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Abstract

While antiretroviral therapy (ART) has effectively revolutionized HIV care, the virus is never

fully eliminated. Instead, immune dysfunction, driven by persistent non-specific immune

activation, ensues and progressively leads to premature immunologic aging. Current bio-

markers monitoring immunologic changes encompass generic inflammatory biomarkers,

that may also change with other infections or disease states, precluding the antigen-specific

monitoring of HIV-infection associated changes in disease. Given our growing appreciation

of the significant changes in qualitative and quantitative properties of disease-specific anti-

bodies in HIV infection, we used a systems approach to explore humoral profiles associated

with HIV control. We found that HIV-specific antibody profiles diverge by spontaneous con-

trol of HIV, treatment status, viral load and reservoir size. Specifically, HIV-specific antibody

profiles representative of changes in viral load were largely quantitative, reflected by differ-

ential HIV-specific antibody levels and Fc-receptor binding. Conversely, HIV-specific anti-

body features that tracked with reservoir size exhibited a combination of quantitative and

qualitative changes marked by more distinct subclass selection profiles and unique HIV-

specific Fc-glycans. Our analyses suggest that HIV-specific antibody Fc-profiles provide

antigen-specific resolution on both cell free and cell-associated viral loads, pointing to poten-

tially novel biomarkers to monitor reservoir activity.

Author summary

Current combination antiretroviral therapy (ART) regimens have reversed the death sen-

tence once associated with an HIV diagnosis. However, the virus is never fully eliminated.

Rather, latently infected cells with integrated virus (latent reservoir) persist and the virus
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rebounds rapidly upon discontinuation of therapy. Further, even for those on ART,

immune dysfunction, driven by persistent non-specific immune activation, ensues and

progressively leads to premature immunologic aging. Current biomarkers monitoring

these changes are non-specific–they focus on generic inflammatory changes that may also

track with other infections or disease states. In this manuscript, we used an unbiased ana-

lytical systems approach to identify antigen-specific biomarkers of HIV disease state/treat-

ment status, active viremia and the latent reservoir. By virtue of them being antigen-

specific, these are robust context-specific biomarkers of HIV disease progression, viremia

and reservoir size. Our framework highlights the strength of using systems approaches in

identifying humoral biomarkers, and can be used in other contexts to identify antigen-

specific correlates of infectious disease outcome.

Introduction

With rapid advances in HIV treatment over the last two decades, current combination antire-

troviral therapy (ART) regimens have reversed the death sentence once associated with an

HIV diagnosis [1]. Yet, despite their effectiveness in reducing viral replication, and associated

loss of CD4+ T cells, the virus is never completely eradicated. Rather, latently infected cells

with integrated virus persist [2]. The virus rebounds rapidly upon discontinuation of therapy.

Along these lines, even on suppressive ART, infection-associated transcription, in the absence

of replication, may persist. This marks the presence of a more active viral reservoir deep within

reservoir sites, which may contribute to disease progression, premature immune aging, T cell

exhaustion, and immune dysfunction [2]. While several inflammatory markers have been

identified that track with persisting viral activity or the latent reservoir size itself, a quantifiable

antigen-specific biomarker that provides insight on viral activity, deep within tissues, could

provide critical insights to prevent the continued morbidity observed with HIV treatment [3].

Due to stochastic sampling biases and the predominant residence of the viral reservoir in

tissues, several host inflammatory markers have been noted that shift with viral load [4–6],

HIV disease progression [7, 8] and immune dysfunction [2]. Other T cell phenotypes have

been noted to track with HIV-associated progression on ART [9], yet these markers do not

track with viral replication or reservoir size. Moreover, due to the non-antigen specific nature

of these biomarkers, and the fact that these inflammatory markers shift with additional co-

morbidities (such as co-infection with HCV or diabetes), uncertainties remain related to the

utility of non-specific biomarkers for clinical management.

Accumulating data suggest that changes in the profiles of antibodies that track with inflam-

mation may serve as critical biomarkers of viral load control and even reservoir size. Early

studies highlighted the presence of agalactosylated antibodies (a marker that tracks with

inflammation) among individuals with HIV viremia [10]. Additionally, similar changes were

recently noted in total non-specific antibodies in ART-treated individuals, tracking with anti-

viral activity [11]. Bulk glycan-lectin interactions in the host have also been linked to reservoir

size and HIV reactivation [12]. These antibody alterations, originally observed in the setting of

autoimmunity [13], are now known to be selectively elevated in spontaneous HIV controllers

[11], potentially attributable to persistence of HIV within germinal centers where B cell activa-

tion may persist [14]. Deeper analysis of the functional consequences of these changes pointed

to the consistent detection of higher levels of HIV-specific antibody dependent cellular cyto-

toxicity (ADCC) among spontaneous controllers of HIV (compared to individuals with natu-

rally progressive infection), as well as the generation of antibodies able to leverage Fc effector
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functions more effectively among this unique population [15–17]. Whether these antibodies

contribute directly to the maintenance of the viral reservoir remains unclear, however, these

virus-specific antibody changes clearly shift across clinical phenotypes of viral control. Yet,

whether antigen-specific antibody profiles can be used as biomarkers of viral control and even

of reservoir size remains unclear.

To begin to explore the possibility of identifying antigen-specific antibody changes that

track with HIV clinical phenotypes, viral load and the latent reservoir, a systems serology

approach [18, 19] was utilized to comprehensively profile HIV-specific biophysical and func-

tional profiles of antibodies in a cohort of 78 subjects including those controlling HIV in

absence of therapy (elite and viremic controllers), those on effective ART, and those with

untreated chronic infection and higher viral loads. We also included HIV uninfected individu-

als as controls who should not have any HIV antigen-specific humoral responses. Using an

unbiased analytical framework, we found HIV-specific humoral biomarkers that both distin-

guished clinical phenotypes as well as marked viral load and/or reservoir size.

Results

Humoral response profiles can accurately distinguish clinical phenotypes

We measured a total of 293 antibody features per plasma sample (S1 Table, S1 Data), including

effector functions and biophysical properties, across 78 individuals (S2 Table) comprising 12

subjects who spontaneously control HIV to below detectable viremia levels (< 40 copies/ml)

in the absence of ART–termed elite controllers (ECs), 23 subjects who spontaneously control

HIV in the absence of ART but have detectable viremia levels (40–2000 copies/ml)–termed

viremic controllers (VCs), 17 subjects on ART with undetectable viremia (CTs, < 40 copies/

ml), 12 patients not on ART with detectable viremia (CUs, >2000 copies/ml), and 14 HIV

uninfected subjects. While previous data suggested that antibody features are differently corre-

lated across different HIV clinical phenotypes [15, 20], here we used a systems approach to

determine whether unique humoral profiles exist that could distinguish subjects independent

of viral loads and CD4+ T cell counts. Since the number of serological measurements for each

subject is greater than the number of subjects (i.e., our data is high-dimensional), we used

machine learning methods appropriate for high-dimensional data that avoid overfitting. Spe-

cifically, we used a regularized model, as well as a tree-based classification approach to dis-

criminate between the different clinical phenotypes. We found that a random forest classifier

that separately incorporates functional and biophysical responses of these subjects achieved

the best separation between all five clinical phenotypes (Fig 1A). Accuracy of classification was

assessed using a rigorous five-fold cross validation framework. We divided subjects randomly

into five subsets. This was done such that for each fold, four subsets served as the training set

—i.e., these four subsets of the data are incorporated into the model training process, and the

fifth subset served as the test set—i.e., the model training process is blinded to this subset and

the performance of the model is tested on this blinded subset. Each subset served as the test set

once–so at the end of each cross-validation run, each subject was in the test fold (blinded fold)

exactly once. This was repeated for multiple ways in which the data can be split into five folds

(see Methods for additional details). Our framework allows for the rigorous evaluation of

model performance when some data is blinded/held out. In this rigorous five-fold cross-vali-

dation framework, we found that the model had excellent classification accuracy (Fig 1B). Fur-

ther, this accuracy was significantly higher using real data, as opposed to permuted data

(P< 0.01), confirming the robustness of the antibody signature (Fig 1B). Thus, despite similar

CD4+ T cell counts and viral loads across several of the subject groups (i.e., EC and CT), anti-

body profiles were sufficient to discriminate between clinical phenotypes. The performance of
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Fig 1. Humoral response profiles can accurately distinguish clinical phenotypes. A. Bi-plot showing how a classifier built on functional (Fc effector function) and

array/biophysical data can discriminate between subjects across 5 different HIV clinical phenotypes. The scores on each axis are obtained from a corresponding random

forest model. The X axis scores are from a random forest model built on functional data, the Y axis scores are from a random forest model built on array/biophysical

data. B. Violin plots showing classification accuracy of the random forest model from 1A on real and permuted data, as measured in a 5-fold cross validation framework

(i.e., with data from some subjects blinded/held out as described in the Methods). Exact P value calculated using a permutation test (P< 0.01) confirms significance of

model. C. Boxplots illustrating distributions of the humoral responses that are most predictive/discriminative across the 5 clinical phenotypes.

https://doi.org/10.1371/journal.ppat.1008868.g001
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our classifier remained equally robust and significant when the analyses were performed only

with the HIV+ clinical phenotypes i.e., when the HIV-individuals were excluded (S1 Fig,

P< 0.01 using a permutation test). A random forest based classifier also outperformed other

regularized linear models by ~20% performance in classification accuracy (as measure in a

5-fold cross-validation framework), suggesting there are non-linear differences across these

clinical phenotypes.

To define a minimal features that contributed to the classifier, the performance of the classi-

fier was evaluated after each feature was dropped from the overall multivariate model, repre-

senting a well-accepted approach to measure out-of-bag classification errors [21]. Using this

approach, we found that 5 functional and 5 biophysical measurements were most critical for

classifier performance. The functional measurements included antibody-dependent phagocy-

tosis mediated by neutrophils, antibody-dependent cellular cytotoxicity (ADCC) by natural

killer (NK) cells, and antibody-mediated degranulation by NK cells (as quantified by inter-

feronγ- IFNγ-, MIP1beta—MIP1β secretion and CD107a expression). The biophysical mea-

surements included gp120-specific antibody binding to Fc-γ-receptor 2A. Together, functional

and Fc-receptor binding differences, reflecting qualitative changes in antibodies, were associ-

ated with group separation.

Interesting patterns emerged with respect to the humoral measurements that drove separa-

tion between clinical phenotypes. First, subjects with undetectable viral loads, including ECs

and ART treated subjects, had lower neutrophil-mediated phagocytosis and NK degranulation,

but higher ADCC responses than subjects with detectable viral loads–VCs and CUs (Fig 1C,

P< 0.01). These data highlight the presence of distinct functional profiles linked to viremia.

Conversely, ECs and VCs both exhibited enhanced binding to FcγR2A, the Fc-receptor

involved in driving phagocytosis [22], compared to ART treated subjects (Fig 1E), suggesting

that spontaneous control of HIV is associated with the induction of more functional antibodies

irrespective of viral levels–for example, increased ADCC has previously been reported in con-

trollers. These results suggest that HIV-specific antibody qualitative features can clearly distin-

guish between HIV clinical phenotypes and point to specific antibody effector functions that

are largely viral load driven, and Fc-receptor binding profiles that are enriched among control-

lers of HIV (and hence may be novel pathway associated with virus control).

Humoral profiles that track with viral load control

Given the predictive power of antibody profiles for HIV clinical status, we next aimed to define

whether antibody profiles tracked with viremia. Several studies have noted direct relationships

between antibody function and viral loads [23, 24], thus we next examined changes in anti-

body profiles specifically across subjects with undetectable and detectable viral loads: ECs,

VCs, and CUs. Two separate analyses were performed aimed at defining: 1) humoral changes

across controllers (EC+VC) and non-controllers (CUs), as well as 2) between controllers–com-

paring ECs and VCs. Given the high dimensionality of the data, antibody features were initially

reduced using a LASSO-based feature selection, followed by classification using the LASSO-

selected features and visualization using partial least squares discriminant analysis (PLSDA).

The analytical framework is similar to what has been previously described–the use of LASSO

helps minimize overfitting with high-dimensional data [19].

To be unbiased, we defined whether antibody profiles could simply predict two viral load

groups: high and low- based on the median viral load across all subjects (~500 RNA copies/

ml). Separation was observed across subjects with low and high viral loads (Fig 2A and 2B).

Only 5 of the 293 features were needed to drive the separation between these groups, marked

by elevated levels of IgG1 and IgG3 titers, enhanced FcγR3a binding (3AF-gp120Du156.12),
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and elevated levels of total G2S1F glycans in subjects with higher viral loads (Fig 2C). Con-

versely, subjects with low or undetectable viral loads uniquely exhibited higher levels of C1q

fixing antibodies to Gag p24 (Fig 2C). Overall, these data point to both quantitative differences

in antibody titers and associated FcR binding profiles across distinct HIV antigens that track

with viral loads. Further, the identified biomarkers of viral load were not significantly associ-

ated with a large panel of cytokines, suggesting that non-specific cytokines cannot replace the

antigen-specific changes observed in this manuscript (S2 Fig).

We then repeated similar analyses with only the controllers (ECs and VCs) to define

whether unique humoral biomarkers could discriminate between controllers with undetect-

able or detectable viral loads. We sought to determine whether antibody profiles could dis-

criminate between controllers with undetectable or very low viremia (<75 copies/ml) and

controllers with detectable viremia (>75 copies/ml). Excellent discrimination was achieved

across the HIV-specific antibody profiles across these two groups (Fig 2D and 2E). Again, only

five features were required to separate these groups (Fig 2F). Specifically, humoral profiles in

the viremic individuals were marked by higher FcγR2A binding (2AH-gp140Du151 and 2AH-

gp120ZM109F), higher IgG2 titers to Rev (with IgG2 being a less functional subclass), and ele-

vated IgA titers to Reverse Transcriptase (p51) (Fig 2F). These data also point to a link between

viral load and quantitative differences in antibody titers and associated FcR binding profiles.

Fig 2. Correlates of viral load in controllers and chronic progressors. A. A LASSO-based model is used to classify controllers and progressors by viral load. The

LASSO-selected features are visualized in 2 dimensions using a partial least squares discriminant analysis (PLSDA) latent variable (LV) scores biplot. B. Violin plots

showing classification accuracy of the actual model from (a) and of 2 negative control models (based on randomly selected features & permuted data), as measured

in a 5-fold cross validation framework. Exact P values (actual vs permuted and actual vs random-size matched) confirm significance of the model. C. PLS variable

importance in the projection (VIP) plot corresponding to the features in (a) used to classify subjects by viral load. D. A LASSO-based model is used to classify only

controllers by viral load. The LASSO-selected features are visualized in 2 dimensions using a PLSDA LV scores biplot. E. Violin plots showing classification

accuracy of the actual model from (d) and of 2 negative control models (based on randomly selected features & permuted data), as measured in a 5-fold cross

validation framework. Exact P values (actual vs permuted and actual vs random-size matched) confirm significance of the model. F. PLS VIP plot corresponding to

the features in (d) used to classify subjects by viral load.

https://doi.org/10.1371/journal.ppat.1008868.g002
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Humoral biomarkers of reservoir size in controllers and chronic

progressors

Beyond humoral biomarkers of active viral replication that track strongly with viral burden,

significant differences have been noted in the size of the HIV latent viral reservoir among

spontaneous controllers of HIV. Thus we next sought to explore whether HIV-specific anti-

body profiles could also resolve differences in latent reservoir size. For these studies we used

quantitative assessments of the total HIV DNA as a measure of the reservoir; although the

majority of HIV DNA is defective, it has been shown that total DNA correlates with more pre-

cise measures of the reservoir such as IPDA and VOA [25]. Again, two separate analyses were

performed: 1) comparing across all individuals off ART, and 2) across individuals on ART.

We first sought to define whether antibody profiles tracked with the estimated reservoir

size across ECs, VCs and CUs. Using a median split on the distribution of HIV DNA levels

across the subjects, LASSO-based feature selection was performed, followed by classification

using the LASSO-selected features and visualization using PLSDA. HIV-specific antibody pro-

files were again able to discriminate between individuals with higher and lower HIV DNA lev-

els (Fig 3A and 3B). The subjects with higher HIV DNA levels had higher Vif-specific IgG

titers and higher gp41-specific IgG and IgG2 titers (Fig 3C). However, those with lower HIV

DNA levels had functional antibody profiles marked by elevated gp120-specific IgA and

Reverse Transcriptase IgG3 titers (Fig 3C). Further, these subjects also had higher levels of

G2S1 and bisecting glycans on gp120-specific IgGs (Fig 3C). These results suggest that unlike

biomarkers that track with viral load control, biomarkers that track with the estimated size of

the latent reservoir size target a range of gene products and are not only associated with quan-

titative changes in antibody profiles, but also mark qualitative changes in the HIV-specific

Fig 3. Correlates of latent reservoir size in controllers and chronic progressors. A. A LASSO-based model is used to classify controllers and progressors by latent

reservoir size. The LASSO-selected features are visualized in 2 dimensions using a PLSDA LV scores biplot. B. Violin plots showing classification accuracy of the actual

model from (a) and of 2 negative control models (based on randomly selected features & permuted data), as measured in a 5-fold cross validation framework. Exact P

values (actual vs permuted and actual vs random-size matched) confirm significance of the model. C. PLS VIP plot corresponding to the features in (a) used to classify

subjects by latent reservoir size. D. Correlations between biomarkers of the latent reservoir in controllers and progressors, and actual latent reservoir size.

https://doi.org/10.1371/journal.ppat.1008868.g003
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antibody profiles overall. To further validate that the identified biomarkers aren’t merely track-

ing with viremia, we sought to identify humoral correlates of latent reservoir size only in con-

trollers (i.e., excluding the chronic untreated group). This eliminates the potential

confounding effects of treatment. Again, we were able to identify robust biomarkers that strat-

ify these controllers by reservoir size (S3 Fig, P< 0.01 using a permutation test), confirming

that our models are able to capture biomarkers specific to the latent reservoir (i.e., they are not

generic biomarkers of viremia).

We also sought to explore whether the observed correlates track simply with a high/low

stratification of the latent reservoir size as determined by HIV DNA levels, or whether they

provide a finer resolution of the actual reservoir size. To address this, we first examined corre-

lations between biomarkers from our model with the most significant variable importance in

the projection (VIP) scores (Fig 3C), and the estimated latent reservoir size (measured as a

continuous variable). We found that both markers: gp41-specific IgG antibodies and G2S1 gly-

cans were significantly correlated (P < 0.001) with the estimated latent reservoir size (Fig 3D).

To further evaluate whether only the markers with the most significant VIP scores track with

estimated reservoir size or whether other markers also mark the latent reservoir, we computed

correlations between p51- and gp41- specific IgG3 and IgG2 antibodies (the two biomarkers

with lower VIP scores) and the latent reservoir size. IgG2 antibodies were significantly corre-

lated (P = 0.006), and IgG3 antibodies had a nominal correlation (P = 0.063) with latent reser-

voir size (Fig 3D). These results demonstrate that the correlates identified track closely with

the estimated reservoir size (as measured by HIV DNA), and provide resolution across the

spectrum of latent reservoir sizes in these subjects. Further, the identified biomarkers of reser-

voir size were not significantly associated with a large panel of cytokines, suggesting that non-

specific cytokines cannot replace the antigen-specific changes observed in this manuscript (S2

Fig).

Humoral biomarkers of reservoir size in ART-treated subjects

Given the emerging need for simple HIV-specific biomarkers to track reservoir changes in

ART treated individuals undergoing diverse interventions, a similar analysis was performed to

define whether biomarkers could be defined that may be associated with estimated reservoir

size in the ART-treated subjects. Excellent separation was achieved between subjects with high

and low HIV DNA levels (here, high or low levels was defined using a median split on the dis-

tribution of reservoir sizes for only these ART-treated subjects), using HIV-specific antibody

profiles alone (Fig 4A and 4B). Only four features were able to separate the groups (Fig 4C).

Specifically, the correlates of the size of the estimated latent reservoir size within ART-treated

subjects included both gp41- and gp120-specific IgG3 and IgG2 antibodies as well as elevated

G2S2B and G2F glycans (Fig 4C). These analyses suggest that antibody profiles that distinguish

ART-treated subjects based on latent reservoir size incorporate primarily characteristics driven

by subclass profiles. This is in contrast to the profiles that stratify controllers and progressors

by latent reservoir size, where a combination of quantitative and functional antibody features

provided separation (Fig 3C). However, the quantitative features that provided stratification

were similar between both the controllers and progressors group and the ART-treated group.

For example, the exact same feature–gp41-specific IgG2 antibodies were a biomarker for

higher latent reservoir size in both controllers and progressors (Fig 3C) and the ART-treated

group (Fig 4C).

Finally, for these ART-treated subjects, we explored whether the observed correlates track

simply with a high/low stratification of the latent reservoir size, or whether they provide a finer

resolution of the actual reservoir size. We found that of the 4 biomarkers identified by the
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model (Fig 4C), 2 markers–gp41-specific IgG2 antibodies and G2F glycans are significantly

correlated (P = 0.011 and 0.029 respectively), and a third marker–gp120-specific IgG3 antibod-

ies is nominally correlated (P = 0.15) with latent reservoir size (quantified as a continuous vari-

able). These results demonstrate that these simple antibody features provide meaningful

resolution across the spectrum of latent reservoir sizes.

Discussion

Mounting data suggests that HIV-specific antibodies may differ across HIV-infected patient

populations [20], changing both with respect to titers, quality, and functional profiles across

clinical phenotypes [15, 20]. Given the antigen-specific nature of these biomarkers, the identi-

fication of a precise set of antigen-specific changes may provide a unique opportunity to moni-

tor changes in active viral replication and, more interestingly, in the viral reservoir. Strikingly,

using a systems approach, a minimal set of humoral biomarkers were identified able to

discretely resolve HIV clinical groups (EC, VC, ART-treated, and CU) as well as act as sensitive

measures of changes in reservoir size.

As expected, antibody profiles that tracked with changes in viral replication were associated

with both quantitative and qualitative changes in antibodies. Emerging data highlight signifi-

cant changes in B cell populations and activation in the setting of active viral replication [26,

27]. Robust B cell activation and corresponding responses have been noted in HIV-infected

individuals [28], including controllers [29]. Specifically, in HIV infection, plasmablasts arise

early and are maintained at high levels in viremic individuals [29]. These changes in B cells are

accompanied by hypergammaglobinemia [30, 31], and are consistent with our observations

regarding quantitative differences in antibody profiles tracking with active viral replication.

However, emerging data suggest that in addition to quantitative changes, alterations in

Fig 4. Correlates of latent reservoir size in ART-treated subjects. A. A LASSO-based model is used to classify ART-treated subjects by latent reservoir size.

The LASSO-selected features are visualized in 2 dimensions using a PLSDA LV scores biplot. B iolin plots showing classification accuracy of the actual model

from (a) and of 2 negative control models (based on randomly selected features & permuted data), as measured in a 5-fold cross validation framework. Exact P

values (actual vs permuted and actual vs random-size matched) confirm significance of the model. C. PLS VIP plot corresponding to the features in (a) used to

classify subjects by latent reservoir size. D. Correlations between biomarkers of the latent reservoir in ART-treated subjects, and actual latent reservoir size.

https://doi.org/10.1371/journal.ppat.1008868.g004
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inflammation also program B cells to generate different qualities of antibodies [32]. Thus, qual-

itative changes in antibody profiles may be a reflection of inflammatory signals from newly

activated cells triggered by recent levels of viremia. Importantly, beyond non-specific alter-

ations in antibody properties that track with viral replication, our study elucidates antigen-spe-

cific humoral biomarkers that track directly with viral load. Further, while previous studies

highlighted distinct coordination profiles among HIV-specific humoral immune profiles

within different HIV-infected subject groups [11, 15, 20], here we have identified a small num-

ber of humoral features that provide discrete resolution of patient populations using an unbi-

ased systems serology profiling approach.

While viral load quantitation assays provide a remarkably robust approach to monitor viral

replicative activity, assays to measure the latent reservoir size and activity in its entirety have

been elusive. Several assays have been described that track with the number of latently infected

cells or cells that harbor virus that can be reactivated [33]. However, all of these approaches

only sample a small proportion of immune cells in an aliquot of blood, which may poorly rep-

resent the actual distribution of the virus spatially distributed across tissues and organs. Thus

the identified humoral biomarkers may offer a more holistic overview of reservoir size activity,

even deep within tissues, providing critical insights into the overall latent reservoir.

While several reactivation assays are in development, here we used viral DNA as a marker

of the overall size of both the reservoir that can be reactivated and the defective reservoir [34,

35], due to its reproducible association with time to rebound following treatment interruption

[36, 37]. We and others have argued that alterations in HIV-specific antibody profiles may

provide a more sensitive measurement of viral reactivation with in tissues [15, 38]. Moreover,

because the viral reservoir likely exists in germinal centers, where it may evade the cytotoxic

activity of both CD8+ T cells and NK cells, B cells may be able to detect even small changes in

reservoir activity, convert to plasmablasts, and then rapidly secrete antibodies to populate the

peripheral blood [27]. Thus, unlike sampling biases associated with viral quantification in

blood samples, changes in HIV-specific antibodies may provide a picture of activity through-

out the body and tissues.

Among the HIV specificities that are linked to reservoir size, specificities beyond those tar-

geting the HIV gp120 envelope protein, the dominant target of functional antibodies, were

identified. Specifically, changes in the accessory gene Vif were identified, pointing to the

potential induction of antibodies to a broader array of viral targets, potentially from unspliced

RNAs, in the setting of reservoir activity. Additionally, gp41-, rather than gp120-specific anti-

body profiles were linked to reservoir size, highlighting the potential importance of immuno-

dominant regions of the viral envelope, that are often retained on the infected cell surface [39].

Moreover, subjects with higher latent reservoirs have increased binding to Fc receptors and

less functional subclasses, while those with lower latent reservoirs have more functional sub-

classes and glycans. These data potentially suggest that the production of particular subclasses

and isotypes, able to mediate specific functions, may contribute to lower latent reservoir size.

These data are consistent with previous studies highlighting the presence of elevated levels of

functional IgG3 in HIV controllers [40, 41]. Additionally, digalactosylated monosialylated gly-

coforms were also associated with lower reservoir sizes in controllers and progressors. Galacto-

sylation has been previously tied to enhanced antibody function (primarily ADCC) and

sialylation has been tied to reduced inflammation [42]. Our results suggest that antibodies

with these specific properties may play a role in helping to maintain a lower reservoir in con-

trollers and progressors. Further, our population was collected to omit changes due to age/sex

at the time of recruitment. While, it is possible that changes in antibodies will track with age/

sex, this study was not powered to capture these differences as large sample sizes are necessary

to observe changes in subclass and glycosylation profiles of antibodies [43]. Rather, we
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demonstrate that the identified antigen-specific humoral biomarkers accurately capture differ-

ences across the spectrums of viral load and latent reservoir size, independent of /distinct from

the effect of these clinical parameters.

The markers reported here are a first comprehensive characterization of antigen-specific

antibody profiles that mark HIV disease state, viremia, as well as the latent reservoir. Our

framework highlights the strength of using systems approaches in identifying humoral anti-

gen-specific biomarkers from serum samples collected at a single time-point. A similar analyti-

cal approach can be leveraged in the future to identify and refine biomarkers that also shift

longitudinally. While we demonstrate the validity of the identified humoral biomarkers using

cross-validation, further validation studies will be required to ultimately define their global

clinical value across clades. However, it may be possible to identify antigen-specificities with

greater cross-population predictive value using comprehensive profiling with VirScan [44]

coupled to systems serology. Because HIV-specific antibody profiling tools may be easily

adapted as point of care diagnostics, the development of these tools may represent simple bio-

markers for the rapid evaluation of changes in viral replication outside of the blood and

changes in the reservoir size.

Methods

Ethics

All subjects were recruited from the UCSF-based SCOPE cohort. The UCSF and Massachu-

setts General Hospital Institutional Review Boards approved the study, and each subject pro-

vided written informed consent for participation in the study.

Subjects

Serum samples from a total of 78 human subjects, including 1) 12 subjects who spontaneously

control HIV to below detectable viremia levels (< 40 copies/ml) in the absence of ART–elite

controllers (ECs), 2) 23 subjects who spontaneously control HIV in the absence of ART but

have detectable viremia levels (40–2000 copies/ml)–viremic controllers (VCs), 3) 17 subjects

on ART with undetectable viremia (CTs, < 40 copies/ml), 4) 12 untreated chronically infected

progressive patients not on ART (CUs), and 5) 14 HIV- subjects, were used for antibody pro-

filing using our Systems Serology platform. The sample sizes were defined at the start of the

study aimed at powering the analysis based on previously quantified associations between anti-

body measurements and clinical phenotype [15]. There was an approximately equal distribu-

tion across the 5 clinical phenotypes.

Functional and biophysical assays

The functional and biophysical properties of a polyclonal pool of antibodies in the sera of the

78 subjects were profiled using our previously-described systems serology platform [18, 19]

(S1 and S2 Tables).

To measure monocyte phagocytosis, a human monocyte cell line (THP-1) -based assay was

performed as previously described [45]. Briefly, antigen-coupled green fluorescent beads were

incubated with serum for 2 hours at 37˚C to allow the formation of immune complexes (ICs).

These were then incubated with THP-1 cells for 16 hours, which were then fixed and analyzed

by flow cytometry. The percentage of FITC+ THP-1 cells was multiplied by the geometric

mean fluorescence intensity of FITC in FITC+ THP-1 cells to determine the antibody depen-

dent cellular phagocytosis (ADCP) score.
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To measure neutrophil phagocytosis, antigen-coupled green fluorescent beads were incu-

bated with serum for 2 hours to allow IC formation. These were then incubated with primary

leukocytes isolated from fresh whole blood (collected in anticoagulant citrate dextrose tubes)

and incubated for 1 hour at 37˚C. Gates were drawn on SSChigh CD66b+ CD14- cells, and

phagocytic scores were calculated as above.

Antibody-dependent cellular cytotoxicity (ADCC) was assayed using a modified rapid fluo-

rescent ADCC (RFADCC), as previously described [46]. In brief, immunoselected natural-kill-

ing resistant human T-lymphoblastoid (CEM-NKr) cells were pulsed with gp120 proteins and

labeled with the intracellular dye CFSE and the membrane dye PKH26. Purified IgG (from

serum) was added to the labeled, antigen-pulsed CEM-NKr cells after which fresh NK cells

were added. The cells were incubated for 4 hours at 37˚C and then fixed. The proportion of

cells that maintained membrane expression of PKH26 but lost CFSE staining (i.e., lysed cells)

were quantified via flow cytometry.

Antibody-dependent complement deposition (ADCD) was assessed via the measurement

of complement component C3b deposition on the surface of target cells. Antigen-coupled red

fluorescent beads were incubated with serum for 2 hours to allow IC formation. These were

then incubated with guinea pig complement for 20 minutes at 37˚C, and analyzed by flow

cytometry. Complement deposition was reported as median fluorescence intensity on the

FITC channel, after gating on singlet, red fluorescent particles.

Ab-dependent NK cell degranulation and cytokine/chemokine secretion were measured as

previously described [47]. Antigen-coupled beads were incubated with serum for 2 hours to

allow IC formation. These were then incubated with NK cells purified from buffy coats from

healthy donors. Gates were drawn on singlet, CD56+/CD3- cells and the results were reported

as the percentage of NK cells that expressed surface CD107a, intracellular MIP-1β, or intracel-

lular IFN-γ.

The isotype, subclass, and FcR binding profiles of antigen-specific antibodies were defined

using the previously reported multiplexed Fc Array assay [48, 49]. Briefly, uniquely fluorescently

coded microspheres were conjugated with HIV antigens of interest, incubated in sera samples,

and characterized using a panel of distinct detection reagents. Profiles were quantified in terms of

median fluorescent intensities for each measured antigen-specificity and detection reagent pair.

The Fc glycans on antigen-specific IgG were analyzed using a previously described method

[50, 51]. Serum samples and gp120-coupled beads were incubated for 1 hour at 37˚C with rota-

tion. The coupled beads were then incubated with IdeZ enzyme to cleave the Fc fragments

from the antibody-bound beads. These Fc fragments were then treated with PNGase F to

remove the glycans from the Fc fragments. These glycans which were then isolated and labeled

with APTS dye using a GlycanAssure kit. APTS-labeled glycan samples were analyzed by capil-

lary electrophoresis.

Classification model for discriminating between clinical phenotypes

We tried different classification models to distinguish subjects across the 5 clinical pheno-

types–elite and viremic controllers, subjects on combination antiretroviral therapy (ART),

chronic progressors not on ART and healthy HIV- controls. The inputs were the measured

humoral immune responses and the model attempted to predict a categorical label corre-

sponding to each clinical phenotype. We attempted to build 1) a regularized model similar to

one described previously [19]–a combination of the least absolute shrinkage and selection

operator (LASSO)[52] for feature selection and then classification using the LASSO-selected

features and 2) random-forest based models using the measured functional and biophysical

responses.
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The robustness of the model was evaluated using five-fold cross validation replicates. For

each five-fold cross validation run, subjects were randomly divided into five subsets. This was

done such that for each fold, four subsets served as the training set, and the fifth one served as

the test set. Each subset served as the test set once. Thus, for each cross-validation run, each

subject was in the test fold exactly once. Thus at the end of each cross-validation run, we obtain

a set of predicted arm labels for each subject. We performed 100 independent five-fold cross-

validation replicates to account for different ways in which the training and test folds can be

split.

The statistical significance of model performance was measured using a “negative control”

based on permutation testing [53], by randomly shuffling the data with respect to the arm

labels, within a cross validation framework. The features themselves were not shuffled, preserv-

ing the correlation structure of the data. These permutations were repeated 100 times to gener-

ate a distribution of model accuracies observed in the context of permuted data and randomly

selected size-matched feature sets. The entire procedure was repeated across all 5 cross-valida-

tion folds. After running through all 5 folds, we compared the predicted label for each subject

to the true labels, and obtained a true classification accuracy (equivalent to average classifica-

tion accuracy across the folds, as the folds are of equal size). We computed the P value as the

tail probability of the true classification accuracy in the distribution of control model classifica-

tion accuracies. We reported median P values across the independent cross validation repli-

cates. This is an exact P value from a permutation test (multiple hypotheses have not been

tested here, and multiple testing correction is not appropriate).

Using this framework, we found that a composite random forest classifier was the most

accurate at simultaneously discriminating between the clinical phenotypes. The composite

classifier was constructed using a linear combination of two different random forest models–

one on the functional measurements, and the other on the biophysical measurements.

Models for discriminating between subjects based on viral load and latent

reservoir size

To discriminate between subjects based on viral load and latent reservoir size, we divided sub-

jects into high/low categories based on a median split. We then used a regularized model simi-

lar to one described previously [19] that performs LASSO-based feature selection and

classification using the LASSO-selected features. The performance of the model was evaluated

in a 5-fold cross-validation framework as described above. For the negative control models, in

addition to permutation testing, a second negative control model based on random selection

of features, within a 5-fold cross-validation framework was also used. Here, we report an exact

P value from a permutation test (multiple hypotheses have not been tested here, and multiple

testing correction is not appropriate).

Supporting information

S1 Fig. Humoral response profiles can accurately distinguish clinical phenotypes even

within the HIV+ subjects. A. Bi-plot showing how a classifier built on functional (Fc effector

function) and array/biophysical data can discriminate between subjects across the 4 clinical

phenotypes comprising only the HIV+ subjects. The scores on each axis are obtained from a

corresponding random forest model. The X axis scores are from a random forest model built

on functional data, the Y axis scores are from a random forest model built on array/biophysical

data. B. Violin plots showing classification accuracy of the random forest model from 1A on

real and permuted data, as measured in a 5-fold cross validation framework (i.e., with data

from some subjects blinded/held out as described in the Methods). Exact P value calculated
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using a permutation test (P< 0.01) confirms significance of model.

(TIF)

S2 Fig. Correlations between markers for viral load/latent reservoir size and cytokines. A.

Correlations between 1. antigen-specific humoral markers of viral load for controllers and pro-

gressors and 2. a panel of non-specific cytokines. B. Correlations between 1. antigen-specific

humoral markers of latent reservoir size for controllers and progressors and 2. a panel of non-

specific cytokines.

(TIF)

S3 Fig. Correlates of latent reservoir size in only controllers. A. A LASSO-based model is

used to classify only controllers by latent reservoir size. The LASSO-selected features are visu-

alized in 2 dimensions using a PLSDA LV scores biplot. B. Violin plots showing classification

accuracy of the actual model from (a) and of 2 negative control models (based on randomly

selected features & permuted data), as measured in a 5-fold cross validation framework. Exact

P values (actual vs permuted and actual vs random-size matched) confirm significance of the

model. C. PLS VIP plot corresponding to the features in (a) used to classify subjects by latent

reservoir size.

(TIF)

S1 Table. List of humoral responses measured in the study.

(XLSX)

S2 Table. Clinical cohort description (includes clinical category, viral load, CD4 T cell

count and estimated reservoir size for each subject).

(XLSX)

S1 Data. Humoral measurements, viral loads and latent reservoir sizes for subjects in this

study.

(ZIP)
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