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Abstract

Nicotine is a highly addictive drug found in tobacco that drives its continued use despite the 

harmful consequences. The initiation of nicotine abuse involves the mesolimbic dopamine system, 

which contributes to the rewarding sensory stimuli and associative learning processes in the 

beginning stages of addiction. Nicotine binds to neuronal nicotinic acetylcholine receptors 

(nAChRs), which come in a diverse collection of subtypes. The nAChRs that contain the α4 and 

β2 subunits, often in combination with the α6 subunit, are particularly important for nicotine’s 

ability to increase midbrain dopamine neuron firing rates and phasic burst firing. Chronic nicotine 

exposure results in numerous neuroadaptations, including the upregulation of particular nAChR 

subtypes associated with long-term desensitization of the receptors. When nicotine is no longer 

present, for example during attempts to quit smoking, a withdrawal syndrome develops. The 

expression of physical withdrawal symptoms depends mainly on the α2, α3, α5, and β4 nicotinic 

subunits in the epithalamic habenular complex and its target regions. Thus, nicotine affects diverse 

neural systems and an array of nAChR subtypes to mediate the overall addiction process.

Introduction:

Nicotine addiction (Dani and Heinemann, 1996; De Biasi and Dani, 2011; Mansvelder and 

McGehee, 2002) causes more than 7 million deaths each year worldwide (WHO, 2017). 

This number is rising (Prochaska and Benowitz, 2016), making it the leading cause of 

preventable death in the world (Gowing et al., 2015). Approximately 50 million people in 

the United States alone are addicted to tobacco products (Creamer et al., 2019), resulting in 

tremendous public health, societal, and economic costs. Nicotine is the main addictive 

component of tobacco products (Dani et al., 2019), but there are multiple constituents that 
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contribute to its reinforcing properties (Brennan et al., 2015). While the rate of cigarette 

smoking has fallen in recent years, the rise of e-cigarettes has led to a renewed use of 

nicotine, particularly among adolescents and young adults (CDC, 2019). This resurgence has 

many harmful consequences and highlights the importance of understanding the 

pharmacology of nicotine (Dani et al., 2019) and the properties of neuronal nicotinic 

acetylcholine receptors (nAChRs) (Dani and Bertrand, 2007) for devising effective addiction 

treatments.

Nicotine is a naturally occurring alkaloid in many plants where it serves as an insecticide 

(Dani et al., 2019). Nicotine is a tertiary amine that occurs in two stereoisomers and consists 

of a pyridine and a pyrrolidine ring. The (S)-nicotine form is found in tobacco, and is the 

active form that binds to diverse nAChR subtypes throughout the central and peripheral 

nervous systems. During smoking or heating of tobacco, some racemization of nicotine takes 

place and small quantities of the (R)-nicotine isoform can also be found in the consequent 

smoke. In addition, because nicotine is a tertiary amine, it can exist in both a charged and an 

uncharged form. In its uncharged state, nicotine is membrane-permeable and can enter the 

brain, where it then converts to the charged form and binds to receptors (Dani and Bertrand, 

2007; De Biasi and Dani, 2011). Nicotine thus influences intracellular processes indirectly 

by acting on nAChRs, but it may also directly influence these processes when it enters into 

the cytoplasm (Henderson and Lester, 2015; Rezvani et al., 2007). This chapter will focus 

exclusively on nicotine’s actions on nAChRs on the cell surface.

Nicotinic Receptor Structure and Subtypes

Nicotinic acetylcholine receptors are ligand-gated cation channels that are widely distributed 

throughout the nervous system and body (Papke, 2014), but this section will focus on 

neuronal nAChRs (Dani and Bertrand, 2007). They are expressed in nearly every region of 

the brain, both pre- and post-synaptically and can be found on axon terminals, axons, 

dendrites, and somata (Grady et al., 2007; Henderson and Lester, 2015; McGehee et al., 

1995; Nashmi and Lester, 2006). Nicotinic receptors are pentameric structures made up of 

five distinct subunits that together form a central aqueous pore that allows cation influx 

when the receptor is activated (Cooper et al., 1991; Morales-Perez et al., 2016). Each subunit 

is comprised of an extracellular N-terminus that contributes to ligand-binding, three 

hydrophobic transmembrane domains (M1-M3), an intracellular loop, a fourth hydrophobic 

transmembrane domain (M4), and an extracellular C-terminus. Activation of nAChRs is 

achieved by the binding of the endogenous neurotransmitter acetylcholine or exogenous 

ligands like nicotine (Karlin, 1993).

There are 12 homologous neuronal nAChR subunits found in vertebrates, resulting in an 

enormous amount of diversity in the subunit compositions of these receptors (Albuquerque 

et al., 2009; Dani and Bertrand, 2007; Zoli et al., 2015). Among them are nine α-subunits 

(α2-10) and three β-subunits (β2-4), and diverse combinations of these subunits form 

functionally distinct receptors that can vary widely in their pharmacological and biophysical 

properties (Figure 1). All α subunits share a highly conserved set of six amino acids, 

including two adjacent cysteine residues that share a disulfide bond that is important in 

forming the ligand-binding site (Karlin, 1993; McGehee and Role, 1995). Importantly, the β 
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subunits lack this pair of cysteine residues (Cooper et al., 1991; McGehee and Role, 1995). 

As a result, at least two alpha subunits are necessary to form a functional receptor.

The resultant nAChR subtypes can be classified (Figure 1B) as either homopentameric 

(consisting of 5 identical subunits) or heteropentameric (consisting of at least 1 α and 1 β 
subunit type). Homopentameric receptors are thought to have five identical ligand binding 

sites, one between each pair of neighboring subunits, but it seems that only one binding site 

needs to be occupied to achieve some receptor activation (Figure 2) (Andersen et al., 2013). 

Heteropentameric receptors are believed to have only two binding sites that are located 

between neighboring pairs of α and β subunits (Gotti et al., 2006; Palma et al., 1996; Taly et 

al., 2009; Zoli et al., 2018) but unorthodox binding sites have recently been reported (Wang 

and Lindstrom, 2018). These receptors typically contain two αβ subunit pairs and a fifth 

accessory subunit. Each subunit is not entirely symmetrical and, thus, the placement of 

different subunits in a variety of positions within the pentameric complex can result in a 

wide variety of different nAChR subtypes, each with potentially different roles. Both α5 and 

β3 subunits function only as accessory subunits, at least in native nAChRs (Groot-

Kormelink et al., 1998; Jain et al., 2016; Ramirez-Latorre et al., 1996; Wang and Lindstrom, 

2018; Zoli et al., 2018). As such, they do not contribute to the agonist-binding site, but 

instead modify the functional properties of the nAChR complex and modify the receptor’s 

regulation by agonists (Kuryatov et al., 2008). For example, the α5 subunit has a regulatory 

role as its presence blunts the desensitization of nAChRs following nicotine exposure and is 

thought to be critical for controlling the expression and function of α4-containing nAChRs 

in the VTA (Chatterjee et al., 2013).

Despite this diversity, all mammalian neuronal nAChR subtypes share the functional 

property of being permeable to Na+, K+, and Ca2+ (Gotti et al., 2007; Gray et al., 1996; Shen 

and Yakel, 2009; Vernino et al., 1992; Vernino et al., 1994). Nicotinic receptors, like most 

ligand-gated ion channels, can exist in multiple conformational states (Figure 2): closed and 

able to be activated by ligand, open and conducting to small cations, or desensitized and 

closed and not able to be activated by ligand. When nicotine binds to the receptor, the ion 

channel is open and briefly stabilized in that conformation, allowing cation flux, which will 

move the membrane potential toward 0 mV, usually depolarizing the membrane. The 

channel then either returns to its resting state (closed and able to be activated) or enters a 

desensitized state in which it cannot be activated by nicotine or other agonists. The subunit 

composition governs the kinetics of these conformational states, the selective cationic 

permeability of the nAChR’s pore, and the pharmacological affinities of various agonists 

(Dani et al., 2019; Giniatullin et al., 2005; Picciotto et al., 2008; Quick and Lester, 2002; 

Wang and Lindstrom, 2018; Zoli et al., 2018). Therefore, the extraordinary diversity of 

nAChR subtypes results in numerous functional responses to nicotine. Among the wide 

array of nAChR subtype combinations in the brain, the most commonly expressed 

homomeric receptors are the α7 type, and the most commonly expressed heteromeric 

receptors are those containing the α4 and β2 subunits (Feduccia et al., 2012; Gotti et al., 

2006).

Because the α7 nAChRs are the most common homomeric subtype, and because α7 

subunits form heteromeric receptors relatively rarely (Gotti et al., 2006; Zoli et al., 2018), a 
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short-hand for receptor classification is whether the receptor is an α7 nAChR or a non-α7 

nAChR. Pharmacologically, this determination can be made by observing sensitivity to α-

bungarotoxin (α-BTX), which in the brain is a potent and selective antagonist of the 

neuronal α7 homomeric receptors. Receptors sensitive to α-BTX have a relatively low 

affinity for nicotine and fast kinetics, while receptors insensitive to α-BTX generally have a 

higher affinity for nicotine, slower kinetics, are heteromeric, and desensitize to low agonist 

concentrations (Dani, 2015; Gotti et al., 2006). These distinct receptor properties result in 

different temporal, physiological, and biochemical responses to nicotine, and the 

significance of those different responses will be discussed in the next section.

Genetic Factors Mediating Nicotine Effects

While a complex array of environmental, pharmacological, and individual factors influence 

nicotine dependence and smoking behaviors, many studies have also investigated the 

genetics of nicotine addiction. Genetic factors are thought to play an important role in 

smoking initiation, progression to heavy use, and persistence of use (Fowler et al., 2007; 

Kendler et al., 1999; Lessov et al., 2004; Munafo and Johnstone, 2008; Sullivan and 

Kendler, 1999). One meta-analysis reports that genetic elements were responsible for 50% 

of the variation in nicotine initiation and persistence of usage (Li et al., 2003). Although 

gene-wide association studies (GWAS) and candidate gene studies have identified a large 

number of genes that can influence tobacco use, many associations between gene variants 

and nicotine phenotypes have not been reliably replicated. However, risk alleles in the 

CHRNA5-A3-B4 gene cluster of nicotinic receptor subunit genes on chromosome 15q25, 

which encodes the α5, α3, and β4 nAChR subunits, have consistently been associated with 

nicotine addiction (Bühler et al., 2015). Polymorphisms in this gene cluster have been linked 

to multiple smoking-related phenotypes, including nicotine dependence (Bierut et al., 2008; 

Chen et al., 2009a; Grucza et al., 2007; Saccone et al., 2007; Spitz et al., 2008; Thorgeirsson 

et al., 2008), smoking quantity (Amos et al., 2008; Berrettini et al., 2008; Keskitalo et al., 

2009; Lips et al., 2010; Stevens et al., 2008; Thorgeirsson et al., 2008), smoking cessation 

(Freathy et al., 2009), and smoking-related diseases (Amos et al., 2008; Hung et al., 2008; 

Lips et al., 2010).

A number of single nucleotide polymorphisms (SNPs) in this gene cluster have been 

identified, but rs16969968 in CHRNA5 and rs1051730 in CHRNA3 have generated 

particular interest with respect to nicotine-related phenotypes, though the rs16969968 SNP 

has been studied in more detail. This SNP is a functional missense mutation G/A (D398N) 

in exon 5 and is the only SNP that has been implicated in nicotine behaviors thus far that 

results in a non-synonymous amino acid change in the resulting protein. The major allele 

produces α5 subunits with an aspartate (D) in position 398, which is swapped for an 

asparagine (N) in the minor allele. The minor allele (N398) has been shown to be highly 

associated with heavy smoking, intense craving for nicotine, and nicotine dependence 

(Bierut et al., 2008; Breetvelt et al., 2012; Buczkowski et al., 2015; Chen et al., 2012; Liu et 

al., 2010; Olfson et al., 2015; Sherva et al., 2008; Stevens et al., 2008). This polymorphism 

is also known to be of functional significance because in vitro studies have shown that 

α4β2α5 receptors with the asparagine allele show a decreased response to a nicotinic 

agonist, reduced calcium permeability, and faster desensitization (Bierut et al., 2008).
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SNP 1051730, located within the CHRNA3 gene, has also been associated with nicotine 

dependence and smoking quantity (Chen et al., 2009b; Saccone et al., 2007; Thorgeirsson et 

al., 2008). This SNP is in perfect linkage disequilibrium with rs16969968 and the two SNPs 

are considered to be interchangeable, although this requires further investigation. An 

additional non-synonymous variant located in CHRNB4 (rs12914008) has been shown to 

mediate the fast transition from initial smoking to nicotine dependence, but it is a less 

common SNP and has been studied in much less detail. This SNP causes a missense 

mutation in CHRNB4 from threonine to isoleucine. While these rarer variants have been 

linked with nicotine dependence and susceptibility, it is currently unknown whether they 

represent risk factors independent of the other SNPs in the same gene cluster (Saccone et al., 

2009).

Many other genes for nAChRs have also been implicated in various ways in nicotine 

addiction-related phenotypes (for review, see Ware et al., 2012; Yang and Li, 2016), and 

these findings from human genetic studies have formed the basis for a variety of animal 

models that have been used to study the circuit and molecular effects of these mutations. The 

following sections will refer to these and other animal models when discussing nicotine’s 

effects on various neural pathways and behaviors.

Nicotine Acts on the Mesolimbic Reward Circuit

All drugs of abuse, including nicotine, activate the ventral tegmental area (VTA) dopamine 

neurons that project to the nucleus accumbens (NAc). Activation of this mesolimbic 

pathway results in dopamine efflux in the NAc, which is important for nicotine reward-based 

learning and the initiation of the addiction process (De Biasi and Dani, 2011; Di Chiara and 

Imperato, 1988). A variety of nAChR subtypes are expressed in the neuronal populations in 

the VTA, as well as on the axon terminals of afferents from a number of brain regions. 

Therefore, nicotine’s effects in the VTA are complex. However, a variety of studies have 

shed some light on the mechanisms by which nicotine acts in the VTA to cause dopamine 

neuron activation.

Nicotine can directly activate dopamine neurons by binding to their high-affinity, β2-

containing nicotinic receptors, thereby causing a net influx of cations that depolarizes the 

neuron (Dani and Bertrand, 2007; Mao et al., 2011; Pidoplichko et al., 1997). These effects 

increase dopamine neuron firing rates and phasic burst activity, elevating dopamine levels in 

the NAc (Placzek et al., 2009; Tsai et al., 2009; Zhang et al., 2009). As a result, the β2 

subunit may be crucial in mediating the rewarding effects of nicotine since nicotine 

stimulates dopamine release in wild-type mice, but mice lacking the β2 subunit do not show 

an increase in extracellular dopamine following nicotine administration (Picciotto et al., 

1998). However, VTA GABA neurons that inhibit the dopamine neurons also express β2-

containing nAChRs, so GABAergic drive to the VTA dopamine neurons is transiently 

enhanced at the same time that the dopamine neurons themselves are directly activated by 

the presence of nicotine. Because the α4β2 nAChRs rapidly desensitize, GABAergic drive 

to the dopamine neurons is functionally reduced over a longer time frame when low levels of 

nicotine are continually present (Dani et al., 2019; Grieder et al., 2019; Mansvelder et al., 

2002). Simultaneously, glutamatergic drive to the dopamine neurons is enhanced by 
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activation of pre-synaptic α7 nAChRs, which are less prone to desensitization at nicotine 

concentrations achieved by smokers due to their low affinity for nicotine (Dani et al., 2000; 

Pidoplichko et al., 1997; Wooltorton et al., 2003), thus resulting in a long-lasting increase in 

excitatory drive to the dopamine neurons in the presence of nicotine (Mansvelder et al., 

2002; Mansvelder and McGehee, 2002; Pidoplichko et al., 2004). This increased excitatory 

drive combined with the reduced inhibitory drive enhances activity in the dopamine neurons 

and facilitates Hebbian long-term potentiation of glutamatergic afferents onto the midbrain 

dopamine neurons (Mansvelder and McGehee, 2000; Mao et al., 2011; Ostroumov and Dani, 

2018; Saal et al., 2003), which is thought to be a critical step in the initiation of addiction.

Nicotine dependence also critically involves striatal dopamine. VTA dopamine neurons 

express nAChRs on their presynaptic terminals in the striatum. Therefore, in addition to 

increasing the activity of the dopamine neurons themselves, nicotine also modulates striatal 

dopamine release via activation of these receptors. In the nucleus accumbens, nicotine acts 

via heteromeric presynaptic nAChRs that contain the α6β2 and/or α4β2 subunits (Exley et 

al., 2013; Gotti et al., 2010). The β2 subunit regulates dopamine release probability in the 

NAc core as well as in the dorsal striatum (Zhang et al., 2009; Zhou et al., 2001). 

Specifically in the NAc core, dopamine is predominantly regulated by α6α4β2β3 nAChRs 

(Exley et al., 2011). Multiple studies have shown that nicotine rapidly desensitizes these 

receptors, resulting in reduced tonic dopamine tone. However, this reduction in background 

dopamine “noise” allows for an improved signal to noise ratio when a phasic dopamine 

signal is transmitted (Rice and Cragg, 2004; Threlfell and Cragg, 2011; Zhang et al., 2009).

Effects of Chronic Nicotine

Chronic nicotine exposure leads to a number of neuroadaptations that can influence diverse 

signaling pathways and circuits, including the mesolimbic reward pathway. One such 

neuroadaptation is the subtype-specific upregulation of nAChRs that occurs in response to 

persistent desensitization of the receptors (Henderson and Lester, 2015). This desensitization 

occurs because unlike acetylcholine, nicotine cannot be removed from the synapse via rapid 

hydrolysis by acetylcholinesterase (Baker et al., 2013; De Biasi and Dani, 2011; Nashmi et 

al., 2007; Picciotto et al., 2008). Nicotine’s long-lasting presence in the synapse desensitizes 

nAChRs, rendering them unresponsive to further binding by nicotine or acetycholine and 

functionally inhibiting the nAChRs (Dani et al., 2000; Picciotto et al., 2008; Pidoplichko et 

al., 1997; Wooltorton et al., 2003). Accordingly, nAChR levels are upregulated to maintain 

homeostasis following chronic nicotine (Feduccia et al., 2012; Fenster et al., 1999a; Fenster 

et al., 1999b; Giniatullin et al., 2005).

The α4β2 nAChR is the predominant high-affinity nicotinic receptor in the brain and its 

upregulation has been the most thoroughly-studied (Bertrand and Terry, 2018; Feduccia et 

al., 2012; Henderson and Lester, 2015; Zoli et al., 2018). Comparing other nAChR subtypes 

to the α4β2 nAChR can therefore be useful in understanding how different nAChRs are 

differentially regulated by nicotine. For example, α4β2 nAChRs are upregulated by low, 

physiologically-relevant nicotine concentrations (Henderson et al., 2014; Peng et al., 1994), 

whereas α3β4 nAChRs are usually upregulated only by high nicotine concentrations that are 

outside of the normal range obtained by smoking (Matta et al., 2007; Mazzo et al., 2013). 
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These changes begin within days of nicotine exposure and are thought to be significant 

mediators of nicotine addiction (Henderson et al., 2014; Matta et al., 2007; Nashmi et al., 

2007).

The upregulation of nAChRs can be achieved by multiple processes, including changes in 

receptor assembly, trafficking, and degradation (Henderson and Lester, 2015; Henderson et 

al., 2014; Mazzo et al., 2013; Rezvani et al., 2010; Rezvani et al., 2007). It is important to 

note that nAChR upregulation and the mechanisms underlying this phenomenon can vary, 

not only for different nAChR subtypes, but also for different brain regions and nicotine 

administration paradigms (Baker et al., 2013; Henderson et al., 2017; Marks and Pauly, 

1992; Nashmi et al., 2007; Pistillo et al., 2016; Renda and Nashmi, 2014).

In addition to altering nAChR expression levels in specific brain regions, repeated nicotine 

exposure can also produce a variety of additional neuroadaptations throughout the brain, 

including strengthening glutamatergic synapses onto dopamine neurons and onto the 

projection neurons of the NAc (Kenny et al., 2009; Mansvelder and McGehee, 2000; Mao et 

al., 2011; Ostroumov and Dani, 2018; Pidoplichko et al., 2004; Pistillo et al., 2015; Saal et 

al., 2003). Chronic nicotine can also dysregulate neuronal homeostatic mechanisms, 

modulate midbrain GABAergic circuitry, upregulate the high-affinity D2 dopamine 

receptors in the NAc, modulate neuronal scaffolding proteins, and alter epigenetic processes 

(Grilli et al., 2012; Hayase, 2017; Hwang and Li, 2006; Novak et al., 2010; Rezvani et al., 

2007; Thomas et al., 2018).

Withdrawal from Chronic Nicotine

After chronic nicotine exposure, abstinence from the drug can cause unpleasant withdrawal 

symptoms (De Biasi and Dani, 2011; De Biasi and Salas, 2008; Mclaughlin et al., 2015). 

Withdrawal is defined as a combination of affective and somatic symptoms that appear soon 

after nicotine abstinence, reflecting a change in neurochemistry caused by the absence of the 

drug. In humans, the symptoms used to assess nicotine withdrawal according to the DSM-V 

are: irritability/frustration, anxiety, depression, increased appetite, impatience, insomnia, and 

restlessness (Wenzel, 2017). Because the half-life of nicotine in humans is roughly 20 hours 

(Matta et al., 2007), withdrawal symptoms typically peak within a week of cessation and 

subside over the following 3–4 weeks (Hughes, 2007). In mice, symptoms can be assessed 

by observing somatic signs of withdrawal, which include increased shaking, paw tremors, 

and scratching (Damaj et al., 2003; De Biasi and Salas, 2008; Isola et al., 1999; Salas et al., 

2004), and affective withdrawal symptoms, which include anhedonia, aversion, and anxiety. 

These affective symptoms are probed using a variety of behavioral assays. For example, an 

increase in intracranial self-stimulation (ICSS) reward thresholds or reduced sucrose 

preference can indicate anhedonia, and reduced time spent in the open arms of an elevated-

plus maze can indicate increased anxiety. Because the half-life for nicotine in mice is 

approximately 6 minutes, withdrawal symptoms typically peak 12-36 hours after abstinence 

(Matta et al., 2007; Perez et al., 2015).

While not the main focus of this section, it is interesting to note that different nAChR 

subtypes appear to differentially mediate the somatic vs. affective components of withdrawal 
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(for extensive review, see Jackson et al., 2015; Mclaughlin et al., 2015). For example, β4 KO 

is sufficient to prevent somatic signs of nicotine withdrawal in mice, while β2 KO results in 

no change to somatic withdrawal signs compared to controls (Salas et al., 2004). However, 

β2 KO is sufficient to reduce the affective components of withdrawal (Jackson et al., 2008), 

and interestingly, β4 KO also prevents withdrawal-induced anhedonia (Stoker et al., 2012). 

Thus far, β2 (Jackson et al., 2009a; Jackson et al., 2008) and α6 (Jackson et al., 2009b) 

nAChRs have been implicated in the affective components of nicotine withdrawal, while α7, 

α3 (Jackson et al., 2013), α5 (Jackson et al., 2008; Salas et al., 2009), β4 (Jackson et al., 

2013; Salas et al., 2004; Stoker et al., 2012), and α2 (Lotfipour et al., 2013; Salas et al., 

2009) nAChRs have been implicated in the somatic aspects of nicotine withdrawal (De Biasi 

and Salas, 2008; Mclaughlin et al., 2015).

In addition to understanding the roles of various nAChR subtypes in different aspects of 

nicotine withdrawal, it is important to consider how neural circuits mediate withdrawal and 

how withdrawal serves to maintain addiction-related behaviors. Nicotine withdrawal 

contributes to continued nicotine use through negative reinforcement mechanisms, 

suggesting that both rewarding and aversive motivational signals and brain circuits are 

important for maintaining chronic nicotine use (Bromberg-Martin et al., 2010; Hikosaka, 

2010; Matsumoto and Hikosaka, 2007). In fact, aversive nicotine withdrawal symptoms may 

be required to produce escalated intake of nicotine (George et al., 2007; Gilpin et al., 2014), 

a hallmark feature of addiction. While the positive motivational effects of nicotine are 

achieved by activation of the mesolimbic dopamine pathway, the negative motivational 

effects of nicotine withdrawal are mediated by the habenulo-interpeduncular pathway 

(Mclaughlin et al., 2015; McLaughlin et al., 2017; Pang et al., 2016). The habenula is an 

epithalamic nucleus involved in fear, anxiety, depression, and other forms of negative affect 

(De Biasi and Dani, 2011; Ikemoto, 2010; Lecca et al., 2014; Meye et al., 2017; Winter et 

al., 2011). Anatomically, the habenula is divided into medial (MHb) and lateral (LHb) 

nuclei, but the MHb has been most strongly implicated in nicotine withdrawal (Dao et al., 

2014; Mclaughlin et al., 2015; McLaughlin et al., 2017). The MHb receives its primary 

inputs from the limbic system and sends almost all of its cholinergic and glutamatergic 

projections to the interpeduncular nucleus (IPN) (Hikosaka, 2010; Ren et al., 2011).

The MHb-IPN axis is unique in that it densely expresses almost all neuronal nAChR 

subtypes (Grady et al., 2009; Marks and Pauly, 1992) and many studies have established its 

important role in mediating the symptoms of nicotine withdrawal. For example, 

microinjections of the nAChR antagonist mecamylamine into the MHb or IPN of mice 

treated with chronic nicotine are sufficient to precipitate nicotine withdrawal symptoms 

(Damaj et al., 2003; De Biasi and Salas, 2008; Hildebrand et al., 1997; Malin and Goyarzu, 

2009; Malin et al., 1992; Salas et al., 2004; Salas et al., 2009), and mice lacking the α2, α5 

and β4 nAChR subunits, which are most densely expressed in the MHb-IPN pathway, 

exhibit reduced withdrawal responses after chronic nicotine. These findings indicate both the 

role of the MHb-IPN circuit and the role of these receptor subtypes in mediating nicotine 

withdrawal (Salas et al., 2004; Salas et al., 2009). More recent studies have also shown that 

cholinergic habenular signaling is required for nicotine withdrawal (Frahm et al., 2015), that 

optogenetic activation of IPN GABA neurons is sufficient to elicit withdrawal-like 

symptoms (Zhao-Shea et al., 2013), and that increased nAChR activity in the MHb underlies 
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anxiety-related symptoms of nicotine withdrawal (Pang et al., 2016). Interestingly, studies 

have also shown that different sub-regions of the MHb and the IPN are implicated in 

different aspects of the nicotine withdrawal syndrome (Shih et al., 2014; Shih et al., 2015).

Although the MHb-IPN axis and its role in nicotine withdrawal are usually studied in 

parallel to the mesolimbic circuit that regulates nicotine reward, these pathways likely 

interact with each other. In addition to altering the MHb-IPN pathway, withdrawal from 

chronic nicotine also leads to reduced basal dopamine levels in the NAc (Zhang et al., 2012). 

Furthermore, many of the nAChR subtypes that are important for withdrawal-related 

behaviors are also expressed in the mesolimbic circuit, and a variety of studies have shown 

direct and indirect anatomical connections between these aversive and rewarding pathways 

(Quina et al., 2017; Wolfman et al., 2018; Zhao-Shea et al., 2015).

Conclusion

Nicotine addiction results from a complex and wide-ranging series of neuroadaptations in 

many brain regions and neurotransmitter systems. These adaptations include alterations in 

nicotinic receptor expression and modulation of neurotransmitter release. A great deal of 

preclinical research has focused on the circuits that underlie both the rewarding effects of 

acute nicotine exposure and the aversive effects of withdrawal from chronic nicotine 

exposure. These studies have confirmed the role of the mesolimbic reward pathway in the 

development and maintenance of nicotine addiction as well as the role of the MHb-IPN axis 

in mediating the nicotine withdrawal syndrome.
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Highlights

1. Nicotine is highly addictive and is a leading cause of premature death 

worldwide.

2. Great diversity in neuronal nicotinic acetylcholine receptors arises from their 

subunit composition.

3. Genetic factors, especially within the CHRNA5-A3-B4 gene cluster, play an 

important role in nicotine addiction.

4. Midbrain dopamine systems play an important role especially in the initiation 

of nicotine use.

5. Aspects of nicotine withdrawal are mediated by the habenulo-interpeduncular 

pathway.
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Figure 1. 
Didactic structure of nAChR subtypes. (A) A side view of the subunits’ arrangement like the 

staves of a barrel around the central water-filled pore. In the generic heteromeric nAChR 

subtype shown, there are two alpha subunits and three beta subunits with the ACh binding 

sites located at the interfaces between α-β subunits. Note that for clarity, this schematic 

illustration is not drawn to scale and shows the ligand binding-sites at the apex of the 

subunits rather than at their actual positions deep within the structure. (B) These top down 

views of subunit arrangements for a homomeric α7-nAChR and for 3 of the myriad potential 

heteromeric nAChRs.
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Figure 2. 
Didactic representation of the three main functional states of the nAChR. In the resting state, 

the ACh binding sites are not occupied, and the water-filled pore is closed and non-

conducting to cations. In the open, activated state, the ion channel is open, providing a 

water-filled pore through the membrane that is permeable to small cations. In the 

desensitized state, the ACh binding sites are (usually) occupied, but the pore is closed and 

non-conducting. Note that for clarity, sodium to calcium ratios are lower in this schematic 

than in actuality and that the arrows do not indicate rate constants of conformation changes.
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