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A B S T R A C T   

The quantification of new or enlarged lesions from follow-up MRI scans is an important surrogate of clinical 
disease activity in patients with multiple sclerosis (MS). Not only is manual segmentation time consuming, but 
inter-rater variability is high. Currently, only a few fully automated methods are available. We address this gap in 
the field by employing a 3D convolutional neural network (CNN) with encoder-decoder architecture for fully 
automatic longitudinal lesion segmentation. 

Input data consist of two fluid attenuated inversion recovery (FLAIR) images (baseline and follow-up) per 
patient. Each image is entered into the encoder and the feature maps are concatenated and then fed into the 
decoder. The output is a 3D mask indicating new or enlarged lesions (compared to the baseline scan). The 
proposed method was trained on 1809 single point and 1444 longitudinal patient data sets and then validated on 
185 independent longitudinal data sets from two different scanners. From the two validation data sets, manual 
segmentations were available from three experienced raters, respectively. The performance of the proposed 
method was compared to the open source Lesion Segmentation Toolbox (LST), which is a current state-of-art 
longitudinal lesion segmentation method. 

The mean lesion-wise inter-rater sensitivity was 62%, while the mean inter-rater number of false positive (FP) 
findings was 0.41 lesions per case. The two validated algorithms showed a mean sensitivity of 60% (CNN), 46% 
(LST) and a mean FP of 0.48 (CNN), 1.86 (LST) per case. Sensitivity and number of FP were not significantly 
different (p < 0.05) between the CNN and manual raters. 

New or enlarged lesions counted by the CNN algorithm appeared to be comparable with manual expert rat
ings. The proposed algorithm seems to outperform currently available approaches, particularly LST. The high 
inter-rater variability in case of manual segmentation indicates the complexity of identifying new or enlarged 
lesions. An automated CNN-based approach can quickly provide an independent and deterministic assessment of 
new or enlarged lesions from baseline to follow-up scans with acceptable reliability.   

1. Introduction 

Over the last decade, magnetic resonance imaging (MRI) has become 
a key tool in the diagnosis and disease monitoring of multiple sclerosis 
(MS) (Polman et al., 2011). New or enlarged MS lesions (also referred to 
as lesion activity) from T2-weighted MRI follow-up scans are the most 
important surrogate marker of clinical disease activity in MS patients 

(Fahrbach et al., 2013). While, new or enlarged lesion have traditionally 
served as a primary endpoint in phase II studies, T2 lesion evolution has 
recently been suggested as a new primary end point in MS phase III 
clinical trials by experts in the field (Sormani et al., 2013; 2014). Fluid 
attenuated inversion recovery (FLAIR) sequences have begun to com
plement or even replace standard T2-weighted imaging, since FLAIR 
suppresses not only the signal originating from cerebrospinal fluid but 
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also blood flow effects, thereby improving the detection of white matter, 
and possibly even grey matter lesions (Gramsch et al., 2015). 

Manual segmentation of lesion activity from follow-up MRI scans is 
time consuming and inter-rater variability is high (Egger et al., 2017). 
Numerous automated methods are currently available for cross- 
sectional detection and quantification of MS lesions (Schmidt et al., 
2012; Shiee et al., 2010; Van Leemput et al., 2001; Lao et al., 2008; 
Griffanti et al., 2016; Cabezas et al., 2014; Salem et al., 2017; Roura 
et al., 2015). However, only a few fully automated algorithms have been 
provided for the longitudinal quantification of lesion activity from 
repeated MRI scans so far. Among other methods, image differences 
(Battaglini et al., 2014; Ganiler et al., 2014) and deformation fields 
(Bosc et al., 2003; Cabezas et al., 2016; Salem et al., 2017) have been 
used to detect new lesions. Also, intensity-based approaches using local 
context between scans have been proposed (Lesjak et al., 2016). Overall, 
methods for detection of lesion growth have largely relied on classic 
image processing methods so far (Cheng et al., 2018; Schmidt et al., 
2019). Elliott et al. (2013) used classical learning methods – employing a 
Bayesian classifier and a random-forest based lesion-level classification. 

Latest developments in deep-learning based methods have led to an 
increase in the number of available automated segmentation tools, with 
convolutional neural networks (CNNs) gaining popularity as a prom
ising method (Akkus et al., 2017; Danelakis et al., 2018; Litjens et al., 
2017; Valverde et al., 2017; Chen et al., 2018; Isensee et al., 2018; 
Kamnitsas et al., 2017). Currently for the segmentation purposes, the 
most commonly used networks follow a U-net- like architecture (Ron
neberger et al., 2015; Brosch et al., 2016) with an encoder-decoder 
structure and long-range connections between the encoder and 
decoder. The network usually uses (a portion of) an MRI scan as input 
and produces a segmentation mask indicating lesioned tissue as an 
output (Danelakis et al., 2018). 

As of yet, deep learning methods have only considered lesion seg
mentation from a single MRI volume. The most intuitive approach to 
derive the lesion activity between two scans is to subtract lesion maps 
from two independent segmentation masks of both scans (baseline and 
follow-up) (Jain et al., 2016; Ganiler et al., 2014; Köhler et al., 2019). 
However, this approach is associated with high variability and incon
sistency (García-Lorenzo et al., 2013). Others have tried to explicitly 
incorporate information from both MRI volumes, e. g., intensity-based 
approaches considering local context between volumes have shown 
promising results (Lesjak et al., 2016). Overall, longitudinal methods 
have relied primarily on classical image processing methods until today 
(Cheng et al., 2018). 

This study utilizes a fully convolutional neural network approach to 
segment new or enlarged lesions using two MRI scans from patients with 
a confirmed diagnosis of MS, acquired at different time points. A base
line (BL) and follow-up (FU) FLAIR volume was provided as input into 
the network, while the output produced a segmentation mask indicating 

new or enlarged lesions. Fig. 1 shows an example of the targeted lesion 
segmentation in green. 

A U-net-like encoder-decoder architecture was used, that combines 
the output of the encoder for both scans (BL, FU), before feeding those 
features into the decoder. The proposed algorithm was evaluated on 185 
independent pairs of MRI follow-up data from two different clinical 
studies. For validation, its performance was compared with the lesion 
segmentation toolbox (LST) (http://www.applied-statistics.de/lst.htm, 
Schmidt et al. (2012, 2019)), which is available under the Statistical 
Parametric Mapping (SPM12, https://www.fil.ion.ucl.ac.uk/spm/ 
software/spm12/, Friston et al. (2007)) software package. 

The purpose of our study was to introduce our deep learning methods 
for the detection of new or enlarged lesions and compare it with a cur
rent state-of-the-art non-deep-learning method. 

2. Material and methods 

2.1. Data 

For the training and evaluation of the proposed method, several data 
sets were available. 

2.1.1. Training data 

2.1.1.1. Routine data 1 (Rou1), 1 time point. 1809 2D and 3D single 
time point FLAIR images were acquired in clinical routine on 156 
different MRI scanners. The mean patient age was 45.75 (±15.12) years. 
MRIs were sent to jung diagnostics GmbH for image analysis. The images 
were anonymized and the ground truth for the MS lesion segmentation 
were annotated semi-automatically during the manual quality control 
process of jung diagnostics GmbH. 

2.1.1.2. Routine data 2 (Rou2), longitudinal. 1444 predominantly MS 
patient data sets with follow-up FLAIR image pairs (BL and FU) were 
available (acquired on 103 different MRI scanners with 18 different 
models; excluded scanner models are Philips Ingenia and SIEMENS 
Verio). The mean patient age was 43.22 (±12.46) years and the mean 
follow-up time was 1.16 (±0.60) years. The data originated from clinical 
routine and were sent to the company jung diagnostics GmbH for image 
analysis. The images were anonymized and the ground truth for the new 
or enlarged lesions (BL/FU) annotated semi-automatically during the 
manual quality control process of jung diagnostics GmbH. 

2.1.1.3. Philips Ingenia (PhIng), longitudinal. 130 predominantly MS 
patient data sets with follow-up FLAIR image pairs (BL and FU) were 
acquired on 13 different 3.0 T Philips Ingenia scanners. The mean pa
tient age was 40.44 (±12.05) years and the mean follow-up time was 

Fig. 1. Example of input data for one patient: each set consists of a baseline (a) and a follow-up (b) FLAIR scan. The ideal segmentation (green, (c)) indicates new or 
enlarged lesions in the follow-up scan in contrast to the baseline scan. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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0.98 (±0.38) years. The data originated from clinical routine and were 
sent to the company jung diagnostics GmbH for image analysis. The 
images were anonymized and the ground truth for the new or enlarged 
lesions (BL/FU) annotated semi-automatically during the manual qual
ity control process of jung diagnostics GmbH. 

2.1.2. Evaluation data 

2.1.2.1. Zurich data (ZURICH), longitudinal. This data set composed of 
89 patient data is part of an observational study on MS heterogeneity 
carried out at the University Hospital of Zurich, Switzerland. All images 
were acquired with a 3.0 T Philips Ingenia Scanner (Philips, Eindhoven, 
the Netherlands). The mean age of the patients was 34.22 (±8.72) years 
with a mean follow-up time of 2.24 (±1.17) years. The MRI data were 
annotated by three independent raters. The ZURICH data is not included 
in the PhIng data set. 

2.1.2.2. Dresden data (DRESDEN), longitudinal. For 32 patients 4 scans 
at 4 time points were performed on a 3 T Siemens Verio scanner. The 
subjects with a mean age of 39.64 (±10.78) years were scanned at 
University Hospital Carl Gustav Carus at Technische Universität Dres
den, Germany. The mean follow-up time between the 3 scan pairs (be
tween time point 1 and 2, time point 2 and 3 and time point 3 and 4) was 
1.01 (±0.08) years. For the resulting 96 scan pairs (32 patients × 3 scan 
pairs) three different annotations were available from three independent 
raters. Additionally, the scan pairs between time point 1 and time point 
4 with a mean follow-up time of 3.02 (±0.12) were annotated by the 
three raters. 

The routine data (Rou2) do not contain the scanner types Philips 
Ingenia and SIEMENS Verio since these scanners are used for the eval
uation data. Furthermore, the training data set PhIng is exclusively ac
quired on the Philips Ingenia scanner (but not the same machine as used 
for the ZURICH data set). Table 1 summarizes the described data sets. A 
more detailed description of all involved scanner models and applied 
protocols of the training and evaluation data is presented in Table 1 of 
the supplementary. 

2.2. Manual annotation of data 

For the MR scans with only one available time point (data set Rou1), 
a semi-automatic threshold-based method for the lesion segmentation 
was employed. Subsequently, the results were checked manually by 
experienced raters. For the new or enlarged lesions, all FLAIR data sets 
with two time points were segmented by one to three experienced raters. 
For diagnostic purposes, the number of new or enlarged lesions in the FU 
scan was evaluated, therefore, the BL scan was co-registered to the FU 
scan rigidly using SPM12, to get the resulting masks in the FU space. The 
annotated ground truth for all the images follows the scheme detailed in 
Fig. 1: only regions with new or enlarged lesion tissue was marked. The 
ground truth was encoded as a 1/0-mask, where new appearing lesion 
tissue was marked with 1-values and healthy (without lesions) brain 
tissue as well as old lesion tissue (already present in the BL scan) were 
not segmented (0-values) (see Fig. 1). 

The annotation of new or enlarged lesions was performed with a tool, 
which was developed by MEVIS specifically for this task (MEVIS, 
Fraunhofer Institute for Digital Medicine, Lübeck, Germany). The co- 
registered FLAIR images (BL and FU) are loaded simultaneously into 
the viewer and then displayed side by side. All image interactions like 
scrolling or adjusting window-level-setting are coupled between the 
image pair. To further facilitate the comparison between BL and FU scan 
the user can toggle in one of the viewers between the BL and FU image. 
This way changes in the images can be detected easily. Newly appearing 
lesion tissue are then annotated by an interactive thresholding tool. With 
a brush tool the user draws an arbitrary region of interest. Within this 
region a threshold is applied. The user then interactively adjusts the 

threshold in order to optimally fit the resulting segmentation to the 
boundary of the lesion. These annotations do not distinguish between 
newly appearing lesions (left annotation in Fig. 1(c)) and newly 
appearing lesion tissue which is connected to an already existing lesion 
(right annotation in Fig. 1(c)). The latter would be considered as an 
enlarged lesion. However, in the evaluation of the algorithm in the next 
section we do not distinguish between new and enlarged lesions. 

New lesions were only annotated if the diameter exceeded 3 mm, 
which corresponds to a lesion volume of 0.01 ml (rounded). This mini
mal lesion size was recently suggested by Rovira et al. (2015) for 
defining a new or enlarged lesion. In addition, new appearing lesion 
tissue (connected to an existing lesion) was only annotated if the in
crease in size and shape was pronounced and not explainable by vari
ations of the image acquisition such as different angulations or changes 
in image contrast (see Fig. 7 (a) as an example). 

2.3. Convolutional neural network 

Since the voxel spacing and slice thickness of the FLAIR scans were 
very heterogeneous, all co-registered scans (and their segmentation 
masks) were re-sampled to an isotropic 3D volume with spacing of 1 mm 
× 1 mm × 1 mm. The signal values of each volume were standardized 
individually to have zero mean and unit variance. 

Table 1 
Summary of the available evaluation (ZURICH and DRESDEN) and training 
(Rou2 and PhIng) data with number of cases (BL, FU pairs) with and without 
new or enlarged lesions, mean new or enlarged lesion count per case, mean 
lesion size and mean time between the two scans (BL and FU). For the DRESDEN 
data the values for an additional evaluation between time point one and four are 
also given (DRESDEN 1-4).  

Sets  #cases #new/ 
enl. 
lesions 

#new/ 
enl. 
Lesion 
per case 

lesion 
size 

follow- 
up time 

Training sets: 
Rou2 

(without 
SIEM. 

all 
cases 

1444 2447 1.69 
(±4.59)  

1.16 
(±0.60) 
yr. 

Verio, Ph. 
Ingenia) 

cases 
with 
> 1 
lesion 

614 2447 3.98 
(±6.36) 

0.18 
(±0.54) 
ml  

PhIng (Ph. 
Ingenia) 

all 
cases 

130 288 2.21 
(±5.60)  

0.98 
(±0.38) 
yr.  

cases 
with 
> 1 
lesion 

55 288 5.23 
(±7.68) 

0.19 
(±0.50) 
ml   

Evaluation sets: 
ZURICH all 

cases 
89 209 2.34 

(±4.44)  
2.24 
(±1.17) 
yr. 

(Ph. 
Ingenia) 

cases 
with 
> 1 
lesion 

51 209 4.09 
(±5.23) 

0.13 
(±0.14) 
ml  

DRESDEN all 
cases 

96 157 1.67 
(±2.49)  

1.01 
(±0.08) 
yr. 

(SIEM. 
Verio) 

cases 
with 
> 1 
lesion 

53 157 2.96 
(±2.69) 

0.13 
(±0.18) 
ml  

DRESDEN 
1–4 

all 
cases 

32 108 3.36 
(±3.74)  

3.02 
(±0.12) 
yr. 

(SIEM. 
Verio) 

cases 
with 
> 1 
lesion 

26 108 4.13 
(±3.75) 

0.12 
(±0.19) 
ml   
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In our preparatory work, we focused on the topic of MS lesion seg
mentation at a single point in time. For this work, experiments were 
carried out to determine the optimal patch size for the problem of lesion 
segmentation. When comparing 643 voxels, 963 voxels, 1283 voxels and 
1603 voxel patch-sizes, the method showed best results for 1283 voxels. 
Therefore, we decided to also use a patch-wise approach with a patch- 
size of 128 × 128 × 128 voxels (=128 mm × 128 mm × 128 mm) for 
the longitudinal lesion segmentation. In addition, results from lesion 
segmentation based on only FLAIR data were compared to results based 
on coupled FLAIR and T1 data. The evaluation showed that FLAIR im
ages contain sufficient information and additional use of T1 data did not 
bring any further advantages. 

2.3.1. Architecture 
The employed network follows a fully convolutional encoder- 

decoder (U-net-like) architecture with 3D convolutions with 3 × 3 × 3 
kernel size. Residual blocks are used (He et al., 2015) in the encoder. In 
addition, deep supervision (Dou et al., 2017) is employed by including 
additional segmentation layers at several stages in the decoder. Dou 
et al. (2017) showed that deep supervision increased the stability of the 
training process for 3D volume-to-volume learning, since 3D convolu
tional neural networks suffer from the optimization problem of gradi
ents vanishing or exploding. A preliminary experiment confirmed that 
without deep supervision the convergence behaviour of the loss function 
is worse than with deep supervision and was hence included in the ar
chitecture. Fig. 2 visualizes the proposed architecture. 

The encoder reduces the spatial feature map size four times (using 
convolution with stride 2) and doubles the feature map number with 
each reduction. Starting with 16 feature maps of size 128 × 128 × 128 in 
the first layer, this leads to 256 maps of size 8 × 8 × 8 in the last encoder 
layer. The two input volumes (BL, FU) are fed into the same encoder- 
path independently (in Fig. 2 the two encoder paths have shared 
weights). Both feature maps are concatenated before being fed into the 
decoder. 

The decoder uses convolution layers, followed by nearest-neighbour 

up-sampling and deep supervision in three layers (Dou et al., 2017). For 
the long-range connections between encoder and decoder a feature 
concatenation is employed. Furthermore, after each scaling-level of the 
encoder the feature maps of the BL and FU scan are concatenated before 
going into the long-range connections. 

2.3.2. Parameters 
As the activation function a leaky ReLU (Maas et al., 2013) is used in 

each layer. Due to the rather large patches of 128 × 128 × 128 voxels the 
batch size is 1. Therefore, instance normalization, a special case of group 
normalization, is used instead of batch normalization. The model is 
trained using the Adam optimizer (“Adaptive Moment Estimation”, a 
version of stochastic gradient descent (Kingma and Ba, 2014)) with a 
cross-entropy loss function and batch size of 1 for Ne = 200 epochs. A 
starting learning rate of α0 = 10− 4 is used with an exponential decay of α 
= α0(1 – e/Ne)0.9 with e as current epoch. 

2.3.3. Data augmentation 
For the purpose of data augmentation, the input patches of 128 ×

128 × 128 voxels are randomly cropped from the entire scan volumes. 
The patches are flipped randomly around both axes of the axial plane. 
Furthermore, random noise and a random “bias field” are added, to 
handle inhomogeneous signal distributions between the two scans. To 
deal with a non-perfect rigid alignment between BL and FU scan, we 
randomly translate one of the scans by 0, 1 or 2 mm (randomly chosen) 
in each dimension. 

2.4. Training and pre-training 

2.4.1. Pre-training of encoder path with single time point data 
The task of finding new or enlarged lesions is related to finding le

sions in FLAIR scans at a single time point. Similar image features 
(convolution filters of the encoder) should be of interest for segmenta
tion algorithms in both tasks. Therefore, the encoder was pre-trained 
with single time point images (routine data set with 1 time point 

Fig. 2. The proposed network: a fully convolutional encoder-decoder architecture with 3D convolutions, residual-block-connections and four reductions of the 
feature map size. The two input images (BL and FU FLAIR-patch) are fed into the same encoder path – both visualized paths have shared weights. After each residual- 
block the feature maps for each input are concatenated and fed into the decoder, respectively. As an output a segmentation mask is predicted indicating new and 
enlarged lesions. 
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(Rou1) – one FLAIR image as input and one segmentation mask indi
cating lesion load at one time point as ground truth/output). Another 
reason for the pre-training was the large amount of single time point 
data available (1809 scans). Since these were acquired on many 
different MR scanners, this data set also increased the variability of the 
training data, which is very important due to the heterogeneity of the 
FLAIR data. For the purpose of pre-training, a U-net-like network was 
trained similarly to the proposed network. This pre-training network 
included the same structure for the encoder, however, only one encoder 
path was utilized and therefore, did not involve concatenations between 
encoder-outputs in each scaling level. 

This model was trained for 300 epochs using the 1809 2D and 3D 
single time point FLAIR images (Rou1, see Section 2.1). 

2.4.2. Training with longitudinal data 
To train the decoder, the weights and parameters of the encoder were 

initialized with the values of the pre-trained net. Then the entire net 
with the proposed architecture (Fig. 2) was trained on 1444 images pairs 
of BL and FU FLAIR images, acquired during clinical routine (Rou2). The 
training and evaluation data sets are described in Table 1. Since all of the 
data were acquired in clinical routine or in MS specific studies, almost all 
the images contained MS lesions. However, new or enlarged lesions 
were identified by the raters in only 614 cases of the total available 
training data. Because this means an unbalanced distribution of positive 
and negative mask values, each epoch alternated between two training 
data sets: one set with all the images and one set with only image pairs 
that include at least one new or enlarged lesion. 

The net was trained for 200 epochs, whereby in the first 100 epochs 
only the parameters of the decoder were updated while the encoder 
parameters were left fix and in the last 100 epochs all parameters 
(including the pre-trained encoder) were updated. 

To determine the benefit of pre-training and of training on a large 
heterogeneous data set versus a training on a specific MR scanner (in this 
case Philips Ingenia (PhIng)), three different variants with different 
training data were compared in total. To evaluate the following three 
variants, the ZURICH data, acquired on a Philips Ingenia MR scanner, 
were employed. See Table 1 for the description of the training data sets. 
The three different training variants were as follows: 

PhIng_PhIng - All parameters (encoder and decoder) are trained for 
200 epochs on the 130 training data acquired on Philips Ingenia MR 
scanner. 

Rou1_PhIng - Same as PhIng_PhIng, whereby the encoder was pre- 
trained on the routine data with one time point (Rou1), as described in 
Section 2.4.1. 

Rou1_Rou2 - The encoder was pre-trained on routine data with one 
time point (Rou1), as described in Section 2.4.1. Then the decoder was 
trained on 1444 routine data sets with BL and FU images (Rou2). The 
training was done entirely without the evaluation data (ZURICH and 
DRESDEN) and the MR scanners (Philips Ingenia, SIEMENS Verio), 
respectively. This method was described above. 

3. Evaluation 

For the evaluation of the nets, 27 (3 × 3 × 3) evenly distributed 
overlapping crops of 128 × 128 × 128 mm3 were taken from both rigidly 
aligned scans. For each crop, the predicted segmentation mask was 
computed and merged to the entire volume by taking the mean mask 
values of the overlapping regions. Due to the binary cross entropy loss 
function used, the resulting masks contain values between 0 and 1. 
Those predicted masks were thresholded with a value of 0.4 (determined 
in preliminary tests by analysing a ROC curve comparing sensitivity and 
false positive rate of the different thresholds) and compared to the given 
ground truth segmentation in the following. 

3.1. Compared method: Lesion segmentation toolbox (LST) 

To compare with our current method, the given 185 evaluation cases 
(BL and FU for each case) were evaluated with the longitudinal lesion 
segmentation pipeline of the LST (Schmidt et al., 2012; Schmidt et al., 
2019). LST is an open source toolbox which is freely available under the 
Statistical Parametric Mapping (SPM12) software package. 

As an initial step, the longitudinal pipeline of the LST requires that 
lesion segmentation is performed separately for each time point. The 
resulting lesion maps are then compared between the time points and 
the algorithm decides whether changes in lesion maps are significant or 
if they are due to potential natural variations of the FLAIR signal. Lesion 
change labels are produced as the final product from this pipeline. 
Lesion decrease, no change, and lesion increase are labelled by the 
numbers 1, 2, and 3, respectively. Since we were primarily interested in 
the evaluation of new or enlarged lesions, only label 3 was considered as 
a marked region. LST provides two different algorithms for (single time 
point) lesion segmentation. The lesion growth algorithm (LGA, Schmidt 
et al. (2012)) requires a T1 image in addition to the FLAIR image. The 
lesion prediction algorithm (LPA) requires a FLAIR image only. Since the 
CNN pipeline proposed in this paper uses the FLAIR image only, we used 
the LPA in the longitudinal pipeline of the LST. 

3.2. Metrics and statistical analysis 

To investigate the performance of our algorithm, we compared lesion 
segmentation masks indicating new or enlarged lesions, employing 
lesion-wise metrics. For clinical routine, the number of new or enlarged 
lesions is an important parameter. Therefore, the lesion-wise sensitivity 
(lesion-wise true positive/number of lesions), lesion-wise false positive 
count (FP) as well as lesion-wise false positive rate (FPR: FP/number of 
lesions) were assessed. A cluster of voxels was defined as a lesion if 
voxels were inter-connected (over a 3D 26-voxel-neighborhood). A 
lesion was defined as true positive (TP) if it had an overlap with a lesion 
in the second map/ground truth map. These metrics are best suited for 
determining if the segmentation methods were able to detect the correct 
number of lesions. To evaluate the resulting overlap of the annotated 
lesion, the voxel-wise Dice coefficient of correctly identified lesions per 
image pair was reported:  

(2 × true_positive_voxels)/(2 × true_positive_voxels + false_positive_voxels 
+ false_negative_voxels).                                                                       

here, only the voxels of overlapping lesions in the compared maps were 
considered. 

A lesion was defined as relevant if its size exceeds 0.01 ml. This is the 
minimal lesion size recently suggested by Rovira et al. (2015) for 
defining a new or enlarged lesion. Therefore, all available ground truth 
and computed segmentation maps were thresholded by size of con
nected components, to remove noise and lesions with a size < 0.01 ml. 

All following values are given as means and standard deviations over 
the evaluated cases. Since a number of ground truth masks were avail
able for each case, the metrics comparing the results to all available 
ground truth segmentations were first averaged for each case. Subse
quently, the mean values for the defined data sets are reported. For the 
inter-rater variability, all rater masks were evaluated against each other 
and averaged. 

Since the chosen metrics were not normally distributed, the Wil
coxon test was used for comparisons of the results. 

In Section 2.1 the two evaluation sets with 185 cases are described. 
The data included some cases without any new or enlarged lesions. 
Table 1 summarizes the mean lesion count per case and the mean lesion 
size the for all given evaluation sets. Because the sensitivity, the FPR, 
and the Dice coefficient are not defined if no new or enlarged lesion is 
given in an image, those metrics were only computed for the 104 cases 
including new or enlarged lesions. The FP count is reported for all 185 
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cases. 

3.3. Results 

In Section 2.4.2 the three training variants on different data sets (to 
evaluate the effect of the pre-training using single time point data and 
the effect of a heterogeneous training set) are described. Fig. 3 sum
marizes the results of the comparison of the performance on the 89 
ZURICH data sets: the network with pre-trained encoder (Rou1_PhIng – 
blue boxes) performed better than the net trained only on the longitu
dinal data of the evaluation set (PhIng_PhIng – red boxes) (similar 
sensitivity and similar Dice coefficient but significantly lower FP count 
and FPR – p-values < 0.05). 

Furthermore, the performance increased (significantly for FP count 
and FPR with p-values < 0.05 for Wilcoxon test) when the network was 
trained on a higher number of routine data (Rou1_Rou2 – green boxes), 
whereby the evaluation sets (ZURICH and DRESDEN) as well as the MR 
scanners used for the evaluation data (Philips Ingenia and SIEMENS 
Verio) were not included at all in the training. Therefore, in the 
following analysis only the values of the Rou1_Rou2 network were 
compared with the inter-rater performance and the LST algorithm. 

Results of the comparative performance between manual rating 
(inter-rater, IR), the proposed CNN-based method and LST are shown in 
Fig. 4 and Table 2: for all 185 evaluation data sets, the CNN out
performed LST. CNN showed a higher sensitivity (0.60 for CNN and 0.46 
for LST), a higher Dice coefficient (0.45 for CNN and 0.28 for LST) and 
lower a FP count (0.48 for CNN and 1.86 for LST) compared to LST. For 
all applied measures the CNN was not significantly (p > 0.05) different 
from the inter-rater performance (sensitivity 0.62, Dice 0.47, FP count 
0.41). 

Fig. 5 shows an additional analysis concerning the time between the 
two compared MR scans (BL, FU). Since the DRESDEN data contain four 
scans at four time points for each patient, we compared the performance 
for scan pairs with approximately one year between BL and FU scan 
(between time point one and two (1–2), two and three (2–3) and three 
and four (3–4)) and for pairs with approximately three years between BL 
and FU scan (time point one and four (1–4)). The results show that the 
CNN-based algorithm (blue boxes) performs independently of the time 
between scans and is within the inter-rater variability (green boxes in 
Fig. 5). 

Figs. 6 and 7 visualize the problem of the FP lesions in LST. Fig. 6 
shows a representative case, where the CNN-based method out
performed the LST, which detected two false positive lesions in the MR 
slide. Fig. 7 visualizes another representative case where LST detected 
13 FP lesions and the CNN-based algorithm found no FP lesions. 

4. Discussion 

The quantification of new or enlarged MS lesions from T2-weighted 
MRI follow-up scans is an important surrogate of clinical disease activity 
in MS. A fully automated CNN-based deep learning method is proposed 
here as a tool to identify MS lesion activity between two consecutive 
MRI scans. In contrast to conventional methods, in which the two scans 
are first processed independently, and then combined, our algorithm 
considers the two scans (BL, FU) simultaneously in order to make a 
decision based on the combined information. This mimics how lesion 
activity is assessed by radiologists. 

Firstly, in many MS clinical drug trials new or enlarged lesions are 
used as a composite secondary end point. Furthermore, common risk 
stratification algorithms like Rio score (Sormani et al., 2013) or the 
modified Rio Score do not distinguish between new appearing and 
enlarged lesions. Thus clinically, both new and enlarged lesions are used 
as surrogate markers for disease activity. Additionally, in many cases it 
is not easy to distinguish between new and enlarged lesions. If a lesion 
appears in the proximity of an existing lesion and is connected to an 
already existing lesion by some voxels, it is unclear if that lesion is new 
or enlarged. This may introduce inter-rater variability without any 
additional clinical benefit. In this study it was therefore decided not to 
distinguish between new or enlarged lesions. 

The segmentation of MS lesions in MRI FLAIR scans is challenging 
due to the highly heterogeneous nature of FLAIR protocols between 
radiology centres as well as between scans of individual patients. To 
investigate the impact of acquisition heterogeneity two independent 
data sets acquired on two independent MR scanner types were analysed 
(evaluation data as defined in Section 2.1.2): 89 image pairs from 
ZURICH acquired with a Philips Ingenia scanner and 96 image pairs 
from DRESDEN acquired with SIEMENS Verio scanner. To evaluate the 
performance of the proposed algorithm with respect to scanner and/or 
protocol independence, the training was done with two different data 
sets: First the algorithm was trained on 130 routine data sets acquired 
with a single scanner, a Philips Ingenia (DRESDEN), and evaluated using 
89 image pairs also acquired with a Philips Ingenia scanner (ZURICH). 
We then trained the network on 1444 routine data sets from 103 
different scanners excluding the evaluation data. The analysis showed 
that the network trained on more heterogeneous data was able to 
segment the evaluation data of an unknown scanner. To further 
accommodate for this high variability of the FLAIR scans, additional 
single time point data sets were used for a pre-training of parts of the 
network. The results suggest that the problem of lesion segmentation 
can be solved independently of the scanner and protocol, despite the 
high heterogeneity of the MR scans, if the amount of data in the training 
data is chosen to be correspondingly heterogeneous. 

To evaluate the performance of our CNN-based algorithm, we 

Fig. 3. The boxplots summarize the comparison between the three variants of the trained networks: sensitivity, Dice coefficient, FP count (visualized using loga
rithmic scale) and FPR (log scale) for all 89 ZURICH data sets were compared between the nets trained on the routine data (Rou1_Rou2, green), trained on the Philips 
Ingenia data with pre-trained encoder (Rou1_PhIng, blue) and trained completely on the Philips Ingenia data (PhIng_PhIng, red). See Section 2.4.2 for the description 
of the variants. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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compared the results to the manual inter-rater performance, as well as to 
a current state-of-the-art non-deep-learning method (LST) for detecting 
lesion activity (Schmidt et al., 2019). As described in the method section 
the LST provides two different algorithms for (single time point) lesion 
segmentation: the lesion growth algorithm (LGA) and the lesion pre
diction algorithm (LPA). Since the CNN pipeline proposed in this paper 
uses the FLAIR image only, we used the LPA in the longitudinal pipeline 
of the LST. However, the LGA was deployed in the recent study by 
Schmidt et al., 2019. In order to provide a fair comparison between the 
tools also the performance of the LGA was tested as an additional 
experiment, which is not shown in the results section. For all evaluation 
data sets also a corresponding 3D-T1 image was available. The longi
tudinal LST pipeline using the LGA was executed for a range of kappa 
values (0.001, 0.1, 0.2, 0.3, and 0.4). As for the other algorithms the FP 

and sensitivity was computed for the DRESDEN and the ZURICH data. 
For all kappa values the LPA outperformed the LGA. We therefore 
decided to focus on the LPA algorithm in this paper. 

To derive the inter-rater performance two to three manual segmen
tations were available for 185 evaluation data sets, provided by different 
experienced raters. The rather low inter-rater performance (e.g. sensi
tivity of 0.62) signifies the complexity and uncertainty of identifying 
new or enlarged lesions. The small values of the Dice coefficients are due 
to the small lesion volumes, which is on average only 0.13 ml. Only 2% 
of all lesions in the evaluation data are between 1.0 and 1.66 ml in 
volume. An additional experiment with the DRESDEN data was per
formed, in which the segmentation results of data with different follow- 
up times were compared. The CNN-based algorithm performed inde
pendent on the time between BL and FU scan. 

Fig. 4. The boxplots summarize the segmentation results for the evaluation data sets: sensitivity, Dice coefficient, FP count (visualized using logarithmic scale) and 
FPR (log scale) were compared with inter-rater values (IR, green), the proposed CNN based algorithm (blue) and LST (red). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Summary of the comparison of lesion segmentations for new or enlarged lesion between raters (inter-rater variability (IR)), as well as between the proposed CNN 
method and LST. The results are given as mean and standard deviation for each of the two data sets (ZURICH and DRESDEN) and both data sets). The numbers marked 
with an asterisk indicate values which are significantly (p < 0.05 for Wilcoxon test) different from the inter-rater-variability (IR).  

Sets  sensitivity Dice coefficient FP count FPR 

all sets Inter-rater (IR) 0.62 (±0.34) 0.47 (±0.29) 0.41 (±0.73) 0.37 (±0.35)  
CNN vs. raters 0.60 (±0.36) 0.45 (±0.28) 0.48 (±0.82) 0.41 (±0.88)  
LST vs. raters 0.46 (±0.38)* 0.28 (±0.26)* 1.86 (±2.48)* 1.92 (±4.54)* 

ZURICH Inter-rater (IR) 0.54 (±0.31) 0.41 (±0.28) 0.54 (±0.87) 0.45 (±0.33)  
CNN vs. raters 0.54 (±0.34) 0.39 (±0.25) 0.63 (±0.94) 0.42 (±0.56)  
LST vs. raters 0.49 (±0.34) 0.30 (±0.25)* 2.35 (±2.70)* 1.61 (±1.97)* 

DRESDEN inter-rater (IR) 0.69 (±0.35) 0.53 (±0.29) 0.28 (±0.54) 0.30 (±0.35)  
CNN vs. raters 0.67 (±0.37) 0.52 (±0.29) 0.34 (±0.66) 0.40 (±1.11)  
LST vs. raters 0.43 (±0.41)* 0.25 (±0.27)* 1.40 (±2.14)* 2.24 (±6.09)*  
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Fig. 8 visualizes four representative examples, where raters graded 
differently. Some of the evaluated data suffered from fluctuating signal 
values between the BL and FU scan. Such fluctuations are common in 
clinical routine due to different MR scanners or different scanner/pro
tocol settings, providing a realistic evaluation setting. FLAIR is not a 
quantitative MRI sequence, meaning that a signal intensity in a given 
image voxel is arbitrary and cannot be compared between scans and 
patients. The proposed CNN algorithm showed a significantly better 
false positive rate than the compared LST. A visual evaluation (Fig. 7) 
indicated, that LST is more sensitive to signal changes between the two 

scans due to MR parameter differences. 
Classical methods based on image differences or deformation-based 

approaches require a certain consistency between the two scans (BL 
and FU). In order to be able to catch possible deviations from this con
sistency, probability models and regularization methods (e. g. for image 
registration) are used. In our experience, however, the inconsistency in 
MRI data in routine clinical operation – outside the highly standardized 
conditions of clinical trials – is very high. As a consequence, “manual” 
designed adjustments are not feasible for the level of heterogeneity we 
aim to address with our algorithm. Furthermore, most of the previously 

Fig. 5. The boxplots summarize an analysis on the DRESDEN data comparing different scan intervals between BL and FU scans. Therefore, the 4 scans for the 32 
patients were paired as follows: time point one and two (1–2), two and three (2–3) and three and four (3–4) as well as time point one and four (1–4)). The mean time 
interval between the first three pairings is 1.01 (±0.08) years and between the first and the last (1–4) is 3.02 (±0.12) years. 

Fig. 6. Segmentation results for the CNN-based method and the LST method: Between BL (a) and FU (b) scan one new lesion occurred in the visualized MR slice. The 
CNN (c) identified the lesion correctly (true positive (TP)) and LST (d) reported further false positive (FP) new/enlarged lesions in addition to the correctly 
detected lesion. 

Fig. 7. Example of problematic signal value changes between the BL and FU FLAIR scans: the images in (a) visualize the BL and FU scan with the same level-windows 
settings for both scans. This shows that the contrast and the signal value distribution between the two scans changed. If the window-level-setting are adjusted (b) to 
create a similar visual impression between the images, it becomes obvious that the lesion in this image slide has already be present in the BL scan. The CNN-based 
method correctly identified this lesion as old lesion tissue while the LST-method (c) detected a false positive (FP) new lesion. In the whole MR scan LST found 13 FP 
while our CNN method found no FP. 
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proposed methods (including LST) consider both scans individually 
(segmentation of lesion load in BL and in FU) and then invest effort in 
combining the two resulting lesion maps. The approach of the proposed 
CNN algorithm, however, is that both scans are considered simulta
neously and the combination of signal values of BL and FU is done before 
lesion segmentation. Therefore, no rules are necessary to combine the 
masks. Rather, the network is trained to identify the correct combination 
of (very heterogeneous) image features that indicate new or enlarged 
lesions. 

LST is time consuming as compared to the proposed CNN algorithm. 
The mean computation time of LST was around 30 min. For cases with a 
high number of lesions the computation time increases to over 2 or even 
3 h. The mean computation time of the described CNN-based method 
was under 1 min (GPU: NVIDIA GeForce RTX2080Ti, 11 GB GDDR6, 14 
Gbps, 4352 cores) – independent on lesion count or image resolution. An 
automated CNN-based approach can quickly (<1 min) provide an in
dependent and deterministic assessment of lesions from baseline and 
follow-up scans to support disease and therapy monitoring in MS as a 
rapid alternative to manual segmentation. 
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