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a b s t r a c t 

While image analysis of chest computed tomography (CT) for COVID-19 diagnosis has been intensively 

studied, little work has been performed for image-based patient outcome prediction. Management of 

high-risk patients with early intervention is a key to lower the fatality rate of COVID-19 pneumonia, as 

a majority of patients recover naturally. Therefore, an accurate prediction of disease progression with 

baseline imaging at the time of the initial presentation can help in patient management. In lieu of only 

size and volume information of pulmonary abnormalities and features through deep learning based image 

segmentation, here we combine radiomics of lung opacities and non-imaging features from demographic 

data, vital signs, and laboratory findings to predict need for intensive care unit (ICU) admission. To our 

knowledge, this is the first study that uses holistic information of a patient including both imaging and 

non-imaging data for outcome prediction. The proposed methods were thoroughly evaluated on datasets 

separately collected from three hospitals, one in the United States, one in Iran, and another in Italy, with 

a total 295 patients with reverse transcription polymerase chain reaction (RT-PCR) assay positive COVID- 

19 pneumonia. Our experimental results demonstrate that adding non-imaging features can significantly 

improve the performance of prediction to achieve AUC up to 0.884 and sensitivity as high as 96.1%, which 

can be valuable to provide clinical decision support in managing COVID-19 patients. Our methods may 

also be applied to other lung diseases including but not limited to community acquired pneumonia. The 

source code of our work is available at https://github.com/DIAL- RPI/COVID19- ICUPrediction . 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Coronavirus disease 2019 (COVID-19), which results from con- 

racting an extremely contagious beta-coronavirus, is responsible 

or the latest pandemic in human history. The resultant lung injury 

rom COVID-19 pneumonia can progress rapidly to diffuse alveolar 

amage, acute lung failure, and even death ( Vaduganathan et al., 

020; Danser et al., 2020 ). Given the highly contagious nature of 

he infection, the burden of COVID-19 pneumonia has imposed 
∗ Corresponding authors. 

E-mail addresses: MKALRA@mgh.harvard.edu (M.K. Kalra), yanp2@rpi.edu (P. 

an). 
1 Equally contributed first authors. 
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ubstantial constraints on the global healthcare systems. In this 

aper, we present a novel framework of integrative analysis of 

eterogeneous data including not only medical images, but also 

atient demographic information, vital signs and laboratory blood 

est results for assessing disease severity and predicting intensive 

are unit (ICU) admission of COVID-19 patients. Screening out 

he high-risk patients, who may need intensive care later, and 

onitoring them more closely to provide early intervention may 

elp save their lives. 

Reverse transcription polymerase chain reaction (RT-PCR) assay 

ith detection of specific nuclei acid of SARS-CoV-2 in oral or 

asopharyngeal swabs is the preferred test for diagnosis of COVID- 

9 infection. Although chest computed tomography (CT) can be 

egative in early disease, it can achieve higher than 90% sensi- 

ivity in detecting COVID-19 pneumonia but with low specificity 

https://doi.org/10.1016/j.media.2020.101844
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101844&domain=pdf
https://github.com/DIAL-RPI/COVID19-ICUPrediction
mailto:MKALRA@mgh.harvard.edu
mailto:yanp2@rpi.edu
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 Kim et al., 2020 ). For diagnosis of COVID-19 pneumonia, CT is 

ommonly used in regions with high prevalance and limited 

T-PCR availability as well as in patients with suspected false 

egative RT-PCR. CT provides invaluable information in patients 

ith moderate to severe disease to assess the severity and com- 

lications of COVID-19 pneumonia ( Yang et al., 2020 ). Prior clinical 

tudies with chest CT have reported that qualitative scoring of lung 

obar involvement by pulmonary opacities (high lobar involvement 

cores) can help assess severe and critical COVID-19 pneumonia. 

i et al. (2020a) showed that high CT severity scores (suggestive 

f extensive lobar involvement) and consolidation are associated 

ith severe COVID-19 pneumonia. Zhao et al. (2020) reported 

hat extent and type of pulmonary opacities can help establish 

everity of COVID-19 pneumonia. The lung attenuation values 

hange with the extent and type of pulmonary opacities, which 

iffer in patients with more extensive, severe disease from those 

ith milder disease. Most clinical studies focus on qualitative 

ssessment and grading of pulmonary involvement in each lung 

obe to establish disease severity, which is both time-consuming 

nd associated with interobserver variations ( Zhao et al., 2020; 

i et al., 2020 ). To address the urgent clinical needs, artificial 

ntelligence (AI), especially deep learning, has been applied to 

OVID-19 CT image analysis ( Shi et al., 2020 ). AI has been used

o differentiate COVID-19 from community acquired pneumonia 

CAP) on chest CT images ( Li et al., 2020b; Sun et al., 2020 ). To

nveil what deep learning uses to diagnose COVID-19 from CT, 

u et al. (2020) proposed an explainable diagnosis system by 

lassifying and segmenting infections. Gozes et al. (2020b) devel- 

ped a deep learning based pipeline to segment lung, classify 2D 

lices and localize COVID-19 manifestation from chest CT scans. 

han et al. (2020) went on to quantify lung infection of COVID-19 

neumonia from CT images using deep learning based image 

egmentation. 

Among the emerging works, a few AI based methods target 

t severity assessment from chest CT. Huang et al. (2020) de- 

eloped a deep learning method to quantify severity from se- 

ial chest CT scans to monitor the disease progression of COVID- 

9. Tang et al. (2020) used random forest to classify pulmonary 

pacity volume based features into four severity groups. By 

utomatically segmenting the lung lobes and infection areas, 

ozes et al. (2020a) suggested a “Corona Score” to measure the 

rogression of disease over time. Zhu et al. (2020) further pro- 

osed to use AI to predict if a patient may develop severe symp- 

oms of COVID-19 and how long it may take if that is the case. Al-

hough promising results have been presented, the existing meth- 

ds primarily focus on the volume of pulmonary opacities and 

heir relative ratio to the lung volume for severity assessment. 

he type of pulmonary opacities (e.g. ground glass, consolidation, 

razy-paving pattern, organizing pneumonia) is also an important 

ndicator of the stage of the disease and is often not quantified by 

he AI algorithms ( Chung et al., 2020 ). 

Furthermore, in addition to measuring and monitoring the pro- 

ression of severity, it could be life-saving to predict mortality risk 

f patients by learning from the clinical outcomes. Since majority 

f the infected patients will recover, managing the high-risk pa- 

ients is the key to lower the fatality rate ( Ruan, 2020; Phua et al.,

020; Li et al., 2020c ). Longitudinal study analyzing the serial CT 

ndings over time in patients with COVID-19 pneumonia shows 

hat the temporal changes of the diverse CT manifestations follow 

 specific pattern correlating with the progression and recovery of 

he illness ( Wang et al., 2020 ). Thus, it is promising for AI to per-

orm this challenging task. 

In this paper, our objective is to predict outcome of COVID-19 

neumonia patients in terms of the need for ICU admission with 

oth imaging and non-imaging information. The work has two ma- 

or contributions. 
2 
1. While image features have been commonly exploited by 

the medical image analysis community for COVID-19 diagno- 

sis and severity assessment, non-imaging features are much 

less studied. However, non-imaging health data may also 

be strongly associated with patient severity. For example, 

Yan et al. (2020) showed that machine learning tools using 

three biomarkers, including lactic dehydrogenase (LDH), lym- 

phocyte and high-sensitivity C-reactive protein (hs-CRP), can 

predict the mortality of individual patients. Thus, we propose 

to integrate heterogeneous data from different sources, includ- 

ing imaging data, age, sex, vital signs, and blood test results to 

predict patient outcome. To the best of our knowledge, this is 

the first study that uses holistic information of a patient includ- 

ing both imaging and non-imaging data for outcome prediction. 

2. In addition to the simple volume measurement based image 

features, radiomics features are computed to describe the tex- 

ture and shape of pulmonary opacities. A deep learning based 

pyramid-input pyramid-output image segmentation algorithm 

is used to quantify the extent and volume of lung manifesta- 

tions. A feature dimension reduction algorithm is further pro- 

posed to select the most important features, which is then fol- 

lowed by a classifier for prediction. 

It is worth noting that although the presented application on 

OVID-19 pneumonia, the proposed method is a general approach 

nd can be applied to other diseases. 

The proposed method was evaluated on datasets collected from 

eaching hospitals across three countries, These datasets included 

13 CT images from Firoozgar Hospital (Tehran, Iran)(Site A), 125 

T images from Massachusetts General Hospital (Boston, MA, USA) 

Site B), and 57 CT images from University Hospital Maggiore della 

arita (Novara, Piedmont, Italy) (Site C). Promising experimental 

esults for outcome prediction were obtained on all the datasets 

ith our proposed method, with reasonable generalization across 

he datasets. Details of our work are presented in the following 

ections. 

. Datasets 

The data used in our work were acquired from three sites. All 

he CT imaging data were from patients who underwent clini- 

ally indicated, standard-of-care, non-contrast chest CT without in- 

ravenous contrast injection. Age and gender of all patients were 

ecorded. For datasets from Sites A and B, lymphocyte count and 

hite blood cell count were also available. For datasets of Sites A 

nd C, peripheral capillary oxygen saturation (SpO2) and temper- 

ture on hospital admission were recorded. Information pertain- 

ng patient status (discharged, deceased, or under treatment at the 

ime of data analysis) was also recorded as well as the number of 

ays of hospitalization to the outcome. 

Site A dataset We reviewed medical records of adult patients ad- 

itted with known or suspected COVID-19 pneumonia in Firooz- 

ar Hospital (Tehran, Iran) between February 23, 2020 and March 

0, 2020. Among the 117 patients with positive RT-PCR assay for 

OVID-19, three patients were excluded due to presence of exten- 

ive motion artifacts on their chest CT. With one patient who nei- 

her admitted to ICU nor discharged, 113 patients are used in this 

tudy. 

Site B dataset We reviewed medical records of adult patients ad- 

itted with COVID-19 symptom in MGH between March 11 and 

ay 3, 2020. 125 RT-PCR positive admitted patients underwent un- 

nhanced chest CT are selected to form this dataset. 

Site C dataset We reviewed medical records of adult patients 

dmitted with COVID-19 pneumonia in the Novara Hospital (Pied- 

ont, Italy) between March 4, 2020 and April 6, 2020. We col- 
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Fig. 1. Framework of the proposed methods including the utilized inputs and expected output. 
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ected clinical and outcome information of 57 patients with posi- 

ive RT-PCR assay for COVID-19. 

Two experienced thoracic subspecialty radiologists evaluated all 

hest CT examinations and recorded opacity type, distribution and 

xtent of lobar involvement. Information on symptom duration 

rior to hospital admission, duration of hospital admission, pres- 

nce of comorbid conditions, laboratory data, and outcomes (re- 

overy or death) was obtained from the medical records. Entire 

ung volume was segmented on thin-section DICOM images (1.5–

 mm) to obtain whole-lung analysis. Statistics of the datasets are 

hown in Tables 3–5 in Section 3.4 . 

. ICU admission prediction 

In order to predict the need for ICU admission of patients with 

OVID-19 pneumonia, we use three types of imaging and non- 

maging features. Our adopted features include hierarchical lobe- 

ise quantification features (HLQ), whole lung radiomics features 

WLR), and features from demographic, vital signs, and blood ex- 

mination (DVB). Fig. 1 shows an overview of the overall frame- 

ork of the presented work. In the rest of this section, we first in-

roduce the details of these features. Since it is challenging to fuse 

he large number of inhomogeneous features together, a feature se- 

ection strategy is proposed, followed by random forest based clas- 

ification ( Breiman, 2001 ). 

.1. Deep learning based image segmentation 

In our work, we employed deep neural networks to segment 

oth lungs, five lung lobes and pulmonary opacities (as regions 

f infection) from non-contrast chest CT examinations. For train- 

ng purpose, we semi-automatically labeled 71 CT volumes us- 

ng 3D Slicer ( Kikinis et al., 2014 ). For lung lobe segmenta- 

ion, we adopted the automated lung segmentation method by 

ofmanninger et al. (2020) . The pre-trained model 2 was fine-tuned 

ith a learning rate of 1 × 10 −5 using our annotated data. The 
2 https://github.com/JoHof/lungmask . 

3 
uned model was then applied to segment all the chest CT vol- 

mes. 

Segmentation of pulmonary opacities was completed by our 

reviously proposed method, Pyramid Input Pyramid Output Fea- 

ure Abstraction Network (PIPO-FAN) ( Fang and Yan, 2020 ) with 

ublicly released source code 3 . 

Fig. 2 shows the segmentation results of lung lobes and pul- 

onary opacities. From axial and 3D view, we can see that the 

egmentation models can smoothly and accurately predict isolate 

egions with pulmonary opacities. 

.2. Hierarchical lobe-wise quantification features 

Based on the segmentation results in Section 3.1 , we then com- 

ute the ratio of opacity volume over different lung regions, which 

s a widely used measurement to describe the severity ( Tang et al., 

020; Zhu et al., 2020 ). The lung regions include the whole lung, 

he left lung and the right lung and 5 lung lobes (lobe# 1-5) as 

hown in Fig. 2 . The right lung includes upper lobe (lobe# 1), mid- 

le lobe (lobe# 2), and lower lobe (lobe# 3), while left lung in- 

ludes upper lobe(lobe# 4) and lower lobe (lobe# 5). Thus, each CT 

mage has 8 regions of interest (ROIs). In addition to the ROI seg- 

entation, we partitioned each segment to 4 parts based on the 

U ranges, i.e., the HU ranges of −∞ to −750 (HU[ −∞ , −750]), 

750 to −300 (HU[ −750, −30 0]), −30 0 to 50 (HU[ −300, 50]), and

0 to + ∞ (HU[50, + ∞ ]). These four HU ranges correspond to nor-

al lungs, ground glass opacity (GGO), consolidation, and regions 

ith pulmonary calcification, respectively. As a result, each CT im- 

ge was partitioned to 32 components (8 ROIs × 4 ranges/ROI). 

We extracted two quantitative features from each part, i.e., vol- 

mes of pulmonary opacities (VPO) and ratio of pulmonary opaci- 

ies to the corresponding component (RPO), as defined below: 

 P O (x ) = V (Segment(x )) (1) 

P O (x ) = 

V P O (x ) 

V (x ) 
= 

V (Segment(x )) 

V (x ) 
(2) 
3 https://github.com/DIAL- RPI/PIPO- FAN . 

https://github.com/JoHof/lungmask
https://github.com/DIAL-RPI/PIPO-FAN
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Fig. 2. Lung lobes and pulmonary opacities segmentation results. Areas colored in magenta indicate the segmented lesions. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Radiomics feature types and number of each kind 

of features. 

Group Feature type # features Sum 

Texture First order 18 93 

GLCM 24 

GLRLM 16 

GLSZM 16 

NGTDM 5 

GLDM 14 

Shape Shape (3D) 17 17 

N

a
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here x is a selected component (among the 32 components). Seg- 

ent ( x ) denotes the pulmonary opacities in the selected compo- 

ent x based on the segmentation of pulmonary opacities in Fig. 2 . 

 ( · ) denotes the volume of the selected part. 

.3. Whole lung radiomics features 

To more comprehensively describe information in the CT 

mage, we also extracted multi-dimensional radiomics fea- 

ures ( Gillies and Kinahan, 2016 ) of all pulmonary opacities. Com- 

ared with HLQ feature, although they are all image-based fea- 

ures, they describe the pulmonary opacities from different as- 

ects. HLQ features focus on the pulmonary opacities volume and 

osition of region of interest, while WLR focus on their shape and 

exture. 

For each chest CT volume, we first masked out non-infection 

egions based on the infection segmentation results, then four 

inds of radiomics features are calculated on the volume, i.e. , 

hape, first-order, second-order and higher-order statistics fea- 

ures ( Rizzo et al., 2018 ). Shape features describe the geometric in- 

ormation. First-order, second-order and higher-order statistics fea- 

ures all describes texture information. First-order statistics fea- 

ures describe the distribution of individual voxel values without 

oncerning spatial correlation. Second-order features describe lo- 

al structures, which provide correlated information between ad- 

acent voxels and statistical measurement of intra-lesion hetero- 

eneity. Second-order features include those extracted using gray 

evel dependence matrix (GLDM), gray level co-occurrence ma- 

rix (GLCM), grey level run length matrix (GLRLM), grey level size 

one matrix (GLSZM), and neighboring gray tone difference matrix 

NGTDM). Higher-order statistics features are computed using the 

ame methods as second-order features but after applying wavelets 

nd Laplacian transform of Gaussian(LoG) filters. The higher-order 

eatures help identify repetitive patterns in local spatial-frequency 

omain in addition to suppressing noise and highlighting details of 

mages. 

We used the Pyradiomics package ( Griethuysen et al., 2017 ) to 

xtract the above described radiomics features from COVID19 chest 

T images. For each chest CT volume, a total of 1691 features are 

xtracted. The number of radiomics features for each feature type 

re summarized in Table 1 . Based on the description above, these 

eatures can be categorized into two main groups, i.e. , 17 shape 

eatures and 93 texture features. 

To extracted various features, different image filters are applied 

efore feature extraction. Table 2 shows the details of all 18 im- 

ge filter types used in our work, including no filter, square filter, 

quare-root filter, logarithm filter, exponential filter, wavelet filter 

nd LoG filter. The image filtered by a 3D wavelet filter has eight 

hannels, including HHH, HHL, HLH, LHH, HLL, LHL, LLH and LLL. 

he Laplacian of Gaussian (LoG) filters have a hyper-parameter σ
hich is the standard deviation of the Gaussian distribution. We 

sed five different σ values in our study, i.e. , {0.5, 1.5, 2.5, 3.5, 4.5}. 
4 
ote that shape features are only extracted from the original im- 

ges (no filter was applied). 

.4. Non-imaging features 

In addition to features extracted from images, we incorporated 

eatures from demographic data (contained by all three datasets), 

ital signs (from Sites A and B), and laboratory data (from Sites A 

nd C) (DVB). Specifically, such features include patients’ age, gen- 

er, white blood cell count (WBC), lymphocyte count (Lym), Lym to 

BC ratio (L/W ratio), temperature and blood oxygen level (SpO2). 

hese data are highly correlated with the ICU admission of patients 

hen they were admitted to a hospital. Tables 3–5 show the statis- 

ics of the above features in Site A, Site B, and Site C datasets re-

pectively. Non-imaging features are not all available for some pa- 

ients. The number of the collected data for each feature is listed 

n the last column of the tables. To make use of all the data, the

issing values are imputed by the mean values of other available 

ntries. For instance, in Site A dataset, if a patients SpO2 was not 

ecorded, the mean SpO2 value of 91.9 from the dataset is used to 

ll the blank. 

.5. ICU admission prediction 

In our work, random forest (RF) ( Breiman, 2001 ) classifier, a 

idely-used ensemble learning method consisting of multiple de- 

ision trees, is chosen for predicting ICU admission due to its sev- 

ral nice properties. First, RF is robust to small data size. Second, it 

an generate feature importance ranking and is thus highly inter- 

retable. Aggregating all the features introduced above, we have 

762 features in total. Due to the limited data size, the model 

ould easily overfit with all features as input. Thus, we first used 

F to rank all the features, then we selected the top K features for 

ur final prediction. 

We ranked the feature based on their Gini importance 

 Leo et al., 1984 ). It is calculated during the training of RF by av-

raging the decrease of Gini impurity over all trees. Due to the 

andomness of RF, Gini importance of features may vary when RF 

odel is initialized with different random seeds. Therefore, in our 

tudy, feature ranks are computed 100 times with different random 
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Table 2 

Image filter types and extracted radiomics features from each type of filtered images. 

Image filter type Extracted features # features 

No filter (Original image) Texture + Shape 93 + 17 = 110 

Square filter Texture 93 

Square-root(Sqrt) filter Texture 93 

Logarithm filter Texture 93 

Exponential filter Texture 93 

Wavelet filters (HHH, HHL, HLH, LHH, HLL, LHL, LLH, LLL) Texture 93 × 8 = 744 

Laplacian of Gaussian (LoG) filters σ ∈ {0.5, 1.5, 2.5, 3.5, 4.5} Texture 93 × 5 = 465 

Table 3 

Statistics (mean ± std, except for gender) of DVB features for Site A 

dataset. 

ICU admission Not admitted ICU admitted Data # 

Gender (M:F) 43: 28 29: 13 113 

Age (year) 56.7 ± 16.0 66.9 ± 16.2 113 

Lym_r (%) 22.7 ± 8.3 15.6 ± 12.8 113 

WBC 5831.0 ± 1848.9 7966.7 ± 4556.2 113 

Lym 1244.7 ± 482.8 1010.4 ± 943.7 113 

Temperature ( ◦) 37.3 ± 0.6 37.6 ± 0.6 98 

SpO2 (%) 91.9 ± 7.41 86.5 ± 8.53 100 

Table 4 

Statistics (mean ± std, except for gender) of DVB features for Site B 

dataset. 

ICU admission Not admitted ICU admitted Data # 

Gender (M:F) 23: 24 39: 39 125 

Age (year) 74.8 ± 15.0 72.7 ± 11.1 125 

Lym_r (%) 18.6 ± 12.7 13.0 ± 12.8 125 

WBC 7175.7 ± 4288.9 11722.3 ± 7249.3 125 

Lym 1058.1 ± 596.7 1613.8 ± 3872.7 125 

Table 5 

Statistics (mean ± std, except for gender) of DVB features for 

Site C dataset. 

ICU admission Not admitted ICU admitted Data # 

Gender (M:F) 13: 8 24: 12 57 

Age (year) 70.0 ± 13.7 66.9 ± 12.3 57 

Temperature ( ◦) 39.0 ± 1.0 37.8 ± 0.9 50 

SpO2 (%) 92.3 ± 5.25 84.5 ± 7.74 31 
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eeds. Each time every feature will get a score being its rank. The 

nal feature rank is obtained by sorting the total summed score of 

ach feature. 

Based on the rank of all the features, we select top K ∈ [1100]

eatures to train the RF model and calculate the prediction perfor- 

ance in terms of AUC. 

. Experimental results 

This section presents the experimental results of the developed 

ethods. We show the effectiveness of our proposed method on 

he three datasets separately through both ablation studies and 

omparison with other state-of-the-art approaches. We did not 

erge the datasets because of two reasons. First, not all the non- 

mage features were available from the participating sites. Sec- 

nd, the treatment and admission criteria at the participating sites 

ere likely different from each other. Given such limitations, the 

atasets were used separately to evaluate the proposed methods. 

The experiments are summarized in to two parts. In the first 

art, the proposed methods with different combinations of fea- 

ures is compared with other state-of-the-art approaches on each 

ataset. In this part of the experiments, we also included results of 

upport vector machine (SVM), logistic regression and three other 
5 
eep learning networks. The first deep neural network (DNN) takes 

ll the WLR, HLQ and DVB features as its input and consists of 

hree fully connected layers with output dimensions of 64, 16 and 

 respectively (denoted as DNN w/ all features ). Dropout was ap- 

lied on the first two layers with 50% dropping rate. The second 

eep network takes features selected by random forest as its in- 

ut. As the selected features is only a small subset of all the fea- 

ures, this network is smaller than the first one. It contains three 

ully connected layers with output dimension of 8, 8 and 2, re- 

pectively (denoted as DNN (small) ). The third network is designed 

ased on the Wide & Deep Net (WD Net) ( Cheng et al., 2016 ) to

nvestigate whether a more complex network could perform bet- 

er directly using all features as an input (denoted as WD Net 

/ all features). The detailed structure is shown in Fig. 3 . For all

he three networks, the cross entropy loss is used for training. For 

 sample with label y ∈ {0, 1}, the cross entropy loss is formu- 

ated as l = −log P y , where P y is the output prediction probability 

f class y . In the five-fold cross validation scheme, each time 3 

olds are used to train the network, one fold is used as validation 

et, and the last one is reserved as test set. The networks were 

mplemented over PyTorch ( Paszke et al., 2019 ) and trained using 

he Adam optimizer with learning rate of 1 e − 4 . Influenced by the 

ize of dataset and the network, the WD Net on Site B dataset took 

he longest time for training which is 3.0 min with 4 NVIDIA Tesla 

100 GPUs. In the second part of the experiments, the general- 

zation ability of the feature combination learned by our model is 

tudied across three datasets. The code is open sourced and avail- 

ble at https://github.com/DIAL- RPI/COVID19- ICUPrediction . 

Several recent works have shown the importance of using ma- 

hine learning models to predict patients’ outcomes based on lobe- 

ise quantification features. The infection volume and infection ra- 

io of the whole lung, right/left lung, and each lobe/segment are 

alculated as quantitative features in Tang et al. (2020) . Random 

orest classifier is used to select the top-ranking features and make 

he severity assessment based on these features. In another work 

y Zhu et al. (2020) , the authors present a novel joint regression 

nd classification method to identify the severity cases and pre- 

ict the conversion time from a non-severe case to the severe case. 

heir lobe-wised quantification features include the infection vol- 

me, density feature and mass feature. As we mentioned earlier, all 

xisting image analysis-based outcome prediction works use only 

mage features. We take the features in the two papers as baseline 

o compare with our work. 

.1. Results on Site A dataset 

Receiver Operating Characteristics (ROC) curves of the feature 

ombinations are shown in Fig. 4 . For each feature combination, 

he features are selected only from the feature categories available 

n the combination using the approach introduced in Section 3.5 . 

or example, HLQ+DVB indicates that only features from these two 

roups, HLQ and DVB, are selected and used. The number of fea- 

ures K used to obtain the best results are listed in Table 6 . To alle-

iate the stochasticity of the results, for each feature combination, 

https://github.com/DIAL-RPI/COVID19-ICUPrediction
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Fig. 3. Architecture of the Wide & Deep Net ( Cheng et al., 2016 ) based deep neural network (DNN). Three different kinds of features are first processed separately by one or 

two fully connected layers. Then the learned features are concatenated for the final prediction. 

Fig. 4. ROC curves of various feature combinations on Site A dataset. DVB : non-imaging features including Demographic data, Vital signals and Blood test results; HLQ : 

Hierarchical Lobe-wise Quantification features; WLR : Whole Lung Radiomics features. 
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T Fig. 5. Variation of AUC along choosing the top K features. 
ve RF models with different random seeds are trained and tested 

ith five fold cross validation. The curves shown here are thus the 

ean results of the five models. The figure legend gives the mean 

rea Under the Curves (AUCs) of the feature combinations as well 

s the standard deviation (mean ± std). It can be seen that the 

ombination of all three kinds of features, WLR + HLQ + DVB, ob- 

ained the best result with an AUC of 0.88 ± 0.01. The variation 

f AUC along with number of selected features on Site A dataset 

s presented in Fig. 5 . As marked by the light blue dash line in

ig. 5 , AUC reaches the maximum value when the top 52 features 

re selected. Details of the 52 selected features are presented in 

able 15 at the end of this paper due to its large size. 
6 
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Table 6 

Comparison among the features used in exist state-of-the-art works and different combinations of the proposed fea- 

tures on ICU admission prediction on Site A dataset. One-tailed t -test is used to evaluate the statistical significance 

between a feature combination and the best performer. 

Features 

AUC Sensitivity (PPV = 70%) K 

Mean 95% CI p value Mean 95% CI p value 

Img feature (Tang 2020) 0.818 (0.796, 0.839) p < 0 . 001 51.0% (39.3%, 62.6%) p < 0 . 001 8 

Img feature (Zhu 2020) 0.776 (0.762, 0.790) p < 0 . 001 48.6% (35.4%, 61.7%) p = 0 . 001 46 

DVB 0.855 (0.844, 0.866) p = 0 . 002 76.7% (73.2%, 80.1%) p = 0 . 017 1 

HLQ 0.789 (0.781, 0.797) p < 0 . 001 51.4% (45.3%, 57.5%) p < 0 . 001 21 

WLR 0.859 (0.843, 0.873) p < 0 . 001 71.4% (60.5%, 82.3%) p = 0 . 022 70 

WLR + HLQ 0.866 (0.857, 0.875) p < 0 . 001 68.6% (57.6%, 79.5%) p = 0 . 008 61 

WLR + DVB 0.876 (0.867, 0.886) p = 0.109 81.4% (76.0%, 86.8%) p = 0.152 4 

HLQ + DVB 0.865 (0.844, 0.885) p = 0.080 70.0% (60.9%, 79.1%) p = 0 . 012 4 

WLR + HLQ + DVB 0.884 (0.875, 0.893) – 84.3% (79.9%, 88.7%) – 52 

Fig. 6. ROC curves on Site B dataset. 
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One-tailed t -test is used to evaluate the statistical significance 

etween a method and the best performer. Table 6 summarizes 

he AUC values and sensitivity with significance test p values 

nd 95% confidence interval (95% CI). The classification threshold 

s selected by control the positive prediction value (PPV) to be 

0%. The combination of WLR + HLQ + DVB significantly exceeds 

ther reported methods ( Tang et al., 2020; Zhu et al., 2020 ) with

 ≤ 0.001. Further, we achieved a sensitivity of 84.3% while retain- 

ng a PPV at 70%. It suggests that our model can rapidly prioritize 

ver 80% patients who would develop into critical conditions, if we 

llow 3 false positive cases in every 10 positive predictions. With 

uch prediction, hospitals may allocate limited medical resources 

ore efficiently to potentially prevent such conversion and save 

ore lives. Under the same setting, the sensitivity of the model is 

9.4%, the accuracy is 81.2%. 

In the comparison among different combinations of the fea- 

ures, we can see that the results are generally improved with 

ore feature sources added. Comparison between WLR+HLQ (line 

) and WLR + HLQ + DVB (the last line) shows that, on this dataset,

ntroducing non-imaging features can significantly improve the 

erformance ( p < 0.001 for AUC and p = 0 . 008 < 0 . 05 for sensitiv-
7 
ty), which further indicates that non-imaging features and image 

ased features are complementary. On the other hand, the com- 

arison with WLR + DVB (line 7) and HLQ + DVB (line 8) shows 

hat the improvement of WLR + HLQ + DVB was not significant 

 p > 0.05). It suggests that different kinds of image based features 

ay contain redundant information and adding more features from 

he same source only results in marginal improvement. Table 7 

hows the results of different methods on Site A dataset. Unless 

pecially noted as w/ all features, the methods in Table 7 use 52 

elected WLR + HLQ + DVB features listed in Table 15 . We can see

hat random forest performed significantly better ( p < 0.05) than 

ll the other methods on both AUC and sensitivity. The sensitiv- 

ty of DNN (small) is not included because it couldnt obtain a PPV 

qual or larger than 70% in some of the cross validation folds. 

.2. Results on Site B dataset 

The same set of experiments were repeated on the Site B 

ataset. Table 8 and Fig. 6 shows the results. The number of fea- 

ures K used to obtain the best results for each combination are 

isted in Table 8 . It can be seen that, on Site B dataset, non-imaging
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Fig. 7. ROC curves on Site C dataset. 

Table 7 

Comparison of different machine learning methods with selected features on Site A dataset. One-tailed t -test is 

used to evaluate the statistical significance between the results of random forest and other methods. 

Methods 

AUC Sensitivity (PPV = 70%) 

Mean 95% CI p value Mean 95% CI p value 

Random Forests 0.884 (0.875, 0.893) – 84.3% (79.9%, 88.7%) –

SVM 0.867 (0.855, 0.880) p = 0 . 002 71.0% (64.9%, 77.0%) p < 0 . 001 

Logistic Regression 0.785 (0.758, 0.812) p < 0 . 001 31.0% (14.8%, 47.1%) p < 0 . 001 

DNN (small) 0.816 (0.804, 0.828) p < 0 . 001 – – p = 0 . 023 –

DNN w/ all features 0.751 (0.723, 0.779) p < 0 . 001 25.7% (0.8%, 50.6%) p = 0 . 003 

WD Net w/ all features 0.823 (0.807, 0.838) p < 0 . 001 58.1% (40.7%, 75.5%) p = 0 . 009 

Table 8 

Comparison among the features used in exist state-of-the-art works and different combinations of the proposed fea- 

tures on ICU admission prediction on Site B dataset. 

Features 

AUC Sensitivity (PPV = 70%) K 

Mean 95% CI p value Mean 95% CI p value 

Img feature (Tang 2020) 0.770 (0.745, 0.796) p < 0 . 001 83.1% (75.8%, 90.4%) p = 0 . 009 10 

Img feature (Zhu 2020) 0.767 (0.752, 0.781) p < 0 . 001 83.8% (82.2%, 85.5%) p < 0 . 001 39 

DVB 0.671 (0.643, 0.700) p < 0 . 001 78.7% (69.7%, 87.7%) p = 0 . 007 4 

HLQ 0.791 (0.774, 0.809) p < 0 . 001 84.6% (81.3%, 88.0%) p < 0 . 001 3 

WLR 0.841 (0.827, 0.855) p = 0 . 014 94.9% (93.4%, 96.3%) – 55 

WLR + HLQ 0.847 (0.833, 0.861) – 92.6% (89.5%, 95.7%) p = 0.083 12 

WLR + DVB 0.841 (0.828, 0.854) p = 0.257 91.8% (90.5%, 93.1%) p = 0 . 012 33 

HLQ + DVB 0.796 (0.777, 0.815) p = 0 . 001 84.4% (80.7%, 88.0%) p < 0 . 001 4 

WLR + HLQ + DVB 0.844 (0.833, 0.855) p = 0.310 92.6% (90.0%, 95.1%) p = 0 . 027 12 
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eatures are not very predictive. There could be several reasons for 

he inability of DVB features on Site B dataset. First, as shown in 

able 4 non-imaging features on Site B dataset have a large stan- 

ard deviation. Second, the use of CT in Site B is different from that 

n Site A. Site B relied on chest radiography for most patients while 

T was reserved for more sicker patients or those with suspected 

omplications; Site A used CT in all patients regardless of clinical 

everity. Third, criteria of ICU admission are different between two 

ites. Fourth, management strategies and disease outcomes at the 
wo sites are different. l

8 
In this experiment, the best AUC value, 0.847, is achieved by 

erging two image-based feature, i.e. , WLR + HLQ (line 6). With 

0% PPV, WLR + HLQ obtained a sensitivity of 92.6%, a speci- 

city of 37.0% and an accuracy of 71.7%. The best sensitivity (with 

PV = 70%), 94.9% is obtained by WLR features. Although the sen- 

itivity of WLR is higher than WLR + HLQ, there is no significant 

ifference ( p = 0 . 083 > 0 . 05 ). Table 9 lists the 12 WLR + HLQ fea-

ures used to obtain the best results. Table 10 shows the results 

f different methods on Site B dataset. Three traditional machine 

earning methods and the DNN (small) model used the 12 selected 
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Table 9 

The top 12 WLR + HLQ features ranked by feature ranking strategy introduced in Section 3.5 on Site B dataset. The 

third and sixth columns show the Gini importance of the corresponding feature averaged in the 5-fold cross validation. 

Green text indicates lobe-wise quantification features, HU1-HU4 are the four HU intervals. Blue text indicates whole 

lung radiomics features encoded as Filter-FeatureType-Parameter. 

Table 10 

Comparison of different machine learning methods with selected features on Site B dataset. 

Methods 

AUC Sensitivity (PPV = 70%) 

Mean 95% CI p value Mean 95% CI p value 

Random Forests 0.844 (0.833, 0.855) – 92.6% (90.0%, 95.1%) –

SVM 0.852 (0.838, 0.866) p = 0.148 95.4% (93.2%, 97.5%) p = 0 . 020 

Logistic Regression 0.798 (0.783, 0.812) p = 0 . 003 90.2% (88.6%, 91.9%) p = 0.110 

DNN (small) 0.831 (0.805, 0.858) p = 0.187 86.9% (83.5%, 90.3%) p = 0 . 003 

DNN w/ all features 0.704 (0.670, 0.738) p < 0 . 001 75.38% (71.6%, 79.2%) p = 0 . 001 

WD Net w/ all features 0.769 (0.753, 0.786) p < 0 . 001 85.6% (82.6%, 88.7%) p = 0 . 004 

Table 11 

The 12 best WLR + HLQ + DVB features used for the experiments in Table 10 ranked by feature ranking strategy in- 

troduced in Section 3.5 . The third and sixth columns show the Gini importance of the corresponding feature averaged 

in the 5-fold cross validation. 

Red text indicates non-imaging features. Green text indicates lobe-wise quantification features, HU1-HU4 are the four 

HU intervals. Blue text indicates whole lung radiomics features encoded as Filter-FeatureType-Parameter. 

Table 12 

Comparison among the features used in exist state-of-the-art works and different combinations of the proposed fea- 

tures on ICU admission prediction on Site C dataset. 

Features 

AUC Sensitivity (PPV = 70%) K 

Mean 95% CI p value Mean 95% CI p value 

Img feature (Tang 2020) 0.763 (0.670, 0.856) p = 0 . 044 85.0% (76.4%, 93.6%) p = 0 . 020 10 

Img feature (Zhu 2020) 0.675 (0.645, 0.706) p < 0 . 001 73.9% (59.0%, 88.8%) p < 0 . 011 39 

DVB 0.595 (0.524, 0.665) p < 0 . 001 63.3% (36.1%, 90.5%) p = 0 . 019 4 

HLQ 0.691 (0.660, 0.722) p < 0 . 001 86.7% (80.3%, 93.0%) p < 0 . 014 7 

WLR 0.815 (0.782, 0.848) p = 0 . 020 95.6% (92.8%, 98.3%) p = 0.186 12 

WLR + HLQ 0.826 (0.813, 0.839) p = 0.191 96.1% (94.4%, 97.8%) – 20 

WLR + DVB 0.835 (0.809, 0.861) p = 0.365 95.0% (91.6%, 98.4%) p = 0.088 15 

HLQ + DVB 0.760 (0.705, 0.815) p = 0 . 016 85.6% (77.6%, 93.5%) p < 0 . 010 2 

WLR + HLQ + DVB 0.840 (0.804, 0.876) – 94.4% (92.3%, 96.6%) p = 0 . 035 35 
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LR + HLQ + DVB features (listed in Table 11 ) for prediction. SVM

chieved the best AUC and sensitivity. Random forest obtained 

ompetitive AUC value with no significant difference ( p > 0.05) but 

nferior sensitivity ( p < 0.05). The DNN (small) model here also 

chieved an AUC value comparable with the best result but much 

ower sensitivity. 

.3. Results on Site C dataset 

Results on Site C dataset are shown in Table 12 and Fig. 7 .

he non-imaging (DVB) features alone also didn’t achieve well 
9 
erformance. It might be because many petients’ DVB features 

re missing or incomplete as shown in Table 5 Yet, the introduce 

f DVB features significantly improves the AUC performance of 

LQ features ( p = 0 . 014 < 0 . 05 ). In this experiment, the best AUC

alue, 0.840, is achieved by merging all three kinds of features. 

hile maintaining a PPV of 70%, it achieved a sensitivity of 94.4%, 

 specificity of 33.3% and an accuracy of 71.9%. Table 16 shows the 

5 features used to obtain the best results at the end of this paper 

ue to its large size. A comparison of different methods on Site 

 dataset is shown in Table 13 . Random forest obtained the best 

UC and sensitivity. The performance of all three deep learning 
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Table 13 

Comparison of different machine learning methods with selected features on Site C dataset. 

Methods 

AUC Sensitivity (PPV = 70%) 

Mean 95% CI p value Mean 95% CI p value 

Random Forests 0.840 (0.804, 0.876) – 94.4% (92.3%, 96.6%) –

SVM 0.811 (0.782, 0.839) p = 0 . 031 93.3% (89.2%, 97.5%) p = 0.324 

Logistic Regression 0.717 (0.666, 0.768) p = 0 . 009 86.7% (79.3%, 94.0%) p = 0 . 019 

DNN (small) 0.695 (0.619, 0.771) p = 0 . 011 77.8% (53.6%, 100.0%) p = 0.082 

DNN w/ all features 0.568 (0.550, 0.587) p < 0 . 001 52.8% (29.2%, 76.4%) p = 0 . 006 

WD Net w/ all features 0.528 (0.479, 0.578) p < 0 . 001 34.4% (24.1%, 44.8%) p < 0 . 001 

Table 14 

Transferring WLR + HLQ features across the three datasets. 

Methods A → B A → C B → A B → C C → A C → B Mean 

Random Forests 0.740 (36) 0.685 (29) 0.754 (12) 0.633 (11) 0.591 (17) 0.717 (20) 0.687 

SVM 0.774 (1) 0.686 (23) 0.777 (3) 0.710 (1) 0.649 (17) 0.694 (3) 0.715 

Logistic Regression 0.744 (11) 0.706 (23) 0.756 (1) 0.698 (1) 0.642 (19) 0.752 (3) 0.716 

Table 15 

The top 52 features ranked by feature ranking strategy introduced in Section 3.5 on Site A dataset. The third and sixth 

columns show the Gini importance of the corresponding feature averaged in the 5-fold cross validation. 

Red text indicates non-imaging features. Green text indicates lobe-wise quantification features, HU1-HU4 are the four HU 

intervals. Blue text indicates whole lung radiomics features encoded as Filter-FeatureType-Parameter. 

10 
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Table 16 

The top 35 features ranked by feature ranking strategy introduced in Section 3.5 on Site C dataset. The third and sixth 

columns show the Gini importance of the corresponding feature averaged in the 5-fold cross validation. 

Red text indicates non-imaging features. Green text indicates lobe-wise quantification features, HU1-HU4 are the four HU 

intervals. Blue text indicates whole lung radiomics features encoded as Filter-FeatureType-Parameter. 
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etworks is less than adequate. One of the most important reasons 

ay be that Site C dataset is considerably smaller than the other 

wo datasets (only containing 57 cases). Compared with traditional 

achine learning methods, the number of parameters in deep 

earning models is several orders of magnitude larger, which 

akes them much more vulnerable to overfitting with a limited 

raining set. 

.4. Generalization ability 

In this section, we further evaluate if feature combinations 

earned from one site can be generated to other sites. Experiments 

n all 6 permutations are conducted (train on Site A, test on Site 

; train on Site A, test on Site C; train on Site B, test on Site A;

rain on Site B, test on Site C; train on Site C, test on Site A; train

n Site C, test on Site B). Considering the 3 datasets contains dif- 

eret DVB features, WLR + HLQ features are used in this section. 

he results are shown in Table 14 . 

There were tremendous differences in the geographic distribu- 

ion and scanner technologies used for imaging patients at the 

hree participating sites. Despite this, we achieved AUC values as 

igh as 0.777 for WLR + HLQ features. Some variations in the AUCs 

nd performance of our model across different sites is expected 

ue to challenges associated with acquisition of consistent data 

ariables and practices. The results in Table 14 shows that SVM and 

ogistic regression achieved very similar performance on average 

ith no significant difference ( p = 0 . 462 ).Although random forest 

id not perform well in this transfer experiment, the difference 

etween random forest and SVM was not significant ( p = 0 . 058 >

 . 05 ) either. Considering that Random Forest outperformed logistic 

egression on all three datasets as presented in Sections 4.1 –4.3 , it 

s still the overall best performing method in our study. 

Our study stresses the need to combine imaging findings with 

linical, laboratory and management variables which can improve 

he model performance, aid in better performance statistics on 

ach dataset. On the other hand, complexities of disease and its 
11 
utcomes are tied to local factors and stress the importance of 

weaking the best models based on rich local or institutional level 

actors rather than a single ǣone-type-fit-all ǥ model. 

. Discussion and conclusions 

In this paper, we propose to combine size and volume infor- 

ation of the lungs and manifestations, radiomics features of pul- 

onary opacities and non-imaging DVB features to predict need 

or ICU admission in patients with COVID-19 pneumonia. Metrics 

elated to ICU admission rates, need and availability are key mark- 

rs in management of individual patients as well as in resource 

lanning for managing high prevalence diseases. To the best of our 

nowledge, this is the first study that uses holistic information of 

 patient including both imaging and non-imaging data to predict 

atient outcome. 

Although promising results were achieved, the study has a few 

imitations. First of all, due to the limited size of our datasets, 

e could not conduct more fine-grained outcome predictions. The 

ize of the available datasets could also be the reason that more 

omplex models, such as deep neural networks, did not perform 

ell in our experiments. Once larger datasets are available, our 

odel can be rapidly adapted to assess generalization ability and 

o establish implications on datasets from other sites. Efforts are 

nderway (such as within Radiological Society of North America) 

o establish such imaging datasets of COVID-19 pneumonia. Sec- 

nd, variations in performance of different imaging and clinical 

eatures on datasets from three sites underscore the need for 

areful local vetting of deep learning predictive models. Future 

odels should take into account regional bias introduced from 

ifferent criteria on imaging use, underlying patient comorbidities, 

nd management strategies, so that more robust models can be 

uilt. This also goes beyond the generalization ability of machine 

earning in medical applications. The best and most relevant 

esults likely require regional, local or even site-specific tuning of 

redictive models. This is especially true in context of the three 
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ites, which are under very different healthcare systems as in our 

tudy. We believe that this limitation is not unique to our model. 

ast but not the least, another limitation of our study pertains to 

he lack of access to the specific treatment regimens at the three 

ites; their inclusion could have further enhanced the accuracy of 

ur algorithm. However, it also suggests that this generic approach 

an be trained on data from a hospital to create a customized 

redictive model for clinical decision support. 

In summary, our integrative analysis machine learning based 

redictive model can help assess disease burden and forecast 

eaningful patient outcomes with high predictive accuracy in 

atients with COVID-19 pneumonia. Many patients with adverse 

utcomes from COVID-19 pneumonia and cardiorespiratory failure 

evelop diffuse alveolar damage and adult respiratory distress 

yndrome (ARDS), which are also well-known end stage manifes- 

ations of other pulmonary diseases such as from other infections 

nd lung injuries. Although we did not test our model in patients 

ith ARDS from non-COVID causes, given the overlap in imaging 

nd clinical features of respiratory failure, we expect that the 

ethods of quantifying pulmonary opacities used in our approach 

ill extend beyond COVID-19 pneumonia. In addition, introduc- 

ng data of diseases with similar properties with COVID-19 may 

urther improve the robustness and performance of our approach, 

hich will be explored in our future work. Further studies will 

elp assess such applications beyond the current pandemic of 

OVID-19 pneumonia. 
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