TABLE 2.
Model tuning | Accuracy | Precision | Recall | F-score |
One-hot encoding + 2D convolutional neural network (CNN) | 0.623 ± 0.037 | 0.662 ± 0.028 | 0.636 ± 0.019 | 0.647 ± 0.021 |
Embedding layer + CNN | 0.732 ± 0.006 | 0.745 ± 0.011 | 0.692 ± 0.024 | 0.716 ± 0.029 |
Fixed word2vec + CNN | 0.685 ± 0.024 | 0.701 ± 0.019 | 0.653 ± 0.015 | 0.677 ± 0.022 |
Transfer embedding + recurrent neural network (RNN) | 0.743 ± 0.012 | 0.749 ± 0.004 | 0.716 ± 0.017 | 0.729 ± 0.015 |
Proposed method | 0.782 ± 0.008 | 0.791 ± 0.013 | 0.785 ± 0.011 | 0.782 ± 0.016 |