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Abstract

Methylation, which is one of the most prominent post-translational modifications on proteins, 

regulates many important cellular functions. Though several model-based methylation site 

predictors have been reported, all existing methods employ machine learning strategies, such as 

support vector machines and random forest, to predict sites of methylation based on a set of 

“hand-selected” features. As a consequence, the subsequent models may be biased toward one set 

of features. Moreover, due to the large number of features, model development can often be 

computationally expensive. In this paper, we propose an alternative approach based on deep 

learning to predict arginine methylation sites. Our model, which we termed DeepRMethylSite, is 

computationally less expensive than traditional feature-based methods while eliminating potential 

biases that can arise through features selection. Based on independent testing on our dataset, 

DeepRMethylSite achieved efficiency scores of 68%, 82% and 0.51 with respect to sensitivity 

(SN), specificity (SP) and Matthew’s correlation coefficient (MCC), respectively. Importantly, in 

side-by-side comparisons with other state-of-the-art methylation site predictors, our method 

performs on par or better in all scoring metrics tested.

1. Introduction

Methylation is a well-studied posttranslational modification (PTM) that occurs 

predominantly on arginine (Arg; R) and lysine (Lys; K) residues and, to a lesser extent, on 
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histidine, asparagine, and cysteine residues1,2,3, 4. Though traditional methods used to 

identify methylation sites, such as tandem mass-spectrometry5, 6, methylation specific 

antibodies, and ChIP-Chip, have provided important insights into global methylation 

profiles, these methods are expensive, time-consuming and require a high level of technical 

expertise. As the number of known methylation sites has grown, computational methods 

have emerged as an efficient, cost-effective strategy to complement and extend traditional 

experimental methods of methylation site identification.

Various computational models have been built for prediction of methylation PTMs. There 

are two major observations through the PTM predictor. First, compared to the datasets used 

to train early methylation site predictors, the number of known methylation sites has 

increased dramatically. Secondly, the performance of predictor models has improved with 

the use of machine learning models, such as support vector machines (SVM)7-9 , Random 

Forest10 and group-based algorithms11. While it is believed that the prediction would do 

better by including structural features, there is a huge gap between the availability of 

structural information and the availability of sequence data. This knowledge gap can have a 

substantial impact model development and performance. As a consequence, some models, 

such as MeMo7, use sequential features, while others, such as the model developed by Chou 

et al8, use structural features. Meanwhile, still others, like GPS-MSP11, use only primary 

amino acid sequences. Importantly, in all cases, feature selection was based on a series of 

hand-selected characteristics, such as pseudo amino acid composition (PseAAC), Shannon 

Entropy (SE) and others, that could introduce bias into model development.

Therefore, in order to reduce bias while simultaneously decreasing the complexity and time 

required for model development11, we generated a deep learning-based approach that is able 

to replace hand-selected features and still contribute improvements in predictor performance. 

Though there have been a few deep learning models used in DNA methylation site 

prediction,12, 13 all existing protein methylation site methods are based on feature 

selection14, 15.

To the best of our knowledge, this work is the first to apply deep learning to predict 

methylation sites in proteins. Moreover, in our work, we provide (1) an improved dataset for 

arginine methylation PTMs; (2) an ensemble deep learning model, based on Keras16 2D 

Convolutional layer network, and Long Short Term Memory (LSTM) models for prediction 

of PTM sites; (3) parameter selection based on 10-fold cross-validation results to test the 

performance of the model; (4) independent test results validating the performance of our 

model with the state-of-the-art models. Overall, our model, which we termed 

DeepRMethylSite, exhibits improved performance compared to previously published Arg 

methylation site predictors14.

2. Material and methods

2.1. Dataset Preparation

To build our training dataset, we used the Arg methylation dataset provided by DBPTMv317, 

PhosphositePlusv6.5.818 and Uniprot19 databases. We queried the Uniprot database to get 
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experimentally verified methylation sites from publications published after 2017. Overall, 

our dataset contained 12,976 Arg methylation sites from 5,725 unique proteins.

To construct the positive dataset, we generated a window size of 51 with the methylated Arg 

site in the center, flanked by 25 amino acids upstream and downstream of the methylation 

site. Meanwhile, the negative dataset was similarly generated around Arg sites not known to 

be methylated.

Next, we removed any duplicate sequences within the positive and negative datasets. Also, if 

we found a duplicate sequence among the positive and negative datasets, we removed the 

duplicate sequence from the negative sequence. We termed the new positive and negative 

dataset the “clean” datasets. Since Arg methylation sequences are often conserved across 

species and we are building a general, non-specific model, we identified many duplicate 

sequences that were removed during this procedure. After removing duplicates, 10,429 Arg 

methylation sites remained in the clean positive set and 305,700 unmethylated Arg sites 

remained in the clean negative dataset. Finally, we used 80% of the clean dataset for training 

and validation sets and set aside the remaining 20% of the clean dataset as the independent 

test set (Table 1). Statistical analysis using the two logo chart was carried out to confirm the 

methylation dataset followed the trend of experimental arginine methylation sites (Figure S1 

in Supplementary Information).

Perhaps not surprisingly, we noticed that there is large imbalance between the positive and 

negative datasets. This may be due to the fact that only positive sites are reported while the 

negative set is composed of those Arg residues that have not been found to be methylated. 

Thus, in order to balance the positive and negative datasets, we used undersampling from the 

imblearn package20. Undersampling is a technique in which the set having the larger number 

of samples is pruned to create a balance with the other set. There are many ways to deal with 

the unbalanced nature of the dataset. The unbalanced nature of PTM datasets is prone to 

artefacts stemming from limited knowledge about the number of negatives compared to the 

number of experimentally verified positive samples. Broadly, there are two ways of 

balancing the dataset, either by manipulating the dataset or by using a cost function that 

takes into account the imbalanced nature of the dataset21. In the way of manipulating the 

dataset, the positive samples can either be synthetically increased to match the size of the 

negative dataset, known as oversampling, or the negative dataset can be reduced to match the 

size of the positive dataset, known as undersampling. In our case, we are using Scikit learn 

package for undersampling. The resulting dataset is summarized in Table 1. Compared to 

Arg methylation dataset used in PRmePRed, we have increased the dataset 8-fold.

2.2. Input encoding

In most machine learning algorithms, features are extracted from the sequence data and, 

thus, meaningful numerical representations of the sequences are fed to the model. In 

contrast, in deep learning, the sequences themselves are numerically represented as 

encodings, as follows:
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1. One hot encoding22, where each amino acid is defined as a 20 length vector, 

with only one of the 20 bits as 1, thus uniquely representing the twenty amino 

acids. It has also been used as a feature, twenty bit feature by Wei et al10.

2. Embedding Integer encoding, where each amino acid is allocated random 

integers of d dimensions long, where d is a parameter16. We used this encoding 

as an input to the embedding layer. The embedding layer helps in transforming 

the data into specified dimension, d. Since the encoding changes with each 

epoch, this encoding possesses a dynamic nature to its representation compared 

to one hot encoding23, where the encoding is fixed. Thus, the encoding embeds 

the representation learned through the deep architecture/algorithms.

Deep learning thus bypasses the need for feature extraction. For comparison, we extracted 

methylation relevant features14, 24 from the same dataset, and fed them to the tree-based 

classifier XGBoost followed by several machine learning algorithms. Details are provided in 

supplementary material.

2.3. DeepRMethylSite: Ensemble Model

An Ensemble model aggregates two or more model predictions to improve the prediction 

power of a classifier. Here, we created an ensemble between an LSTM model and CNN 

model. An LSTM model learns through cell states, while the CNN model employs different 

filters to extract various features. The ensemble aggregates the predictions learned by the 

CNN model and the LSTM model, based on the trust attained by each classifier.

Each of the member predictions was weighted with a weight factor and the predictions were 

aggregated to get the ensemble results. The weights were found for each classifier using a 

grid search between (0,1) in steps of 0.1. To obtain proper weights to prevent overfitting 

during model development, a validation set was created to compare the training and 

validation accuracy of the models25. This was accomplished by taking the remaining 8,344 

positive and negative sites after the independent test set was removed and further dividing 

them into the training set (composed of 6,676 distinct positive and negative sites) and the 

validation set (composed of 1,688 distinct positive and negative sites) (Table 1). The weights 

were then normalized using L1 normalization and tensor dot was used to efficiently 

implement the weighted vector of predictions. Thus, the predictions are tensor multiplication 

of weight with the predictions (Eq. 1)

Pred = Wl_yl + Wc_yc (1)

where Wl is weight given to LSTM weights and Wc is weight given to CNN weights and ŷl 

and ŷc are the respective predictions.

2.3.1- CNN Model—The model is based on Keras 16 Convolutional Neural Network 

(CNN). The model consists of 7 layers, including the feature processing layer and the output 

layer. The first layer is the embedding layer, which learns the feature representation to the 

input sequences. A lambda layer is then used as a transition layer to the Convolutional 2D 

layer, where an extra dimension is added to match the input shape for the convolutional 

layer. Next, two Convolutional 2D layers with ReLu activation are employed. Padding is 
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disabled for the first Convolutional layer and enabled for the next layer. Initial filter size for 

the Convolutional layer was selected as ((n-1)/2,3), where n is the window size. The filter 

size was selected such that the center residue of window is included in every stride as the 

center residue target for our prediction. The dimensions of output from the first 

convolutional layer changes when padding is disabled and remains the same when padding 

is enabled for the second layer. For example, if the output from the first convolutional layer 

has dimensions 17×19, it remains the same for consecutive layers. Each Convolutional 2D 

layers was then followed by a dropout layer of 0.6 to avoid overfitting. A higher dropout rate 

was used in order to reduce the overfitting and to achieve a more generalized model. 

Dropout mitigates the overparameterization of the deep learning model by dropping out a 

few neurons from computation. Next, a max pooling layer calculates the maximum value for 

each patch of the feature map and provides a down-sampled representation of the input. Two 

hidden layers of size 768 and 256 were employed with each, followed by dropout of 0.5. 

Finally, a softmax layer with two neurons, representing the true and false prediction, acted as 

an output layer. The architecture is summarized in Figure 2B.

Once developed, the model was optimized using Adam26. Adam is an adaptive moment 

estimation-based algorithm specifically used in training deep networks. The 

ModelCheckpoint function in Keras was used to save the best model with respect to 

validation accuracy. The plot showing change in accuracy across epochs using a dropout rate 

of 0.6 has been provided in Figure S2A. In practice, when the training accuracy just 

improves slightly in comparison to validation accuracy, the model should stop learning, and 

thus should avoid overfitting due to a greater number of epochs. The parameters used in the 

model are given in Table 2.

2.3.2- LSTM Model—Long Short Term Memory27 models have overcome the vanishing 

and exploding gradient problems in RNN and are known to capture long term dependencies. 

LSTM consists of three gates: input, forget, and output gates, which together define the flow 

of data governed by the state of the cell. LSTM helps to memorize the states of the cell and 

has the ability to save each of the sequences through layers, with return sequences option. 

Further, as the use of hidden states of a cell is increased, the power of learning through 

LSTM is known. Here we used a stacked LSTM model in comparison with the CNN 

approach to model classification for Arg methylation. The model consists of four layers: 1) 

the input layer, which consists of an embedding layer that learns the best representation of 

the integer encoded sequences through subsequent epochs. The embedding layer transforms 

the sequence information at a dimension. Thus, the output of the layer has shape (window 

size, embedding dimension) in compatibility with input dimensions of the LSTM layer; 2) 

an LSTM layer, which consists of 128 neurons with return sequences kept as true; 3) a 

dropout LSTM layer with 64 neurons, with dropout and recurrent dropout sets at 0.5 each 

with hyperbolic tangent activation where recurrent dropouts results in dropping the 

horizontal connections within the cell28 and 4) an output layer, with 2 neurons and soft-max 

activation, where the two neurons summarize the classification as true or false (Figure 2A). 

The model was compiled with the Adadelta optimizer29 and binary cross-entropy as loss 

function. Similar to the CNN model, the ModelCheckpoint function in Keras was used to 
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obtain the best model with respect to validation accuracy. The plot showing change in 

accuracy across epochs has been provided in Figure S2B.

2.4. Performance and Evaluation

To evaluate the performance of each model, we used a confusion matrix to determine 

Sensitivity (SN), Specificity (SP), Accuracy (ACC) and Receiver Operating Characteristic 

(ROC) curve as the performance metrics. We used 10-fold cross-validation on the 

benchmark training dataset and an independent test set to evaluate the models.

ACC defines the correctly predicted residues out of the total residues (Eq. 2). SN defines the 

model’s ability to distinguish positive residues (Eq. 3) whereas the SP measures the model’s 

ability to correctly identify the negative residues (Eq. 4). Matthews Correlation Coefficient 

(MCC) is the calculated score that takes into account the model’s predictive capability with 

respect to both positive and negative residues (Eq. 5). Likewise, the ROC curve provides a 

graphical representation of the diagnostic ability of the classifier. The area under the ROC 

curve (AUC) is used to compare various models, with the models having the highest AUC 

scores performing better in classification than those with lower AUC scores.

Accuracy = TP ± TN
TP + TN + FP + FN × 100 (2)

Sensitivity = TP
TP + FN × 100 (3)

Specificity = TN
TN + FP × 100 (4)

MCC = (TP)(TN) − (FP)(FN)
(TP + FP)(TP + FN)(TN + FP)(TN + FN) (5)

3. Results and Discussion.

3.1 Selection of window size

An initial 10-fold cross-validation was carried on each of our models (i.e., LSTM and CNN) 

to determine the parameters. A window size of 51 was extracted from the dataset and other 

window sizes were generated by flanging the windows from both ends. This kept the dataset 

size constant and hence the comparison fair when determining the window size.

Furthermore, the window size determines the number of residues exposed to the problem. 

Methylation sites have been found buried in the protein core while others have been found 

on the protein surface. The potential site is centered in a window with an equal number of 

residues on both sides. The results are tabulated in Table 4. While the model follows the 

same trend in different window sizes, different window sizes were optimized for different 

models, owing to differences in their architectures. For instance, a window size of 39 was 
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optimized for CNN, while a window size of 21 was optimized for LSTM. Following the 

strategy outlined in our Succinylation site prediction work30 , the embedding dimension was 

fixed at 21.

3.2 Selection of embedding dimension

The embedding dimension can be summarized as the feature space that is able to best define 

the representation of the input sequences. Therefore, we used various dimensions during 10-

fold cross validation of the models at their optimized window sizes, as summarized in Table 

5. The embedding dimension of 33 was optimized for CNN, while LSTM was optimized at 

window size of 39. Nonetheless, despite the fact that we optimized the embedding 

dimension, there did not seem to be a substantial improvement among the dimensions for 

either model.

3.3 Comparison with one hot encoding

Since embedding has be shown to increase the dynamic nature of the sequences, embedding 

tends to enhance model performance over one hot encoding. Thus, we conducted 10-fold 

cross-validation with the optimum parameters for the One hot encoding to confirm whether 

it is still true in our case. Owing to the dynamic nature of embedding, the training time was 

less for embedding. This approach also saved computational time, as training time is less for 

embedding compared to One hot encoding. For these reasons, we compared One hot 

encoding at the optimized parameters for the embedding model (Table 6).

3.4 Evaluating Ensemble Model

We used independent testing to evaluate the ensemble model. Both LSTM and CNN were 

trained on the training set and evaluated on the test set, as defined in Table 1. The ensemble 

uses a grid search method to optimize the weights for each model. Thus, the optimized 

weights are [0.16,0.83] for LSTM and CNN models, respectively. Figure 3 shows the 

receiver operator curve (ROC) for the CNN, LSTM and ensemble models. The final 

ensemble model, which we termed DeepRMethylSite, performed well with respect to SP, SN 

and MCC (Table 7). We also evaluated the ensemble model against CNN and LSTM models 

using Student’s t-test (Table S3).

3.5 Comparison with existing models.

Next, we wanted to compare the performance of DeepRMethylSite to existing Arg 

methylation site predictors. The SVM-based predictor, PrmePred14, is currently the best 

performing method in the field based on MCC, which is often used as an indicator of overall 

method performance. Therefore, to evaluate our model, we used the training set and 

validation test set used by Kumar et al during the development of PRmePred14 to retrain our 

model and then used their independent test set to evaluate model performance. The 

independent test results of DeepRMethylSite, along with those from other predictors using 

the PRmePred independent set, is tabulated in Table 8. Likewise, the performance of either 

the CNN model or the LSTM model alone using the independent test set from PRmePred is 

provided in Table S1.
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Because we were using the same datasets used by PRmePred, direct comparisons between 

the models can be made. However, results are confined to the window size of 19. 

Nonetheless, the results were informative. For instance, in side-by-side comparisons with 

PRmePred, DeepRMethylSite achieved SP, ACC, and MCC scores that were ~13.8%, ~5.8% 

and ~6.8% higher, respectively, than those exhibited by PRmePred14 (Table 8). On the other 

hand, DeepRMethylSite exhibited SN scores that were ~19.4% lower than those observed 

for PRmePred. Likewise, DeepRMethylSite achieved the highest MCC and ACC scores 

across all existing methods (Table 8). Likewise, DeepRMethylSite exhibited SP and SN 

scores that were on par with or better than those of the existing models7-10, 14, 31-33 (Table 

8). Taken together, these data suggest that DeepRMethylSite is a robust predictor of Arg 

methylation sites in proteins.

5 Conclusion

Here, we describe the development and analysis of an Arg methylation site prediction tool, 

DeepRMethylSite, based on a deep learning strategy. An ensemble model was used to 

combine the better sensitivity of our LSTM-based model with the specificity of our CNN-

based model. Interestingly, while the ensemble model exhibited significant improvements in 

MCC and SN compared to the LSTM model and generally outperformed the CNN model 

with respect to MCC and SP, it did not achieve significant performance improvements 

compared to CNN (Table S3).

Unlike other machine learning algorithms, deep learning does not require feature extraction. 

Not only does this reduce the potential for intrinsic bias in feature selection, but it also 

substantially reduces the computational cost required for model development. Importantly, 

in side-by-side comparisons, our model outperforms PRmePred—the current gold standard 

in Arg methylation site prediction—with respect to SP, ACC and MCC using their 

independent test set. Therefore, the use of a deep learning-based model has not only avoided 

the need for feature extraction, but it has also improved the prediction performance for 

arginine site prediction. These predictions, which will complement the list of experimentally 

identified Arg methylation sites, will be useful for understanding how Arg methylation 

affects cellular processes such as transcriptional regulation, RNA metabolism, apoptosis and 

DNA repair34. Currently, our model does not distinguish between mono-methylated, 

symmetrically-dimethylated and asymmetrically-dimethylated residues, which can have 

important implications for the cellular consequences of a given Arg methylated site35. In the 

future, it will be interesting to explore whether our model can be enhanced to distinguish 

between these methylation states, as well. Also, it is important to note that, in this study, we 

increased the size of the dataset used for training and evaluation by ~8-fold compared to the 

dataset used during the development of PRmePred. We hope that these datasets, which we 

have made freely available to the community at https://github.com/dukkakc/

DeepRMethylSite, will facilitate the development of improved methylation site prediction 

methods. Likewise, to facilitate the use of our predictor by the cell signaling and 

bioinformatics communities, the method and all code used for its development are freely 

available at https://github.com/dukkakc/DeepRMethylSite.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Flow Diagram depicting steps carried to create our model. Sequences were extracted from 

public databases and the dataset was divided into training, validation and test sets. 10-fold 

cross-validation was used in optimizing the parameters on each model, and then independent 

testing was used to evaluate the models.CNN: Convolutional Neural Network; LSTM: Long-

term short-term memory.
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Figure 2: 
A. parameters used in LSTM model. B. Parameters used in CNN model. C. Ensemble model 

generated by combining through grid search weights on CNN and LSTM models.
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Figure 3: 
ROC Curve for LSTM, CNN and Ensemble model.
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Table 1.

Number of positive and negative sites in the training and test sets before (left) and after (right) balancing.

Dataset Positive sites
(before/after)

Negative sites
(before/after)

Total 10,429/10,429 305,700/10,429

Training 8,344/8,344 244,600/8,344

Train: 6,676 6,676

Val: 1,668 1,668

Test 2,085/2,085 61,150/2,085
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Table 2:

Parameters for CNN.

Parameters Settings

Embedding Output Dimension 21

Learning Rate 0.001

Batch Size 256

Epochs 80

Conv2d_1 number of filters 64

Dropout 0.6

Conv2d_1 number of filters 128

Dropout 0.6

MaxPooling2d 2 x 2

Dense 1 768

Dropout 0.5

Dense_2 256

Dropout 0.5

Checkpointer Best validation accuracy
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Table 3:

Parameters used in LSTM Model

Parameters Settings

Embedding Output Dimension 39

Learning Rate 0.01

Batch Size 256

Epochs 100

LSTM_layer1_neurons 128

LSTM_layer2 64

Dropout 0.5

Recurrent Dropout 0.5

Dense_layer_neurons 32
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Table 4:

10-fold cross-validation performance metrics for different window sizes with an embedding dimension of 21. 

The highest values in each category are highlighted in boldface. MCC: Matthew’s Correlation Coefficient; SN: 

sensitivity, SP: Specificity; ACC: Accuracy.

Size CNN LSTM

MCC SN SP AC
C

MCC SN SP AC
C

51 0.52 0.71 0.81 0.76 0.44 0.66 0.77 0.72

45 0.52 0.72 0.80 0.76 0.44 0.66 0.77 0.72

39 0.53 0.73 0.80 0.76 0.45 0.66 0.78 0.72

33 0.52 0.71 0.81 0.76 0.46 0.66 0.79 0.73

27 0.52 0.70 0.81 0.76 0.46 0.67 0.78 0.73

21 0.50 0.71 0.79 0.75 0.46 0.65 0.80 0.73

15 0.49 0.70 0.79 0.74 0.44 0.66 0.77 0.72

9 0.46 0.69 0.77 0.73 0.42 0.65 0.76 0.71
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Table 5:

10-fold cross-validation results for different embedding dimensions for their optimized window size. MCC: 

Matthew’s Correlation Coefficient; SN: sensitivity; SP: Specificity; ACC: Accuracy.

Dim CNN LSTM

MCC SN SP ACC MCC SN SP ACC

9 0.52 0.70 0.82 0.76 0.43 0.67 0.76 0.71

15 0.52 0.70 0.81 0.76 0.45 0.68 0.76 0.72

21 0.52 0.73 0.79 0.76 0.46 0.66 0.79 0.73

27 0.53 0.71 0.80 0.76 0.46 0.67 0.77 0.73

33 0.53 0.72 0.80 0.76 0.46 0.66 0.79 0.73

39 0.52 0.70 0.81 0.76 0.47 0.65 0.80 0.73

45 0.52 0.70 0.81 0.76 0.46 0.68 0.78 0.73
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Table 6:

Comparison of one hot encoding model to embedding models based on 10-fold cross-validation MCC: 

Matthew’s Correlation Coefficient; SN: sensitivity; SP: Specificity; OHE: One hot encoding; Emb: 

Embedding; ACC: Accuracy.

Model

CNN LSTM

MCC SN SP ACC MCC SN SP ACC

OHE 0.47 0.69 0.78 0.73 0.45 0.69 0.76 0.73

Emb 0.53 0.72 0.80 0.76 0.47 0.65 0.80 0.73
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Table 7:

Independent Test Results using the CNN, LSTM and Ensemble models. MCC: Matthew’s Correlation 

Coefficient; SN: sensitivity; SP: Specificity’ ACC: Accuracy; AUC: Area under the receiver operator curve.

Model MCC SN SP ACC AUC

LSTM 0.46 0.80 0.65 0.73 0.796

CNN 0.50 0.68 0.81 0.75 0.816

DeepRMethylSite 0.51 0.68 0.82 0.75 0.821
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Table 8:

Comparison of DeepRMethylSite with other prediction methods.

Method Algo MCC SN SP ACC

MeMo 7 SVM 0.46 0.38 0.99 0.68

MASA32 SVM 0.41 0.31 0.99 0.65

BPB-PPMS33 SVM 0.25 0.12 1.00 0.56

PMeS 9 SVM 0.16 0.43 0.73 0.58

iMethyl-PseAAC 8 SVM 0.30 0.18 1.00 0.59

PSSMe 31 SVM 0.44 0.60 0.83 0.72

MePred-RF10 RF 0.46 0.41 0.97 0.69

PRmePred 14 SVM 0.74 0.87 0.87 0.87

DeepRMethylSite CNN 0.79 0.71 0.99 0.92
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