Skip to main content
. 2020 Sep 30;8:572195. doi: 10.3389/fcell.2020.572195

TABLE 2.

Cross validation performance comparison between different deep structures and feature encondings.

Model tuning Accuracy Precision Recall F-score
One-hot encoding + 2D convolutional neural network (CNN) 0.623 ± 0.037 0.662 ± 0.028 0.636 ± 0.019 0.647 ± 0.021
Embedding layer + CNN 0.732 ± 0.006 0.745 ± 0.011 0.692 ± 0.024 0.716 ± 0.029
Fixed word2vec + CNN 0.685 ± 0.024 0.701 ± 0.019 0.653 ± 0.015 0.677 ± 0.022
Transfer embedding + recurrent neural network (RNN) 0.743 ± 0.012 0.749 ± 0.004 0.716 ± 0.017 0.729 ± 0.015
Proposed method 0.782 ± 0.008 0.791 ± 0.013 0.785 ± 0.011 0.782 ± 0.016