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Abstract
Human leukocyte antigen (HLA) immune genes play an important role in partner selection, but it has remained unclear if
nonrandom pairing with respect to parental HLA genes could occur at the level of the gametes. We tested this possibility by
investigating whether the sperm fertilization competence in humans is dependent on HLA genotype combination of the
partners. We conducted a full-factorial experiment, in which the sperm physiological preparation for fertilization among
multiple males was studied in the presence of follicular fluid (oocyte surrounding bioactive liquid) of several females. All the
studied sperm pre-fertilization physiological parameters (motility, hyperactivation, acrosome reaction, and viability) were
strongly dependent on male–female combination. In other words, follicular fluids (women) that induce strong sperm
physiological response in some males often induce much weaker response in the other(s). Sperm physiological responses
were stronger in HLA-dissimilar male–female pairs than in HLA-similar combinations, but none of the measured sperm
traits were associated with genome-wide similarity. Together, these findings shed new light on the evolutionary and
immunological mechanisms of fertilization. Furthermore, our results raise an intriguing possibility that against currently
prevailing WHO’s definition, infertility may not represent exclusively a pathological condition, but may also result from
immunogenetic incompatibility of the gametes.

Introduction

Fertilization success is strongly dependent on gamete-level
biochemical interactions (reviewed by Kekäläinen and Evans
2018), which are mediated by chemical signals released by the
eggs and the reproductive tract of the female (Eisenbach and
Giojalas 2006). These female-derived cues guide sperm

toward unfertilized eggs (chemotaxis) and trigger remarkable
changes in sperm physiology, including capacitation (func-
tional maturation), hyperactivation, and acrosome reaction
(Yoshida et al. 2008; Cramer et al. 2016; Flegel et al. 2016;
Brown et al. 2017; Kekäläinen and Evans 2017). In mammals,
this complex signaling process ensures that only a minor
proportion of ejaculated spermatozoa is capable of entering the
oviducts, and that only few of these cells eventually reach the
egg(s) (Robertson 2005; Eisenbach and Giojalas 2006; Holt
and Fazeli 2015). Accumulating evidence from nonhuman
species indicates that these cellular-level signaling mechan-
isms may have an additional function in sexual selection by
facilitating mate choice (“partner selection”) at the level of the
gametes (Gasparini and Pilastro 2011; Alonzo et al. 2016;
Rosengrave et al. 2016; reviewed by Kekäläinen and Evans
2018). Resulting nonrandom interactions between gametes
frequently favor assortative fusion between genetically com-
patible sperm and eggs (Kekäläinen and Evans 2018). Recent
studies have suggested that major histocompatibility complex
(MHC) immune genes play important role as a mediator of
this gamete-level selection process (Løvlie et al. 2013;
Gasparini et al. 2015; Lenz et al. 2018).
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In humans, mating preferences are known to be influ-
enced by body odors associated with human leukocyte
antigens (HLA), a gene complex that encodes MHC genes
in humans (Wedekind et al. 1995; Jacob et al. 2002; Roberts
et al. 2008; Sorokowska et al. 2018). Interestingly, there is
evidence that both HLA molecules (Martín-Villa et al.
1996; Paradisi et al. 2000; Zhu et al. 2019; Sereshki et al.
2019) and HLA-linked olfactory receptors that detect these
molecules (Ziegler et al. 2010; Flegel et al. 2016) are pre-
sent on the surface of human sperm. Consequently, Ziegler
et al. (2010) proposed that sperm HLA-linked olfactory
receptors might have a key role in signaling the “self”
(identity) and HLA genotype of the male (sperm) to
females. Similarly, the secretions of the female reproductive
tract, such as follicular fluid, are known to contain soluble
HLA molecules (e.g., Rizzo et al. 2007; Ouji-Sageshima
et al. 2016), which in turn may reveal the identity of the
female to the sperm (Ziegler et al. 2010). Together above-
mentioned findings suggest that MHC (and HLA) genes
may mediate mating preferences both in individual and
gamete-level (Ziegler et al. 2010, see also Rülicke et al.
1998; Yeates et al. 2009; Løvlie et al. 2013; Firman et al.
2017; Geßner et al. 2017; Lenz et al. 2018, for gamete-level
MHC preferences in animals). However, to best of our
knowledge, none of the earlier studies has experimentally
tested whether the gamete-level HLA preference could exist
in humans (Holt and Fazeli 2015; Kekäläinen and Evans
2018). Furthermore, the relative importance of HLA-
mediated gamete interactions for human fertilization suc-
cess (or infertility) has remained unexplored.

According to the current definition of the World Health
Organization (WHO), infertility is a disease of the repro-
ductive system, manifested by the inability to achieve
pregnancy after 12 months of unprotected sexual intercourse
(Zegers-Hochschild et al. 2009). Accordingly, the causes of
infertility are divided into male- and female-derived patho-
logical factors (Gardner et al. 2018). However, reliable
assessment of human infertility is currently extremely chal-
lenging (e.g. Ray et al. 2012; Gelbaya et al. 2014; Skakke-
baek et al. 2016; Oehninger and Ombelet 2019) and in a
significant proportion of couples the cause of infertility
remains unknown (Ray et al. 2012). Thus, at present,
infertility diagnoses have been argued to be essentially
prognoses rather than strict medical diagnoses (McLernon
et al. 2014; Somigliana et al. 2016). Diagnostic challenges
often arise due to high individual- and couple-specific var-
iation in the probability of conceiving. Along with above-
mentioned findings, this indicate that rather than being just a
pathological condition, infertility could also be caused by the
immunogenetic incompatibility of the gametes.

In the present study, we investigated the role of follicular
fluid, that is, the bioactive liquid surrounding the egg in an
ovarian follicle, as a potential mediator of gamete-level

mate preferences in humans. Follicular fluid contains
secretions of the cumulus-oocyte complex and these che-
mical factors are emanated into the oviduct during the
ovulation (e.g., Ezzati et al. 2014). Given that cumulus-
oocyte complex secretes sperm-activating factors both prior
to ovulation within the follicle and after the ovulation in the
oviduct (Eisenbach and Giojalas 2006), the biochemical
composition of follicular fluid can be expected to have
important implications for the fertilization process. Sup-
porting this view, sperm physiological response to follicular
fluid has been demonstrated to predict both the fertilization
success of the sperm and the success rate of fertility treat-
ments (e.g., Ralt et al. 1991; Huang et al. 2007). We treated
the sperm of eight men with the follicular fluid of ten
women, in all possible male–female combinations (full-
factorial design: n= 80 combinations). We then measured
motility, hyperactivation, acrosome reaction, and viability
of sperm in all of these combinations. Finally, we geno-
typed all the participants by a genome-wide SNP array,
imputed their HLA class I and II alleles at unique protein
sequence level, and then studied whether the degree of HLA
similarity (or genome-wide SNP divergence) between males
and females predicts sperm fertilization competence. This
experimental design allowed us to study functionally
important sperm pre-fertilization physiological changes
from early capacitation to the final major pre-fertilization
physiological modification of the sperm, the acrosome
reaction, and to compare how these sperm physiological
responses vary among independent male–female (and their
HLA genotype) combinations. Importantly, applied full-
factorial design permitted us to evaluate gamete-level
compatibility differences between multiple male–female
pairs without experimentally fertilizing the eggs, which
would be practically impossible in humans.

Methods

Study subjects and sample collection

The participants (n= 10 women and eight men) of this
study were recruited via the fertility clinic of the North
Karelia Central Hospital, Joensuu, Finland. All the parti-
cipants were Caucasian and their mean age was 33.2
(± 4.4 s.d.) years for females and 33.5 (± 4.4 s.d.) years for
males. Follicular fluid samples were collected from
females undergoing transvaginal follicular aspiration for
in vitro fertilization. A transvaginal follicular puncture
was performed under local anesthesia, using ultrasound
guidance. Prior to collection, follicle maturation was
hyperstimulated with follicle-stimulating hormone, and
premature ovulation was prevented using a gonadotrophin-
releasing hormone antagonist. To control the potential
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impact of hyperstimulation on the follicular fluid compo-
sition, ovulation induction of all the participants was
performed using an identical protocol. When the diameter
of the largest follicle reached 18–20 mm, human corion
gonadotrophin was administered. After collection, folli-
cular fluid samples were centrifuged at 500 × g for 10 min,
and the supernatant was aliquoted and stored in liquid
nitrogen for later use (see below). Of ten women, two were
diagnosed with an ovulation disorder; the remaining eight
had no infertility diagnoses.

All the male participants provided semen samples by
masturbation after 2–5 days of sexual abstinence. After
collection, semen samples were first allowed to liquefy for
30 min at +37 °C, and the spermatozoa were then separated
from the seminal plasma by a two-layer (40 and 80%)
density gradient centrifugation (PureSperm® 40 and 80,
Nidacon International AB, Mölndal, Sweden) according to
manufacturer’s instructions. After the density gradient
centrifugation, spermatozoa were rinsed by an additional
centrifugation in PureSperm® Wash solution (Nidacon).
The resulting final sperm concentration was ca. 40 million
cells/ml. All the male subjects were diagnosed as normo-
zoospermic according to the WHO’s criteria (WHO 2010).

Sperm follicular fluid treatment and motility
measurements

Follicular fluid samples of each of the ten women were
divided in two independent replicate samples, A and B
(20 samples in total, Supplementary Fig. 1). Washed sperm
aliquots from each of the eight men were then combined
with these 20 follicular fluid samples (25 µl sperm+ 25 µl
follicular fluid= follicular fluid treatment) in all possible
male–female combinations (full-factorial design: n= 8
males × 10 females × two subsamples= 160 combinations
in total). Selected follicular fluid concentration (50% dilu-
tion) was based on earlier findings, demonstrating that fol-
licular fluid stimulates sperm motility across a wide
concentration range (Kulin et al. 1994; Ralt et al. 1994;
Getpook and Wirotkarun 2007). Thus, even if postovulatory
follicular fluid concentration in the human oviducts is
unclear, sperm physiological response to 50% follicular
fluid dilution can be expected to predict sperm response
in vivo. All the above-mentioned sperm follicular fluid
dilutions were kept at +37 °C during the entire experi-
mental period. For each male, all the sperm measurements
(see below) were performed on the day of semen collection
(i.e., by using fresh sperm).

The effect of follicular fluid treatment on sperm motility
(curvilinear velocity: VCL, linearity of the swimming tra-
jectory: LIN, and amplitude of the lateral head displace-
ment: ALH) was determined using computer-assisted sperm
analysis (Integrated Semen Analysis System, v. 1.2 Proiser,

Valencia, Spain), with a negative phase contrast microscope
(×100 magnification) and a capture rate of 100 frames s−1.
Sperm motility was measured by adding 1 μl of each of the
160 different sperm follicular fluid dilutions to pre-warmed
(+37 °C) Leja 4-chamber (chamber height 20 μm) micro-
scope slides (Leja, Nieuw-Vennep, the Netherlands). We
recorded sperm motility at four different time points (30, 90,
180, and 300 min after the beginning of the follicular fluid
treatment). The time points were selected based on the
knowledge that the capacitated state of human sperm last ca.
50–240 min in vitro (Eisenbach and Tur‐Kaspa 1999).
Within each male–female combination (and time point),
sperm motility measurements included two independent
recordings within both replicates, resulting in four motility
recordings per male–female pair (n= 320 recordings in
total). To avoid a potential time effect on the measured
sperm traits, sperm motility in the first (A) replicate was
always measured in the following order: FF1, FF2, …,
FF10, whereas the second (B) replicate was measured in the
opposite order: FF10, FF9, …, FF1 (Supplementary Fig. 1).
The mean total number of measured sperm cells per
male–female combination was 1160 (±23.7 s.e.m.).

Measurement of sperm physiological state

The proportion of hyperactivated sperm cells in each of the
above-mentioned four time points was determined based on
three motility parameters that have been shown to char-
acterize hyperactivated sperm motility (Kay and Robertson
1998): sperm VCL (VCL > 150 µm/s), LIN (LIN < 50%),
and ALH displacement (ALH > 2.0). The resulting hyper-
activated sperm subpopulation represented 20.9% of the total
sperm count, which closely corresponds with earlier findings
that ~20% of human sperm undergoes hyperactivation
simultaneously (reviewed by Kay and Robertson 1998).

Sperm acrosome reaction and viability in each
male–female combination (300 min after the beginning of
the follicular fluid treatment) was determined by staining
the sperm samples with fluorescein isothiocyanate-labeled
peanut agglutinin (PNA, 25 µg/ml) and propidium iodide
(PI, 0.5 µg/ml), respectively. After staining, the sperm was
immobilized with 1% formaldehyde on a microscope slide.
The proportion of acrosome-reacted (PNA-stained) and/or
dead (PI-stained) sperm were determined by imaging the
sperm with Zeiss Axioplan 2 fluorescent microscope,
Proiser C13-ON camera, and XIMEA CamTool software.
The mean total number of imaged sperm cells per
male–female combination was 511 (±15.2 s.e.m.).

Genotyping of study subjects

DNA of all the 18 subjects was extracted from EDTA blood
using automatized Qiasymphony SP instrument (Qiagen).
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Extracted DNA samples were genotyped on Illumina Glo-
balScreeningArray-24v2-0+Multi-Disease beadchip at the
Institute for Molecular Medicine Finland (FIMM). All
genotypes were named with GenomeStudio 2.0.3 software,
and a subset was checked manually based on pre-
determined selection criteria such as low call rates, bad
cluster separation, low signal intensity, quality scores, and
heterozygote excess. The parameters used in the quality
control of X chromosomal and autosomal markers were:
call rate < 97%; cluster separation < 0.3; AB R Mean (low
intensity SNPs) < 0.3; AB T Mean (SNPs where two clus-
ters are close to each other) < 0.2 or >0.8; heterozygote
excess <−0.3 (not X chromosome) or >0.2; AA or BB T
Dev > 0.05; and AB T Dev (too many or CNV like clusters)
> 0.07. PLINK v1.90b6.6 (Chang et al. 2015) (www.cog-
genomics.org/plink/1.9/) was used to manage and filter the
genotyping data. For genotyping quality control, the fol-
lowing settings were applied: missing genotype frequency
(geno) < 0.05, P value for deviation from Hardy–Weinberg
equilibrium > 1e− 5; minor allele frequency > 0.01; indivi-
dual missing genotype rate (mind) < 0.05. A total of 31,514
of 759,993 variants (4.1%) was discarded during the initial
quality control procedure. 402,013 variants and all indivi-
duals passed the genotyping filters, and 2977 of the passed
variants were located within the MHC region on
chromosome 6.

The HLA imputation of seven classical HLA genes
(HLA-A, -B, -C, -DRB1, -DQA1, -DQB1, and -DPB1) at
four-digit (i.e., protein level) resolution was carried out in R
v3.4.4 (R Core Team R 2018), using the package HIBAG
v1.18.1 (Zheng et al. 2014) with default settings and the
European reference panel (European-HLA4-hg19.RData)
for the human genome build GRCh37. The HLA similarity
between each male–female combination was determined by
(1) calculating the number of shared HLA alleles (0–14)
over the seven imputed HLA genes; and (2) calculating the
genetic distance between HLA alleles using the hlaDistance
function from the HIBAG R package. The whole-genome
similarity measure between each male–female combination
was calculated as the total sum of the number of shared
genotypes for all genotyped and quality-filtered bi-allelic
single nucleotide polymorphisms. In other words, geno-
typed variants were averaged in a single value, which pre-
vented any single variants from dominating the genome-
wide similarity estimate, which in turn can be expected to
increase the accuracy of the overall estimate.

Statistical analyses

The effect of male, female, and male–female interaction
(combination) on sperm motility, hyperactivation, acrosome
reaction, and viability were tested in linear mixed-effects
models. In the models, sperm follicular fluid treatment

replicate (A and B, see above) was used as a fixed factor,
and male effect, female effect, and male–female interaction
effect were used as random factors. The association between
male–female HLA similarity or genome-wide similarity and
measured sperm traits was studied by adding the number of
shared HLA alleles, genetic similarity of HLA alleles, or
genome-wide SNP similarity in each (n= 80) male–female
combinations as an additional fixed effect in the above-
mentioned models. Model assumptions were graphically
verified using Q–Q plots and residual plots. All P values
presented are from two-tailed tests, with α= 0.05. Mixed
model analyses were conducted using lmerTest package in
R (version 3.5.1).

Results

Sperm motility, acrosome reaction, and viability

Sperm swimming velocity (VCL) and the proportion of
hyperactivated sperm cells were affected by male, female,
and male–female interaction (Table 1). Time point-specific
analyses revealed that the male–female interaction effect for
sperm swimming velocity and hyperactivation was statisti-
cally significant 180 and 300 min after follicular fluid
treatment (Figs. 1, 2, Supplementary Tables S1, and S2).
Similarly, sperm viability was affected by all three random
effects (male, female and male–female interaction), whereas
the sperm acrosome reaction was affected only by male and
male–female interaction (Table 2 and Fig. 3). The propor-
tion of hyperactivated sperm cells at 300 min was positively
associated with the strength of the sperm acrosome reaction
(t= 3.99, P < 0.001), but no association was detected
between proportion of hyperactivated sperm and sperm
viability (t=−0.29, P= 0.78).

Table 1 Linear mixed model statistics for the effect of male, female,
and male–female interaction (M × F) on sperm swimming velocity
(VCL) and hyperactivation.

Effects VCL Hyperactivation

Random χ2 d.f. P value χ2 d.f. P value

Male 129.64 1 <0.001 95.63 1 <0.001

Female 11.03 1 <0.001 9.91 1 0.002

M × F 13.35 1 <0.001 11.20 1 <0.001

Residual

Fixed t d.f. P value t d.f. P value

Intercept 28.98 7.58 <0.001 15.28 7.98 <0.001

Replicate −9.97 239 <0.001 −9.71 239 <0.001

Bold values indicate statistically significant P-values
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The effect of HLA similarity and genome-wide
similarity

The number of shared HLA alleles and the genetic similarity
of HLA alleles between males and females, were negatively
associated with sperm swimming velocity (number of shared
alleles: t=−3.14, P= 0.003 (Fig. 4), genetic similarity:
t=−2.91, P= 0.005) and the proportion of hyperactivated
sperm (number of shared alleles: t=−2.74, P= 0.008;
genetic similarity: t=−2.50, P= 0.015). No statistically
significant associations were found between HLA similarity

Fig. 1 Sperm motility in different male-female combinations. The
effect of male–female interaction (combination) on sperm swimming
velocity (±s.e.m.) (a) and the proportion of hyperactivated sperm cells

(±s.e.m.) (b) 300 min after the initiation of the follicular fluid treat-
ment. Bar colors representfemale identity (n= 10), within each male
(1–8).

Fig. 2 Relative contribution of males, females, and male–female interaction on sperm motility. Proportion of variance explained by males,
females, and male–female interaction (combination) in sperm swimming velocity (VCL) (a) and hyperactivation (b) 30–300 min after the initiation
of the follicular fluid treatment.

Table 2 Linear mixed model statistics for the effects of male, female,
and male–female interaction (M × F) on sperm acrosome reaction (%)
and proportion of dead sperm.

Effects Acrosome reaction Sperm viability

Random χ2 d.f. P value % var χ2 d.f. P value % var

Male 79.8 1 <0.001 62.01 73.9 1 <0.001 65.13

Female 3.63 1 0.057 3.15 8.69 1 0.003 6.90

M × F 44.0 1 <0.001 12.84 167.6 1 <0.001 19.09

Residual 22.00 8.90

Bold values indicate statistically significant P-values

Gamete-level immunogenetic incompatibility in humans–towards deeper understanding of. . . 285



and the proportion of acrosome-reacted sperm (number
of shared alleles: t=−0.43, P= 0.67; genetic similarity:
t= 0.22, P= 0.83) or the proportion of dead sperm cells,
although the genetic similarity of HLA alleles tended to be
associated with higher sperm mortality (number of shared
alleles: t= 1.49, P= 0.142; genetic similarity: t= 1.82,
P= 0.073). None of the four measured sperm parameters
was associated with genome-wide male–female similarity
(P > 0.16, in all cases).

Discussion

Our results show that the effect of follicular fluid on sperm
motility, acrosome reaction, and viability were all strongly
dependent on the male–female combination (interaction). In
other words, follicular fluids (i.e., women) that have only a
minor effect on measured sperm traits in some males can
have a major effect on sperm physiology in the other(s). The
relative importance of the male–female interaction effect
increased with time, which is in line with earlier findings
showing that follicular fluid-induced selective recruitment
of sperm for fertilization takes a minimum of ca. 1–4 h (e.g.,
Cohen-Dayag et al. 1995). Finally, sperm motility and
hyperactivation were negatively associated with HLA
similarity of male–female combinations, but were not
affected by the genome-wide similarity of the males and

Fig. 3 Sperm acrosome reaction and viability in different male-female combinations. The effect of male–female interaction (combination) on
thesperm acrosome reaction (±s.e.m.) (a) and the proportion of dead sperm cells (±s.e.m.) (b). Bar colors represent female identity (n= 10), within
each male (1–8).

Fig. 4 The association between male–female HLA similarity
(number of shared alleles) and sperm swimming velocity (VCL).
The slope in the figure describes predicted (i.e., modeled) average
effect of HLA similarity on VCL in eight males. To control between
male differences in intrinsic sperm quality, the slope was modeled in
individual male level, when the average slope of eight males was
clearly negative (intercept: 177.6; slope: −1.10, P= 0.003). The slope
of the association did not vary across males (P= 0.28).
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females. Together, these results indicate that the functional
(fertilization) competence of sperm is shaped by the HLA
combination (dissimilarity) of males and females. Although
previous studies have demonstrated the importance of HLA
genes in human mate choice prior to copulation (Milinski
et al. 2013; Kromer et al. 2016; Winternitz et al. 2017;
Dandine-Roulland et al. 2019), the function of these genes
in gamete-level mate choice has not earlier been demon-
strated in humans. However, Scofield et al. (1982) have
hypothesized that self–nonself recognition of the gametes
may be the original adaptive function of ancestral MHC
genes. Along with present findings, this indicates that MHC
molecules and/or MHC-associated odor receptors play an
important role in partner selection both at the individual and
gamete level, possibly across the animal kingdom (see also
Holt and Fazeli 2016).

Follicular fluid is released and emanated into the oviduct
during ovulation, where it is present also during fertilization
(e.g. Getpook and Wirotkarun 2007). Earlier studies have
shown that follicular fluid has a critical function in the
regulation of sperm pre-fertilization physiology, such as
sperm motility and directed migration toward unfertilized
eggs (chemotaxis) (Ralt et al. 1994; Fabro et al. 2002). It
has also been shown that males exhibit high intra-specific
differences in the strength of the sperm physiological
response to female-derived reproductive secretions
(reviewed by Kekäläinen and Evans 2018). However, it has
remained unclear if female-derived reproductive fluids
could mediate selective fusion between gametes in mam-
mals (but see Satake et al. 2006). This largely reflects the
fact that gamete-level communication processes that are
naturally occurring within the female reproductive tract, are
technically challenging to investigate (Firman et al. 2017).
In the present study, conducted full-factorial experimental
design allowed us to demonstrate that follicular fluid may
have an important function in gamete-level selection pro-
cess in humans.

Despite the potential relevance of such nonrandom
gamete-level interactions both from evolutionary and clin-
ical point of view, the molecular-level mechanisms of
gamete-mediated mate choice have remained largely
unclear (but see Kekäläinen and Evans 2017; Chen et al.
2019). Ejaculates are known to trigger a strong immune
response in the reproductive tract of the females, and the
strength of the response shows considerable individual
variation across human males (Sharkey et al. 2007). It has
therefore been envisaged that the immune system may play
an important role in post-copulatory sexual selection (or
gamete-mediated mate choice) (Morrow and Innocenti
2012; Wigby et al. 2019). Thus, in addition to its “normal”
function in immune defense, female immune system may be
also involved in ensuring the immunogenetic compatibility
of the gametes prior to their fusion (Robertson 2010;

Kekäläinen and Evans 2018; see also Scofield et al. 1982).
Interestingly, Sereshki et al. 2019 recently showed that
mature human spermatozoa express HLA class I and II
molecules on their surface, which indicates that HLA genes
act as an important mediator of this gamete-level compat-
ibility verification process. Together with these earlier stu-
dies, our present findings raise the novel possibility that
infertility problems may not result exclusively from male or
female pathological factors. Instead, fertilization problems
may also arise from nonrandom gamete-level biochemical
interactions that can reduce (or prevent) the fertilization
success of HLA-similar partners.

From the evolutionary perspective, gamete-level
mechanisms that discourage fusion of such gametes are
entirely plausible, since HLA allelic dissimilarity in off-
spring is associated with broader peptide antigen presenta-
tion capability by HLA molecules and thus with a better
ability to fight against infections. Given that pathogens are
thought to be the strongest selective agent in human evo-
lution (e.g., Winternitz et al. 2017), selective fusion among
HLA-dissimilar gametes can facilitate to optimize off-
spring’s immune response against prevailing pathogens
(Wedekind et al. 1996; Lenz et al. 2018). Alternatively, a
preference for HLA-dissimilar gametes may be independent
of immunogenetic benefits if HLA alleles serve as marker of
the genetic relatedness of the mating partners (Winternitz
et al. 2017). In this scenario, the primary function of HLA-
dissimilarity preferences may be to prevent mating between
close relatives (Huchard et al. 2013). In the present study,
we found no association between the measured sperm traits
and genome-wide similarity of males and females, indicating
that our results could be explained by direct gamete-level
HLA-dissimilarity preferences rather than by a by-product of
inbreeding avoidance based on HLA-independent cues.

In conclusion, our results demonstrate that sperm ferti-
lization capability in humans show major differences
between different male–female combinations and is nega-
tively affected by the HLA similarity of the partners. This
raise the possibility that along with male and female
pathological conditions, infertility problems may also arise
as a consequence of cellular-level HLA incompatibility
avoidance processes that occur prior to gamete fusion. In
other words, fertilization failure may not necessarily
represent a disease of the reproductive system but may also
indicate that the gametes of some partners may be immu-
nologically less compatible than the others. We envisage
that a better integration of the gamete compatibility concept
into current clinical practices may open novel possibilities
for the development of more accurate (personalized) infer-
tility diagnostics. This would facilitate planning and opti-
mization of infertility treatments to individual couples, and
this way reduce the total duration and costs of these
treatments.
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