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Abstract

Interstitial lung diseases are a diverse group of disorders that involve inflammation and fibrosis of interstitium, with

clinical, radiological, and pathological overlapping features. These are an important cause of morbidity and mortality

among lung diseases. This review describes computer-aided diagnosis systems centered on deep learning approaches that

improve the diagnostic of interstitial lung diseases. We highlighted the challenges and the implementation of important

daily practice, especially in the early diagnosis of idiopathic pulmonary fibrosis (IPF). Developing a convolutional

neuronal network (CNN) that could be deployed on any computer station and be accessible to non-academic centers is

the next frontier that needs to be crossed. In the future, early diagnosis of IPF should be possible. CNN might not only

spare the human resources but also will reduce the costs spent on all the social and healthcare aspects of this deadly

disease.

Key Points

* Deep learning algorithms are used in pattern recognition of different interstitial lung diseases.

* High-resolution computed tomography plays a central role in the diagnosis and in the management of all interstitial lung
diseases, especially fibrotic lung disease.

* Developing an accessible algorithm that could be deployed on any computer station and be used in non-academic centers is the
next frontier in the early diagnosis of idiopathic pulmonary fibrosis.
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Introduction

Interstitial lung diseases (ILDs) denote over 200 diverse lung
disorders that involve inflammation and fibrosis of intersti-
tium, with overlapping clinical, radiological, and pathological
features, representing an important morbidity and mortality
cause [1].

High-resolution computed tomography (HRCT) is the
main method in ILD diagnosis, due to the lung tissue—
specific radiation attenuation properties and maximum spatial
resolution. The imaging data are evaluated by various textural
patterns in the lung window extent and distribution. The as-
sessment focuses on the image’s gray tones and geometrical
structures, effectively a repetitive pattern matching problem,
creating the perfect context for using computer-aided diagno-
sis (CAD) systems.

CAD enables medical practitioners to understand and uti-
lize various imagistic investigations, with the help of informa-
tion technology (IT) techniques [2]. The aim is to improve the
diagnosis time and accuracy, with IT acting as support or even
as an independent diagnostic option [3]. The CAD algorithms
belong to artificial intelligence (Al), emulating human think-
ing [4]. The ILD diagnosis is essentially an algorithm with the
following workflow: in comprehensive history, if physical
examination findings and paraclinical investigations (chest
X-ray, measurements of lung function, usual and specific
blood tests) present a suspicion for ILD, a HRCT is performed
[5]. The human factor intervenes next, by verifying the result-
ed data validity and, if no problems/artifacts are found,
searching for patterns in specific locations. If there are clear
findings, a diagnosis can be formulated, but if the results are
inconclusive, the outcome is a list of possibilities requiring
further discussions and more complex, invasive investiga-
tions. The individual performing this algorithms is therefore
critical to accurate and speedy diagnosis, injecting an overall
intrinsic variability. Since CAD can emulate the algorithm, it
would make it an ideal choice for this stage, eliminating
variances.

This paper aims to offer an in-depth analysis of the way
virtual Al improves ILD diagnosis, with an emphasis on
convolutional neural networks (CNNs).

Computer-aided diagnosis history

Al component’s virtual subclass is machine learning (Fig. 1),
comprising mathematical algorithms used by computer sys-
tems in order to learn a specific task through experiences,
without specific human instructions [6].

The advancement of that is deep learning (DL), consisting
of a multi-layer representation learning architecture. The rep-
resentation activates the first layer of neurons through a sen-
sor, which, in turn, activates the next layer by complex
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Fig. 1 Artificial intelligence progression diagram (Al, artificial
intelligence; CNN, convolutional neural network)

connections. Each layer processes the representation in a
non-linear way, creating an increasingly complex schema, di-
verging from the general machine learning task-specific algo-
rithm [7, 8].

DL’s major advantage is that it can improve autonomously,
without human input. From a usage standpoint, it can perform
arbitrary parallel computation more efficiently than other al-
gorithms [9, 10]. DL is used in visual object recognition [7],
speech recognition [11], driving assistance [12], and language
classification [10] among others.

The first algorithm successfully used for pattern recogni-
tion was neocognitron, in 1980, which integrated neurophys-
iological architecture [8, 13, 14]. The key for successful fea-
ture extraction is in creating an appropriate network architec-
ture, as shown by the apparition of backpropagation tech-
nique, in 1989, which allowed handwritten digit recognition,
becoming a landmark reference [15].

CNNs require large, balanced datasets and advanced algo-
rithms, reflecting into processing power and storage capacity
requirements [8, 9]. Krizhevsky et al developed a CNN model
named Alex Net by gathering the biggest database for training:
1.2 million images. The algorithm was able to classify the images
into 1000 nature categories with the smallest possible error rate
[16], making it the state-of-the-art database for training CNNss.

Performance wise, the first neural network to achieve su-
perhuman performance in visual pattern recognition (http:/
people.idsia.ch/~juergen/superhumanpatternrecognition.
html) appeared in 2011, when Ciresan et al used a deep neural
network on graphics processing unit to recognize traffic signs
images. In the last decade, graphics processing unit
improvements made possible shorter computation time for
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complex operations in a common setting, flourishing CNN
development [8, 17].

Each CNN has a complex architecture with an initial image
input as pixel array from a receptive field with several hidden
computational connection layers afterward [6, 7] as detailed in
Fig. 2.

The convolutional layer, CNN’s main component, consists
of multiple, weighted individual filters [7]. The multiple filter
sets detect different patterns in images. The detection pro-
gresses from small patterns such as corners, lines, and edges
to shapes and objects.

For a CNN to perform, it requires multiple layer types and
transmission between them [6]. The final stage predicts the
image category probabilities, determining the strongest and
the most relevant active feature class [16].

The earliest CNN application in the Healthcare field dates
into the early 1990s. Lo et al applied the CNN algorithm for
lung nodule detection on chest X-rays, reaching a true-
positive detection rate of 80% [18]. Sahiner et al used CNNs
to classify mass from normal breast tissue on mammograms,
with a 90% positive value [19]. In 2008, CNNs successfully
detected hippocampal sclerosis on brain MRI [20]. These first
studies’ high positive rates are biased due to the small data-
base and easily detected lesion types.

There are multiple challenges in acquiring medical images
for using in deep learning:

(1) They are difficult and costly to obtain, compared with
common images.

Input Image

Convolution
layer

RELU
layer

-

(ii) To validly annotate bio-images, specialists must be used.

(iii)) The medical database volume is generally insufficient,
while the state-of-the-art image analysis datasets
(ImageNet, AlexNet, GoogLeNet, VGGNet) contain
thousands or even millions of natural image instances.

A workaround could be transfer-learning, where weights
from a trained CNN on a nature dataset are conveyed to an-
other CNN with a different dataset [6, 21].

Even though natural images and medical images are greatly
different, the former being colored, whereas X-rays, CT im-
ages, and MRI images are gray-scaled, they all share the same
descriptors. Histograms of oriented gradient and scale-
invariant feature transform have been successfully applied to
medical image segmentation and detection. Bar et al validated
this in chest pathology by applying CNNs trained on non-
medical image datasets to 93 chest X-ray images [22]. The
area under the curve (AUC) was 0.93 for right pleural effusion
detection, 0.89 for heart enlargement detection, and 0.79 for
classifying normal versus abnormal chest X-rays. All values
are well above 0.5, showing excellent model skill.

Starting in 2014, CNN applications in bio-imaging research
flourished in segmentation, detection, and classification appli-
cations like lung nodule detection and classification, colon pol-
yp detection, coronary calcification detection [23, 24], skin
cancer classification [25], knee cartilage segmentation [26],
brain tumor segmentation [27], and breast lesions classification
[28, 29]. At present, the intention is to achieve higher accuracy
and better performance than that of a human counterpart.
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Fig. 2 Convolutional neural network architecture
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Although Al research has been predominantly directed to
neurology [30], oncology, and cardiovascular diseases [6], as
the first three major death causes, the chest imaging field also
presents interest for lung nodule detection and classification
[31, 32], tuberculosis lesion classification [33], lesion detec-
tion and classification [34], and parenchyma pulmonary dis-
ease classification [35].

Interstitial lung disease-specific CAD

Typical ILD patterns in (HR) CT images are reticulation (RE),
honeycombing (HC), ground-glass opacity (GGO), consolida-
tion (CD), micro-nodules (MN), emphysema (EM), or com-
binations of the above. The difficulty appears when the results
are combined or inconclusive (Fig. 3)

CNNs need large image samples because normal lung or
different tissue categories could exhibit similar appearances
(Fig. 3a, b or ¢, d), while significant variations might be seen
between different subjects for the same tissue class (Fig. 3c—).

Anthimopoulos M. et al [36] designed and trained one of
the first CNN to classify the most common ILD patterns,
achieving an 85.5% classification performance, therefore
demonstrating the DL recognition capacity for lung tissue
idiosyncrasy. Experienced radiologists annotated 120 HRCT
by excluding ambivalent lung areas and the bronco-vascular
tree which were used afterwards for training and testing the
CNN. The proposed algorithm achieved superior performance
compared with the state-of-the-art methods at that time (Alex
Net, VGG-Net-D), mainly because of the hyper-parameters
developed for the ILD pattern characterization. However, a
misclassification rate was found between HC and RE due to

their common fibrotic nature as shown in Annex 1 in the
Supplementary Material. The combination between GGO/
RE and individual GGO and RE pattern had also a high mis-
classification rate due to the overlapping appearance.
Clinically, this reflects the significance in differentiating idio-
pathic pulmonary fibrosis (IPF) vs. non-specific interstitial
pneumonia, as an accurate description of texture apart of
gray-scale intensity value.

Dealing with these challenges, Christodoulidis S. et al [21]
presented a CNN architecture that could extract the textural
variability of ILD patterns. Using transfer learning from mul-
tiple non-medical source databases, they achieved an unsatis-
factory increase of only 2% in the CNN performance. The big
downfall in [21] is the usage of CT images, instead of HRCT.

Applications that use HRCT are only a few, like [37-39],
all using CNNs for categorization. Even if Li et al [38] and Li
et al [39] go a step further by using a custom architecture in an
unsupervised algorithm, their performance is not as good as
other options (e.g., [21, 40]).

How complex the CNN should be?

Kim et al [40] compared shallow learning (SL) with DL in
pattern classification. In their study, they used 4 convolutional
layers and 2 fully connected layers for the CNN architecture
that proved to have a significantly better accuracy from 81.27
to 95.12% by only increasing the number of convolutional
layers. This lowered the misclassification rate between ambig-
uous cases such as HC/RE (Fig. 3e) or NL/EM and empha-
sized that a higher complexity of DL methods should be ap-
plied for a better ILD diagnostic.

Ta)

Fig. 3 Difficult ILD patterns. a NL in subject 1. b EM in subject 2. ¢ RE in subject 3. d HC in subject 4. e Mixed HC/RE in subject 5. f Mixed RE/GGO

in subject 6. Source: “Victor Babes” Database
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Distinguishing between different lung tissue patterns on
HRCT images is a challenging task, especially when using
small samples in region of interest (ROI)-based classification.
This could lead to mismatches since the lung tissue may have
the same appearance between different tissue categories with
great variation in the same category for different patients.
Image processing consists not only in the gray-scale differ-
ences but also in object detection, regardless of variant param-
eters. Considering that patient movement during scanning and
different types of breathing might affect lung volume size,
Wang Q. et al [41] proposed a multi-scale rotation-invariant
CNN algorithm to overcome this bias. This approach uses a
Gabor filter, which analyzes the specific frequency and direc-
tions in a localized region, making it more like the human
visual cortex. The performance accuracy achieved by this al-
gorithm in classifying all the ILD patterns was greater than
85%, up to 90% for N, GGO, and MN patterns. The error rate
has decreased by increasing the number of the CNN layers,
similar to the previous study [40]. The downfall of this ap-
proach is the exponential complexity in the Gabor filter im-
plementation, which requires significant resources to
compute.

All other studies [21, 36, 40, 41] that focused on classifying
ILD patterns employed a patch-based image representation
method. Their pitfall consisted in the very small image sec-
tions (~ 31 x 31pixels), which resulted in fine detail loss.
Furthermore, the image-patch needed to be manually annotat-
ed, creating an arduous process for radiologists.

By recognizing the impediment in manual identification of
ROIs for automated pulmonary CAD systems, Gao M. et al
[42] tried a different approach in ILD pattern classification.
They proposed a holistic image recognition method, based on
the gray-scale level, similar to emphysema quantification [43],
but with greater autonomy. This perspective captured more
details and used slice level image labels or tags without
outlining the ILD regions. Rescaling the CT image in
Hounsfield unit (HU), the method expresses three different
attenuation scales in regard to the lung ILD pattern: low atten-
uation pattern (HU = — 1400 and — 950) such as EM, high
attenuation pattern (HU = — 160 and 240) for CD, and normal
lung attenuation (HU = — 1400 and 200). The holistic ap-
proach achieved 68.6% accuracy, less than the patch-based
classification with 87.9% accuracy. However, the overall re-
sults are misleading: the holistic method classified EM per-
fectly; its difficulties were in separating normal lung (NL),
MN, and CD pattern. The perfect EM classification warrants
further exploration, maybe in a mixed method approach.

The dataset remains the Achilles heel in all of these ap-
proaches. An interesting approach was proposed by Bae HJ.
et al [44], by making an infinite number of arbitrary different
ILD patterns from 2D HRCT images which increased the
accuracy of CNN in classifying lung tissue patterns. The al-
gorithm prevented over-fitting, stabilizing accuracy loss for

the validation set and providing a diverse mix of ILD patterns.
Accuracy on specific region of interest or on the whole lung
was 89.5%, higher than the conventional CNN data augmen-
tation (82.1%), close to the human’s capacity. Best results
were obtained for NL, GGO, RE, and EM. One of the algo-
rithm’s drawback scan be randomization of ILD patterns
which cannot mathematically insure a hypothetical perfect
accuracy. Also, the iterative nature of the algorithm requires
considerable computation resources, unfit for the normal
computer.

Idiopathic pulmonary fibrosis—the challenge of all
ILDs

HRCT plays a central part both in the diagnosis and in man-
agement of all interstitial lung diseases, in particular in fibrotic
lung disease. In an appropriate clinical context, idiopathic pul-
monary fibrosis (IPF) diagnosis can be made without surgical
lung biopsy, when the HRCT features are of usual interstitial
pneumonia (UIP) [45]. Based on growing evidence, a state-
ment from the Fleischner Society expanded this recommenda-
tion to include patients with features of probable UIP [46, 47].
Despite this framework, the ILD radiological assessment is
still a challenge, due to substantial inter-observer variability,
even between experienced radiologists [48, 49].

In clinical practice, this can be a challenge because imaging
expertise is not always available, specifically in non-academic
centers. This could lead to diagnosis delay and unnecessary
interventional investigations, like surgical lung biopsy, which
might pose unacceptable risks, especially for the older patients
with advanced disease.

To overcome these limitations, Walsh et al [35] proposed a
CAD that could easily be deployed on standard computing
equipment.

A total of 1157 HRCT scans underwent a pre-processing
step to create a maximum of 500 unique four-slice montages
(concatenations) per CT scan resulting in a multiplied image
dataset of 420,096 unique montages for the training algorithm
and 40,490 for the validation set. The specific neural network
architecture used in this study was the convolutional neural
network Inception-ResNet-v2 [50, 51]. Each HRCT was clas-
sified by an experienced thoracic radiologist in one of the
three categories: UIP, possible UIP, or inconsistent with UIP
[45], with the specific diagnostic prediction outcome. A spe-
cific optimization algorithm was used to adjust the network’s
internal parameters and to reduce the scan errors, making the
neural network training an interactive process. The algorithm
accuracy was 76.4%, tested on 139 HRCT (68,093 unique test
montages), with 92.7% of diagnoses within one category. The
algorithm needed 2.31 s to evaluate 150 four-slice montages.

This algorithm [35] was clinically tested on a second 150
HRCT scan cohort with fibrotic lung diseases. Numerous pa-
tients with a multidisciplinary team diagnosis of IPF, chronic
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fibrotic hypersensitivity pneumonitis, or connective tissue
disease—related fibrotic interstitial lung disease were evaluated
by 91 thoracic radiologists (not involved in the training pro-
cess). The performance against the radiologists’ opinion was
an average of 73.3% (93.3% within one category). The medi-
an accuracy of the thoracic radiologists on this cohort was
70.7%. By providing reproducible, almost instantaneous
reporting with human-level accuracy, this algorithm stands
as an important diagnosing tool for IPF.

Since the UIP pattern is known to be related to high mor-
tality rates in ILD, the labeling of UIP vs. non-UIP is very
important. The algorithm and the radiologists’ majority opin-
ion provided equally prognostic discrimination (p = 0.62) be-
tween these two groups [35]. When Fleischner criteria for [PF
diagnostic were taken into consideration, a good inter-
observer agreement between algorithm and the radiologists
was noticed. Although CNN is not trained to recognize basal
honeycombing as a distinguishing feature of UIP, it seems that
it can learn how to recognize it. This autonomous behavior
might provide a framework for discovery novel image bio-
marker in fibrotic lung disease. The problem with this algo-
rithm is that it considers only one tissue subtype in one slice,
eliminating all the mixed patterns. The huge advantage, how-
ever, is its availability and low local resource requirements.

Discussion

One major conundrum in developing high-accuracy deep
learning algorithms for fibrotic lung disease diagnostics is
the lack of large imaging datasets for training. To overcome
this problem, a centralized imaging repository needs to be
created through an international collaborative effort. Not only
that, but the images need to be unified under a desirable for-
mat, HRCT. There are too few algorithms that deal with these
image types like [35, 37-39] and since the 1-mm-thick slices
can show lesions otherwise omitted, this format is a necessity.
Since the images will, more than likely, be gathered from
multiple sources, the resolution, gray-scale, and annotations
need a unified format, also.

A handle-able CNN that could be deployed on any com-
puter station and accessible to non-academic centers is the
“Next Generation” of Al in clinical practice. Namely, in the
field of ILDs, Al can help to differentiate and early diagnose
the patients with the most severe forms, i.e., IPF. Early diag-
nosis in IPF will lead to targeted antifibrotic treatment which
substantially prolongs the survival and reduces acute exacer-
bations which are not only deadly but also costly [52-56]. In
order to reach such high expectations, a hybrid algorithm
should be developed. Since some algorithms show exquisite
accuracy in some areas, like [42], a combination of multiple
CNN can be the answer to reducing the costs spent on the
social and healthcare aspects [57, 58]. The CNN combination
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could have different configurations and start forming the same
input or, on the contrary, have similar structures and different
inputs. Even more interesting would be a combination of dif-
ferent Al techniques, like CNN with clusterization and classi-
fication algorithms, maybe in different stages, parallel or sub-
sequent. No matter what the approach is, the purpose is to
keep local area computing to a minimum, leaning therefore
towards a cloud architecture style. In this case, legal aspects,
like data privacy and security, begin to play an important role
and the communication between the local and computational
nodes could be obstructed by security protocols.

Conclusions

In this review, we describe the deep learning algorithm devel-
opments and their implication in the medical field, especially
in the ILD diagnostic. We highlighted the challenges, but also
the implementation options that would, one day, lead to daily
practice, with a clinical implication in early diagnosis of ILDs.
Developing a CAD that could be deployed on any computer
station and be accessible to non-academic centers is the next
frontier in the early diagnosis of IPF.
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