cultures were transferred
to borosilicate glass tubes (to minimize non-specific bind-
ing to the plastic resulting in drug loss), diluted approxi-
mately 100-fold, and then transferred to 5mL of fresh
MHB for treatment. Polymyxin B, resveratrol or both
compounds were added to the tubes as appropriate so that
the final concentration of polymyxin B reached 2 pg/ml,
and the final concentration of resveratrol reached 64 pg/
ml. Samples were removed aseptically at 0, 0.5, 1, 2, 4, 6

and 24h, serially diluted with physiological saline, and
10 ul of the bacterial sample was dropped on a blood agar
plate. Colonies were counted after incubation at 37 °C for
24 h. Combinations of polymyxin B and resveratrol were
considered synergistic if the bacteria kill >2 log,
compared to the most effective monotherapy.

Determination of mcr-1 gene

The polymerase chain reaction was used to amplify the
mcr-1 gene from each bacterial strain and the product
was sent for commercial sequencing analysis. Sequencing
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results were compared and analyzed (Tsingke, Beijing,
China), and mcr-1 positive and negative strains were iden-
tified. Primers used in the experiment were mcr-1-F (5'-
ATCAGCCAAACCTATCCC-3') and mcr-I-R  (5'-
TAGACACCGTTCTCACCC-3").
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