Highlights
-
•
Several components within the osteosarcoma microenvironment are expressed abnormally.
-
•
Osteosarcoma has a markedly different microRNA profile from healthy bone.
-
•
microRNAs play roles in the crosstalk between osteosarcoma cells and the tumour microenvironment.
Keywords: Osteosarcoma, Tumour microenvironment, microRNA
Abstract
Osteosarcoma (OS) is the most common primary bone tumour, with a peak incidence in adolescents, and the five-year survival rate of patients with metastasis or recurrence is much lower than that of patients without metastasis and recurrence. OS is initiated and develops in a complex tumour microenvironment (TME) that contains many different components, such as osteoblasts, osteoclasts, mesenchymal stem cells, fibroblasts, immune cells, extracellular matrix (ECM), extracellular vesicles, and cytokines. The extensive interaction between OS and the TME underlies OS progression. Therefore, rather than targeting OS cells, targeting the key factors in the TME may yield novel therapeutic approaches. MicroRNAs (miRNAs) play multiple roles in the biological behaviours of OS, and recent studies have implied that miRNAs are involved in mediating the communication between OS cells and the surrounding TME. Here, we review the TME landscape and the miRNA dysregulation of OS, describe the role of the altered TME in OS development and highlight the role of miRNA in the crosstalk between OS cells and the TME.
1. Introduction
Osteosarcoma (OS) is the most common primary bone tumour in adolescents and young adults [1]. The five-year survival rate has remained static, at 70% for non-metastatic patients over the past four decades, but is only 30–40% for patients with recurrence and metastasis [2], [3]. The effects of conventional chemotherapy have not improved in recent decades, and emerging targeted therapy and immunotherapy do not offer much promise as successful OS treatments [4]. This treatment dilemma of OS demands further molecular exploration to discover the mechanisms of OS genesis and progression that may enable the design of potential drugs.
The tumour microenvironment (TME) plays a vital role in OS initiation and development [5], [6]. As a mixture of cancer cells and their stroma, the features of the TME are abnormal, and the normalization of the TME improves the effectiveness of chemotherapy and immunotherapy in cancers [7], [8]. Therefore, investigating the key factors in the TME of OS may reveal potential therapeutic targets.
Recently, microRNAs (miRNAs) have been shown to mediate communication between cancer cells and the TME [9]. miRNAs are short, non-coding RNAs (18–25 nucleotides) that repress gene expression by binding to the targeting mRNA at the 3′-untranslated region to inhibit its translation or induce its degradation [10]. Dysregulated miRNAs have been widely identified in cancers and usually function as oncogenes or tumour suppressors [11]. OS has a markedly different miRNA profile from healthy bone, and these altered miRNAs influence OS behaviour [12]. In this review, we describe the TME landscape and the miRNA profile of OS; most importantly, we summarize the role of miRNAs in the crosstalk between OS cells and the TME.
2. The TME landscape of OS
The TME hosts two major categories of components: 1) acellular components, such as the extracellular matrix (ECM), extracellular vesicles (EVs), cytokines and growth factors; and 2) cellular components, including all nonmalignant cells, such as fibroblasts, endothelial cells, immune cells and adipocytes [13]. In OS, bone cells are also a part of the TME. Fig. 1 illustrates the presence of OS cells in the TME.
Fig. 1.
The crosstalk between osteosarcoma cells and the tumour microenvironment. CAFs: cancer-associated fibroblasts; ECM: extracellular matrix; EVs: extracellular vesicles; GAG: glycosaminoglycans; IL: interleukin; MMPs: matrix metalloproteinases; MSCs: mesenchymal stem cells; PTHrP: parathyroid hormone-related protein; STAT3: signal transducer and activator of transcription 3; TAMs: tumour-associated macrophages; uPA: urokinase-type plasminogen activator.
2.1. The ECM
The ECM is primarily composed of fibrous proteins (such as collagens, elastins, fibronectin, and laminins), glycosaminoglycans (GAGs) and proteoglycans, which are locally secreted and form the structural skeleton for most tissues [14].
The downregulation of collagens 1A1, 1A2, 4A1, 5A1 and 12A1 is associated with OS metastasis [15], [16]. Matrix metalloproteinases (MMPs) are the major enzymes involved in degrading collagen and remodelling the ECM [17]. OS tissues strongly express MMP-2 and MMP-9, and high MMP-9 expression predicts lung metastasis and poor survival [18], [19]. Urokinase-type plasminogen activator (uPA) also degrades the ECM. The activation of uPA contributes to the metastatic phenotype of OS cells, and the uPA inhibitor decreases lung metastasis in mouse models [20]. Lysyl oxidase (LOX) catalyses the cross-linking of collagen and elastin. In the Chinese population, the 22G/C and 473G/A polymorphisms of the LOX gene reportedly increase susceptibility to OS [21].
Fibronectin and laminin are glycoproteins that integrate with adhesion molecules or cell membrane receptors to mediate cell adhesion, proliferation, differentiation, apoptosis, and migration by inducing a number of signalling pathways [22], [23]. Upregulated fibronectin-1 and laminin contribute to the doxorubicin resistance of OS cells, and high fibronectin-1 expression is correlated with poor overall survival after surgical resection in OS patients [24], [25]. High-grade OS tissues express high levels of fibronectin and its receptor syndecan 4, which are positively correlated with lung metastasis and short overall survival [26].
GAGs, such as chondroitin sulfate, dermatan sulfate, heparan sulfate, keratan sulfate, and hyaluronan, are unbranched polysaccharides that consist of repeated disaccharidic units of uronic acids and hexamine or galactose [27]. GAG expression is significantly higher in OS tissues than in normal tissues [28]. The blockage of heparan sulfate binding to epidermal growth factor receptor 1 (EGFR1) prevents the interaction of fibroblast growth factor 2 (FGF2) with fibroblast growth factor receptor 1 (FGFR1), resulting in the apoptosis of OS cells [29]. The application of 4-methylumbelliferone, an inhibitor of hyaluronan synthesis, has been shown to repress OS proliferation, migration, invasion, and lung metastasis [30].
2.2. Bone cells
Normally, bone homeostasis is in equilibrium due to osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Molecularly, the maturation of osteoclasts is regulated through the binding of the receptor activator of nuclear factor κB ligand (RANKL) on osteoblasts with its receptor RANK secreted by osteoclasts [31]. In the early stage of OS initiation, bone metabolism is disrupted, generating a vicious circle between OS cells, bone cells, and stromal cells. OS cells secrete factors such as interleukin (IL)-6, IL-11, and parathyroid hormone-related protein (PTHrP) to stimulate osteoclastogenesis by activating osteoclast precursors or upregulating RANKL expression on osteoblasts. Activated osteoclasts release proteases such as cathepsin K to degrade bone. In turn, the destructive bone matrix releases growth factors such as transforming growth factor-β (TGF-β) and fibroblast growth factor (FGF) to promote OS cell growth and metastasis [32], [33]. In the late stage of OS initiation, OS cells release factors to suppress osteoclastogenesis [33]. Moreover, the decrease in osteoclasts has been shown to be associated with the lung metastasis of OS [34].
2.3. Mesenchymal stem/stromal cells (MSCs)
MSCs are multipotent cells mainly residing in the bone marrow adipose tissue and placenta [35]. It has been suggested that OS most likely originates from MSCs or MSC-derived cells as OS contains a considerably high number of MSCs [36], [37]. Additionally both bone marrow- and adipose-derived MSCs enhance the proliferation and metastasis abilities of OS by activating signal transducer and activator of transcription 3 (STAT3) [38], [39]; the activation of STAT3 by MSCs probably leads OS cells to be resistant to doxorubicin and cisplatin [40]. Additionally it has been determined that MSCs are able to promote the progression of OS through signalling pathways such as chemokine (C–C motif) ligand 5 (CCL5) chemokine (C-X-C motif) receptor 4 (CXCR4) and IL-8 [41], [42], [43]. Furthermore MSCs isolated from primary OS samples reportedly express markers related to cancer-associated fibroblasts (CAFs) [37] and bone marrow-derived MSCs cultured in conditioned medium derived from OS cells differentiate towards a CAF-like phenotype [44] indicating that MSCs may be the source of CAFs in OS
2.4. Immune cells
In OS, immune infiltration is frequent and mainly involves T lymphocytes and tumour-associated macrophages (TAMs), accompanying dendritic cells, B lymphocytes, and mast cells [45], [46]. The abundance of T lymphocytes, B lymphocytes, and natural killer (NK) cells is higher in non-metastatic OS than in metastatic OS [47]. A study of 102 OS patients showed that a high density of CD8+ tumour-infiltrating lymphocytes (TILs) and a low density of FOXP3+ regulatory T-cells (Tregs) are correlated with a favourable survival rate [48].
According to the differentiation process and activities, TAMs are divided into an M1 subtype with antitumour ability and an M2 subtype with pro-tumour ability [45]. TAMs have been demonstrated to exert pro-tumour activities in many tumours by promoting angiogenesis, immunosuppression, cell invasion, and migration [49]. However, the role of TAMs in OS is inconclusive. Buddingh et al. [50] showed that both M1 and M2 TAMs existed in biopsies from OS patients, and the total number of TAMs was positively associated with a low risk of lung metastasis, a good response to chemotherapy and favourable overall survival. Gomez-Brouchet et al. [51] reported that the presence of M2 TAMs was essential for inhibiting OS development. By contrast, Han et al. [52] found that TAMs promoted lung metastasis and induced epithelial-mesenchymal transition (EMT) in OS. These inconsistent findings suggest that the role of TAMs in OS metastasis is complicated and needs further exploration.
2.5. Extracellular vesicles (EVs)
EVs are lipid bilayer-bound vehicles that are released from the cell membrane and contain a diverse array of bioactive cargos, including proteins, nucleic acids (DNA, mRNA, and miRNA) and lipids [53]. Recently, EVs have attracted substantial attention as intercellular communication mediators [54]. Proteomics analysis of EVs from OS cell lines identified more than 1,000 proteins in EVs, of which the most abundant proteins were involved in angiogenesis, cell adhesion, and migration [55]. The metastatic OS cell line 143B secretes EVs containing MMP-1, MMP-13, TGF-β, CD9, and RANKL, all of which participate in bone destruction [56]. EVs from 143B cells also activate MSCs to secrete IL-6, thus stimulating OS progression [57]. MSCs have also been demonstrated to release EVs containing miRNAs, which increase OS migration and apoptosis resistance [58].
3. miRNA dysregulation in OS
Carcinogenesis has long been mainly attributed to gene alterations. Since the first report about the association between chronic lymphocytic leukaemia and miR-15 and miR-16, mounting studies have indicated that miRNAs act as tumour suppressors or oncogenes in many cancers [11], [59].
3.1. miRNAs regulate OS progression
Notch signalling pathway dysregulation plays a stimulatory role in OS initiation and development [60]. Jagged1 is a Notch pathway ligand, and the overexpression of miR-26a exerts an anti-OS effect by blocking the Jagged 1/Notch signalling pathway [61]. Notch2 is a crucial receptor in the Notch pathway, and miR-1296-5p represses the proliferation, migration, and invasion of OS cells by targeting Notch2 [62]. The re-expression of miR-34 and miR-200, which are expressed at low levels in OS tissues [63], [64], has been shown to reduce the expression of Notch1 [65]. Conversely, miR-10b-5p activates the Notch pathway by downregulating NCOR2, which is a negative regulator of this pathway [66]. Long non-coding RNA (lncRNA) CEBPA-AS1 inhibits the Notch pathway by sponging miR-10b-5p to increase the expression of NCOR2, thereby inhibiting cell growth and stimulating cell apoptosis in OS [66].
Activation of the Wnt signalling pathway contributes to OS progression [67]. miR-377 inactivates the Wnt pathway by targeting histone acetyltransferase 1 (HAT1), thus promoting OS cell apoptosis [68]. miR-425-5p, miR-758, and miR-873 also repress the Wnt pathway to inhibit the malignant phenotype of OS [69], [70], [71]. Higher miR-940 expression has been identified in OS tissues and stimulates the Wnt pathway by targeting secreted frizzled‐related protein 1 (SFRP1) [72]. The inhibition of miR-940 suppresses the migration and invasion of OS cells while inducing cell apoptosis [72]. Aberrant activation of the PI3K-Akt-mTOR pathway is frequently detected in OS [73], and miR-199a-3p, miR-99a and miR-140 all downregulate mTOR expression [74], [75], [76].
3.2. miRNAs affect OS metastasis
Approximately 20% of OS patients have metastatic lesions at initial diagnosis, and the survival rate among such patients is dismal [3]. The lung is the most frequent metastatic site of OS, and 60%~70% of metastatic patients develop pulmonary metastases [3]. miR-491 is expressed at low levels in OS tissues, and in vitro and in vivo studies showed that overexpression of miR-491 inhibited lung metastasis by targeting αB-crystallin, a small heat shock protein [77]. miR-382 exerts a tumour-suppressing function by targeting Y box-binding protein 1, which sustains OS metastasis and relapse [78]. Cadherin-6 is reportedly associated with poor prognosis of OS patients, and miR-223-3p targets cadherin-6 to suppress OS metastasis and progression [79]. Moreover, miR-216a, miR-203a-3p, miR-143, miR-506-3p and miR-627-3p suppress OS metastasis [80], [81], [82], [83], [84]. In contrast, miR-19a, miR-20a and miR-135b promote lung metastasis [85], [86], [87].
3.3. miRNAs affect OS chemotherapy sensitivity
Chemotherapy is the treatment of choice for OS, but the increasing resistance rate greatly reduces its therapeutic effect. The resistance mechanisms are varied and include reduced drug accumulation, increased detoxification, enhanced abilities of DNA repair or tolerance, and attenuated cell apoptosis [88]. Decreased serum miR-491 expression indicates a poor prognosis in OS patients, and miR-491 inhibits cisplatin resistance by directly targeting αB-crystallin [77]. miR-134-5p inhibits malignant brain tumour domain containing 1 (MBTD1), and lncRNA TTN-AS1 can sponge miR-134-5p to upregulate MBTD1 and induce cisplatin resistance [89]. miR-590 expression is low in OS tissues, and the overexpression of miR-590 enhances the cytotoxicity of doxorubicin by targeting wild-type p53-induced phosphatase 1 (WIP1) [90]. miR-15b alleviates doxorubicin resistance by downregulating wee1, a protein kinase responding to DNA damage [91]. However, overexpression of miR-215 causes methotrexate resistance by inhibiting denticleless protein homologue (DTL) [92]. miR-33a expression is high in chemoresistant OS tissues, and it induces OS chemoresistance by targeting TWIST [93]. Moreover, the suppression of the miR-645/IFIT2 axis by lncRNA LINC00161 sensitizes OS cells to cisplatin [94].
3.4. miRNAs act as diagnostic and prognostic biomarkers
miRNAs widely exist in the serum. It has been found that the expression levels of miRNAs in body fluids are able to represent the status of tumours. Research has shown that serum miR-9 increased obviously in OS patients compared with healthy controls, and this increase was associated with tumour stage, size, metastasis and outcome [95]. In contrast, serum miR-195 is decreased in OS patients and predicts poor overall survival as an independent prognostic factor [96]. OS patients also have low expression of let-7a and miR-375 in the serum [97], [98].
3.5. miRNAs in clinical trials
A summary of anticancer drugs targeting miRNAs in clinical trials is presented in Table 1. MRX34, a liposomal miR-34a mimic, was found to have antitumour activity in a subset of patients with refractory advanced solid tumours; however, the clinical trial was terminated because of significant immune-related toxicities [99]. In patients with malignant pleural mesothelioma, TargomiRs, a miR-16 mimic, showed an acceptable safety profile and signs of activity [100]. Scientists have also developed nanoparticles, bioengineered prodrugs and EVs to deliver miRNA mimics (miR-199a-3p, let-7a, miR-34a, miR-145, miR-143, and miR-101) to OS cells in vitro and in vivo (Table 2) [101], [102], [103], [104], [105].
Table 1.
miRNA therapeutics in clinical development (ClinicalTrials.gov).
| Name | Target | Tumours | Status | ClinicalTrials.govIdentifier |
|---|---|---|---|---|
| MRX34 | miR-34 mimic | Primary liver cancer, lymphoma, melanoma, renal cell carcinoma, small/non-small cell lung cancer, and multiple myeloma | Phase I trial terminated | NCT01829971 |
| TargomiRs | miR-16 mimic | Malignant pleural mesothelioma and non-small cell lung cancer | Phase I trial completed | NCT02369198 |
| Cobomarsen (MRG-106) | miR-155 inhibitor | Cutaneous T-cell lymphoma, adult T-cell, leukaemia/lymphoma, chronic lymphocytic leukaemia, diffuse large B-cell lymphoma (activated B-cell subtype), and mycosis fungoides | Phase I trial ongoing | NCT02580552 |
| Cobomarsen (MRG-106) | miR-155 inhibitor | Cutaneous T-cell lymphoma and mycosis fungoides | Phase II trial ongoing | NCT03713320 |
Table 2.
miRNA mimics in OS studies.
| Mimic | Carrier | Effects | Models | Reference |
|---|---|---|---|---|
| miR-199a-3p | Dextran-based nanoparticle | Inhibition of cell proliferation | U-2OS and KHOS cells | [101] |
| let-7a | Dextran-based nanoparticle | Inhibition of cell proliferation | U-2OS and KHOS cells | [101] |
| miR-145 | Nanoparticle system | Inhibition of cell proliferation and migration and induction of cell apoptosis | MG-63 cells | [102] |
| miR-34a | Bioengineered prodrug | Induction of cell apoptosis and cell cycle arrest | MG-63 and 143B cells and xenograft tumour mouse models | [103] |
| miR-143 | Exosome | Inhibition of migration | 143B cells | [104] |
| miR-101 | Extracellular vesicle | Inhibition of lung metastasis | SaOS-2, U-2OS, 143B, and SOSP-9607 cells and xenograft tumour mouse models | [105] |
4. miRNAs in the crosstalk between OS and the TME
4.1. miRNAs target the ECM to suppress OS development
Collagen and fibronectin deposition in the ECM plays a role in chemotherapy resistance [106]. The miR-29 family (miR-29a, miR-29b, and miR-29c) alleviates methotrexate resistance and induces cell apoptosis by targeting COL3A1 [107]. miR-200-3b is upstream of fibronectin-1, and the sponge of miR-200-3b by lncRNA OIP5-AS1 leads to doxorubicin resistance [25]. The degradation of the ECM participates in OS invasion and metastasis. In OS tissues with lung metastasis, miR-3182 expression is significantly lower than that in OS tissues without lung metastasis [108]. MMP-2 is the target of miR-3182, and lncRNA ODRUL sponges to miR-3182 to upregulate MMP-2, thus promoting OS progression [108]. miR-143 acts as a metastasis suppressor by targeting MMP-13 in the OS cell lines HOS and 143B [82]. MMP-16 is the target of miR-145 and miR-328–3, and the inhibition of both miR-145 and miR-328–3 endowed OS cells with a metastatic trait [109], [110]. In addition, miR-199a-3p, an antitumour factor in OS, targets genes that are significantly associated with proteinaceous ECM, especially proteoglycans [111].
A microarray analysis conducted between 23 primary OS samples and three osteoblast cell lines identified 33 deregulated miRNAs, 29 of which were confirmed in another 78 OS samples; these 29 deregulated miRNAs were enriched in pathways related to the interaction of ECM and its receptors [112]. Integrins and CD44 are both adhesion molecules that mediate interactions between the ECM and the cell cytoskeleton [113], [114]. Integrin α2, integrin α6, and integrin αV are the targets of miR-128, miR-127-3p, and miR-548c-3p, respectively, and the suppression of integrins by these miRNAs blocks OS progression [115], [116], [117]. The downregulation of CD44 by miR-34a and miR-199a-3p also suppresses OS metastasis and drug resistance [118], [119].
4.2. miRNAs suppress angiogenesis
Angiogenesis, which is the process of creating new blood vessels derived from the pre-existing vascular network, is one of the hallmarks of cancer [120]. The vascular endothelial growth factor (VEGF) superfamily induces angiogenesis by binding to VEGF receptors (VEGFRs), which are predominantly expressed on endothelial cells [121]. Both miR-29 and miR-765 inhibit VEGF to suppress angiogenesis in OS [122], [123]. miR-145 targets VEGF to inhibit OS invasion and metastasis [124]. VEGFA is the most crucial member of the VEGF superfamily and binds to VEGFR1 and VEGF2[121]. miR-374b targets VEGFA, and chemokine CCL3 downregulates miR-374b to increase VEGFA expression, thus promoting angiogenesis in OS [125]. Both VEGFA and VEGFR1 are targets of miR-134, the overexpression of which significantly attenuates angiogenesis in OS [126]. VEGFA is also targeted by miR-1 [127]. IL-6 is another kind of pro-angiogenetic factor. Liu et al. [128] reported that the downregulation of miR-451 on the IL-6 receptor repressed cell growth, migration, and angiogenesis in OS.
4.3. miRNAs inhibit the TGF-β signalling pathway to inhibit OS progression
Although the TGF-β signalling pathway has both pro- and antitumour ability depending on the cancer type, it mainly plays a pro-tumour role in OS [129]. miR-29 induces cell apoptosis by targeting TGF-β1 [130]. miR-21 inhibits cell proliferation by downregulating TGF-β1 and the protein phosphatase and tensin homologue (PTEN) [131]. TGF-β1 is also a target of miR-339-5p [132]. miR-153 represses TGF-β2 expression to inhibit cell proliferation and invasion in the OS cell line MG-63 [133]. miR-124 suppresses OS growth and aggressiveness by inhibiting the TGF-β-mediated AKT/GSK-3β/SNAIL-1 signalling pathway [134]. miR-95-3p, miR-181c, and miR-26a-5p also suppress OS development by targeting the TGF-β signalling pathway [135], [136], [137]. TGF-β is a crucial inducer of the EMT process. miR-126 overexpression has been shown to inhibit TGF-β1-induced EMT [138].
4.4. miRNAs target the immune system to affect OS growth
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine expressed by T lymphocytes, macrophages, monocytes, dendritic cells and B lymphocytes [139]. MIF expression predicts an increased risk of lung metastasis in OS [140], and the downregulation of MIF by miR-415 suppresses cell proliferation, migration, and angiogenesis and promotes apoptosis [141]. In OS mouse models, both miR-133a and miR-200a block the maturation and activation of dendritic cells [142], [143]. Tumour cells usually develop approaches to avoid immune reactions, such as PD-L1/PD-1 pathway alteration, especially under drug treatment. miR-140 has been shown to directly target PD-L1 to suppress OS growth in vitro and in vivo [76]. Conversely, miR-200a inhibits the activation and function of CD8+ T cells by upregulating PD-L1 by targeting PTEN [144].
4.5. miRNAs in EVs promote OS metastasis
miRNAs are common cargos in EVs, and the delivery of miRNAs through EVs is more effective in reaching recipient cells [145]. MSCs release EVs containing miR-195, miR-124, and miR-148a to affect migration and the response to doxorubicin in OS cells [58]. CAFs produce EVs with miR-1228 to promote the migration and invasion of OS cells by targeting the protein suppressor of cancer cell invasion (SCAI) [146]. EVs secreted by OS cells have been shown to contain miRNAs associated with cell adhesion and apoptosis, including miR-21-5p, miR-143-3p, miR-148-3p, and miR-181a-5p [147].
5. Conclusions
It is now widely accepted that the interaction between OS and the surrounding TME, but not the tumour itself, plays an essential role in the genesis and development of OS. Recently, a double-blind phase II clinical trial demonstrated that sorafenib, a multikinase inhibitor of VEGF 1, 2 and 3, doubles the median progression-free survival of patients with metastatic OS compared with that of a placebo group [148]. Increasing evidence has illustrated the potential therapeutic importance of the TME in OS, highlighting the importance of normalizing the TME. However, the high genetic heterogeneity of OS makes the TME much more complex than that of other tumours, and thus, potential TME-normalizing drugs might have multiple targets. Moreover, very few studies consider the TME to be a crucial factor in the development of chemotherapy resistance, and the study of the potential role of the TME in chemotherapy may help to uncover the underlying mechanisms of resistance. The combination of TME-normalizing drugs with chemotherapy will probably alleviate drug resistance and achieve a better therapeutic effect than either treatment alone.
Although an increasing number of miRNAs have been demonstrated to play roles in tumour development, only a few have proceeded into clinical trials. The difficulties of transforming miRNAs from bench to bedside mainly derive from two aspects: 1) it is not easy to choose good miRNA candidates for further study, given the high heterogeneity of OS; 2) the challenge of delivering the potential miRNA mimics or inhibitors to tumour sites accurately and effectively remains. Further studies should focus on the selection of the best candidates among the miRNAs for OS treatment and begin clinical trials on compounds targeting miRNAs. The combination of TME-normalizing drugs, miRNAs, and chemotherapy may offer promise in the treatment of OS.
Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgements
This work was supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110954), the Shenzhen Double Chain Project for Innovation and Development Industry supported by the Bureau of Industry and Information Technology of Shenzhen (No. 201806081018272960), and the Shenzhen Science and Technology Innovation Committee Projects (No. JCYJ20190809182213535).
Contributor Information
Huang Yongcan, Email: y.c.huang@connect.hku.hk.
Liu Xiaoguang, Email: lxgspine@163.com.
Yu Binsheng, Email: hpyubinsheng@hotmail.com.
References
- 1.J. Ritter, S.S. Bielack, Osteosarcoma, Ann Oncol. 21 Suppl 7. (2010) vii320-5. [DOI] [PubMed]
- 2.Heymann M.F., Brown H.K., Heymann D. Drugs in early clinical development for the treatment of osteosarcoma. Expert Opin Investig Drugs. 2016;25(11):1265–1280. doi: 10.1080/13543784.2016.1237503. [DOI] [PubMed] [Google Scholar]
- 3.Whelan J.S., Davis L.E. Osteosarcoma, Chondrosarcoma, and Chordoma. J Clin Oncol. 2018;36(2):188–193. doi: 10.1200/JCO.2017.75.1743. [DOI] [PubMed] [Google Scholar]
- 4.Crompton J.G., Ogura K., Bernthal N.M., Kawai A., Eilber F.C. Local Control of Soft Tissue and Bone Sarcomas. J Clin Oncol. 2018;36(2):111–117. doi: 10.1200/JCO.2017.75.2717. [DOI] [PubMed] [Google Scholar]
- 5.Rubio R., Abarrategi A., Garcia-Castro J., Martinez-Cruzado L., Suarez C., Tornin J., Santos L., Astudillo A., Colmenero I., Mulero F., Rosu-Myles M., Menendez P., Rodriguez R. Bone environment is essential for osteosarcoma development from transformed mesenchymal stem cells. Stem Cells. 2014;32(5):1136–1148. doi: 10.1002/stem.1647. [DOI] [PubMed] [Google Scholar]
- 6.Alfranca A., Martinez-Cruzado L., Tornin J., Abarrategi A., Amaral T., de Alava E., Menendez P., Garcia-Castro J., Rodriguez R. Bone microenvironment signals in osteosarcoma development. Cell Mol Life Sci. 2015;72(16):3097–3113. doi: 10.1007/s00018-015-1918-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Verreault M., Wehbe M., Strutt D., Masin D., Anantha M., Walker D., Chu F., Backstrom I., Kalra J., Waterhouse D., Yapp D.T., Bally M.B. Determination of an optimal dosing schedule for combining Irinophore C and temozolomide in an orthotopic model of glioblastoma. J Control Release. 2015;220(Pt A):348–357. doi: 10.1016/j.jconrel.2015.10.053. [DOI] [PubMed] [Google Scholar]
- 8.Matuszewska K., Santry L.A., van Vloten J.P., AuYeung A.W.K., Major P.P., Lawler J., Wootton S.K., Bridle B.W., Petrik J. Combining Vascular Normalization with an Oncolytic Virus Enhances Immunotherapy in a Preclinical Model of Advanced-Stage Ovarian Cancer. Clin Cancer Res. 2019;25(5):1624–1638. doi: 10.1158/1078-0432.CCR-18-0220. [DOI] [PubMed] [Google Scholar]
- 9.Rupaimoole R., Calin G.A., Lopez-Berestein G., Sood A.K. miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discov. 2016;6(3):235–246. doi: 10.1158/2159-8290.CD-15-0893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Berindan-Neagoe I., Monroig Pdel C., Pasculli B., Calin G.A. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin. 2014;64(5):311–336. doi: 10.3322/caac.21244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Slack F.J., Chinnaiyan A.M. The Role of Non-coding RNAs in Oncology. Cell. 2019;179(5):1033–1055. doi: 10.1016/j.cell.2019.10.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Leichter A.L., Sullivan M.J., Eccles M.R., Chatterjee A. MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours. Mol Cancer. 2017;16(1) doi: 10.1186/s12943-017-0584-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Xu D., Dong P., Xiong Y., Yue J., Ihira K., Konno Y., Kobayashi N., Todo Y., Watari H. MicroRNA-361: A Multifaceted Player Regulating Tumor Aggressiveness and Tumor Microenvironment Formation. Cancers. 2019;11(8) doi: 10.3390/cancers11081130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Gilkes D.M., Semenza G.L., Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14(6):430–439. doi: 10.1038/nrc3726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Heng L., Jia Z., Bai J., Zhang K., Zhu Y., Ma J., Zhang J., Duan H. Molecular characterization of metastatic osteosarcoma: Differentially expressed genes, transcription factors and microRNAs. Mol Med Rep. 2017;15(5):2829–2836. doi: 10.3892/mmr.2017.6286. [DOI] [PubMed] [Google Scholar]
- 16.Lauvrak S.U., Munthe E., Kresse S.H., Stratford E.W., Namløs H.M., Meza-Zepeda L.A., Myklebost O. Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes. Brit J Cancer. 2013;109(8):2228–2236. doi: 10.1038/bjc.2013.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Kessenbrock K., Plaks V., Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67. doi: 10.1016/j.cell.2010.03.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Korpi J.T., Hagstrom J., Lehtonen N., Parkkinen J., Sorsa T., Salo T., Laitinen M. Expression of matrix metalloproteinases-2, -8, -13, -26, and tissue inhibitors of metalloproteinase-1 in human osteosarcoma. Surg Oncol. 2011;20(1):e18–e22. doi: 10.1016/j.suronc.2010.08.004. [DOI] [PubMed] [Google Scholar]
- 19.Zhou J., Liu T., Wang W. Prognostic significance of matrix metalloproteinase 9 expression in osteosarcoma: A meta-analysis of 16 studies. Medicine (Baltimore). 2018;97(44) doi: 10.1097/MD.0000000000013051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Endo-Munoz L., Cai N., Cumming A., Macklin R., Merida de Long L., Topkas E., Mukhopadhyay P., Hill M., Saunders N.A. Progression of Osteosarcoma from a Non-Metastatic to a Metastatic Phenotype Is Causally Associated with Activation of an Autocrine and Paracrine uPA Axis. PLoS One. 2015;10(8) doi: 10.1371/journal.pone.0133592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Liu Y., Lv B., He Z., Zhou Y., Han C., Shi G., Gao R., Wang C., Yang L., Song H., Yuan W. Lysyl oxidase polymorphisms and susceptibility to osteosarcoma. PLoS One. 2012;7(7) doi: 10.1371/journal.pone.0041610. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 22.Kumra H., Reinhardt D.P. Fibronectin-targeted drug delivery in cancer. Adv Drug Deliv Rev. 2016;97:101–110. doi: 10.1016/j.addr.2015.11.014. [DOI] [PubMed] [Google Scholar]
- 23.Domogatskaya A., Rodin S., Tryggvason K. Functional diversity of laminins. Annu Rev Cell Dev Biol. 2012;28:523–553. doi: 10.1146/annurev-cellbio-101011-155750. [DOI] [PubMed] [Google Scholar]
- 24.Pavlou M., Shah M., Gikas P., Briggs T., Roberts S.J., Cheema U. Osteomimetic matrix components alter cell migration and drug response in a 3D tumour-engineered osteosarcoma model. Acta Biomater. 2019;96:247–257. doi: 10.1016/j.actbio.2019.07.011. [DOI] [PubMed] [Google Scholar]
- 25.Zhu K.P., Zhang C.L., Ma X.L., Zhang L. Fibronectin-1 modulated by the long noncoding RNA OIP5-AS1/miR-200b-3p axis contributes to doxorubicin resistance of osteosarcoma cells. J Cell Physiol. 2019;234(5):6927–6939. doi: 10.1002/jcp.27435. [DOI] [PubMed] [Google Scholar]
- 26.Na K.Y., Bacchini P., Bertoni F., Kim Y.W., Park Y.-K. Syndecan-4 and fibronectin in osteosarcoma. Pathology. 2012;44(4):325–330. doi: 10.1097/PAT.0b013e328353447b. [DOI] [PubMed] [Google Scholar]
- 27.Lamoureux F., Baud'huin M., Duplomb L., Heymann D., Redini F. Proteoglycans: key partners in bone cell biology. Bioessays. 2007;29(8):758–771. doi: 10.1002/bies.20612. [DOI] [PubMed] [Google Scholar]
- 28.Lamoureux F., Picarda G., Garrigue-Antar L., Baud'huin M., Trichet V., Vidal A., Miot-Noirault E., Pitard B., Heymann D., Redini F. Glycosaminoglycans as Potential Regulators of Osteoprotegerin Therapeutic Activity in Osteosarcoma. Cancer Res. 2009;69(2):526–536. doi: 10.1158/0008-5472.CAN-08-2648. [DOI] [PubMed] [Google Scholar]
- 29.Ling L., Tan S.K., Goh T.H., Cheung E., Nurcombe V., van Wijnen A.J., Cool S.M. Targeting the heparin-binding domain of fibroblast growth factor receptor 1 as a potential cancer therapy. Mol Cancer. 2015;14:136. doi: 10.1186/s12943-015-0391-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Arai E., Nishida Y., Wasa J., Urakawa H., Zhuo L., Kimata K., Kozawa E., Futamura N., Ishiguro N. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. Brit J Cancer. 2011;105(12):1839–1849. doi: 10.1038/bjc.2011.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Rosen C.J. Bone Remodeling, Energy Metabolism, and the Molecular Clock. Cell Metab. 2008;7(1):7–10. doi: 10.1016/j.cmet.2007.12.004. [DOI] [PubMed] [Google Scholar]
- 32.Broadhead M.L., Clark J.C., Myers D.E., Dass C.R., Choong P.F. The molecular pathogenesis of osteosarcoma: a review. Sarcoma. 2011;2011 doi: 10.1155/2011/959248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Endo-Munoz L., Evdokiou A., Saunders N.A. The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis. Biochim Biophys Acta. 2012;1826(2):434–442. doi: 10.1016/j.bbcan.2012.07.003. [DOI] [PubMed] [Google Scholar]
- 34.Endo-Munoz L., Cumming A., Rickwood D., Wilson D., Cueva C., Ng C., Strutton G., Cassady A.I., Evdokiou A., Sommerville S., Dickinson I., Guminski A., Saunders N.A. Loss of osteoclasts contributes to development of osteosarcoma pulmonary metastases. Cancer Res. 2010;70(18):7063–7072. doi: 10.1158/0008-5472.CAN-09-4291. [DOI] [PubMed] [Google Scholar]
- 35.Timaner M., Tsai K.K., Shaked Y. The multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol. 2019 doi: 10.1016/j.semcancer.2019.06.003. [DOI] [PubMed] [Google Scholar]
- 36.Abarrategi A., Tornin J., Martinez-Cruzado L., Hamilton A., Martinez-Campos E., Rodrigo J.P., Gonzalez M.V., Baldini N., Garcia-Castro J., Rodriguez R. Osteosarcoma: Cells-of-Origin. Cancer Stem Cells, and Targeted Therapies, Stem Cells Int. 2016;2016:3631764. doi: 10.1155/2016/3631764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Brune J.C., Tormin A., Johansson M.C., Rissler P., Brosjo O., Lofvenberg R., von Steyern F.V., Mertens F., Rydholm A., Scheding S. Mesenchymal stromal cells from primary osteosarcoma are non-malignant and strikingly similar to their bone marrow counterparts. Int J Cancer. 2011;129(2):319–330. doi: 10.1002/ijc.25697. [DOI] [PubMed] [Google Scholar]
- 38.Tu B., Du L., Fan Q.M., Tang Z., Tang T.T. STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. Cancer Lett. 2012;325(1):80–88. doi: 10.1016/j.canlet.2012.06.006. [DOI] [PubMed] [Google Scholar]
- 39.Wang Y., Chu Y., Yue B., Ma X., Zhang G., Xiang H., Liu Y., Wang T., Wu X., Chen B. Adipose-derived mesenchymal stem cells promote osteosarcoma proliferation and metastasis by activating the STAT3 pathway. Oncotarget. 2017;8(14):23803–23816. doi: 10.18632/oncotarget.15866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Tu B., Zhu J., Liu S., Wang L., Fan Q., Hao Y., Fan C., Tang T.T. Mesenchymal stem cells promote osteosarcoma cell survival and drug resistance through activation of STAT3. Oncotarget. 2016;7(30):48296–48308. doi: 10.18632/oncotarget.10219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Xu W.T., Bian Z.Y., Fan Q.M., Li G., Tang T.T. Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett. 2009;281(1):32–41. doi: 10.1016/j.canlet.2009.02.022. [DOI] [PubMed] [Google Scholar]
- 42.Fontanella R., Pelagalli A., Nardelli A., D'Alterio C., Ierano C., Cerchia L., Lucarelli E., Scala S., Zannetti A. A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion. Cancer Lett. 2016;370(1):100–107. doi: 10.1016/j.canlet.2015.10.018. [DOI] [PubMed] [Google Scholar]
- 43.Kawano M., Tanaka K., Itonaga I., Iwasaki T., Tsumura H. Interaction between human osteosarcoma and mesenchymal stem cells via an interleukin-8 signaling loop in the tumor microenvironment. Cell Commun Signal. 2018;16(1):13. doi: 10.1186/s12964-018-0225-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Pietrovito L., Leo A., Gori V., Lulli M., Parri M., Becherucci V., Piccini L., Bambi F., Taddei M.L., Chiarugi P. Bone marrow-derived mesenchymal stem cells promote invasiveness and transendothelial migration of osteosarcoma cells via a mesenchymal to amoeboid transition. Mol Oncol. 2018;12(5):659–676. doi: 10.1002/1878-0261.12189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Heymann M.-F., Lézot F., Heymann D. The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell Immunol. 2019;343 doi: 10.1016/j.cellimm.2017.10.011. [DOI] [PubMed] [Google Scholar]
- 46.Majzner R.G., Simon J.S., Grosso J.F., Martinez D., Pawel B.R., Santi M., Merchant M.S., Geoerger B., Hezam I., Marty V., Vielh P., Daugaard M., Sorensen P.H., Mackall C.L., Maris J.M. Assessment of programmed death-ligand 1 expression and tumor-associated immune cells in pediatric cancer tissues. Cancer. 2017;123(19):3807–3815. doi: 10.1002/cncr.30724. [DOI] [PubMed] [Google Scholar]
- 47.Sorenson L., Fu Y., Hood T., Warren S., McEachron T.A. Targeted transcriptional profiling of the tumor microenvironment reveals lymphocyte exclusion and vascular dysfunction in metastatic osteosarcoma. OncoImmunology. 2019;8(9) doi: 10.1080/2162402X.2019.1629779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Fritzsching B., Fellenberg J., Moskovszky L., Sapi Z., Krenacs T., Machado I., Poeschl J., Lehner B., Szendroi M., Bosch A.L., Bernd L., Csoka M., Mechtersheimer G., Ewerbeck V., Kinscherf R., Kunz P. CD8(+)/FOXP3(+)-ratio in osteosarcoma microenvironment separates survivors from non-survivors: a multicenter validated retrospective study. Oncoimmunology. 2015;4(3) doi: 10.4161/2162402X.2014.990800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.De Palma M. Claire E. Lewis, Macrophage Regulation of Tumor Responses to Anticancer Therapies, Cancer Cell. 2013;23(3):277–286. doi: 10.1016/j.ccr.2013.02.013. [DOI] [PubMed] [Google Scholar]
- 50.Buddingh E.P., Kuijjer M.L., Duim R.A., Burger H., Agelopoulos K., Myklebost O., Serra M., Mertens F., Hogendoorn P.C., Lankester A.C., Cleton-Jansen A.M. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin Cancer Res. 2011;17(8):2110–2119. doi: 10.1158/1078-0432.CCR-10-2047. [DOI] [PubMed] [Google Scholar]
- 51.Gomez-Brouchet A., Illac C., Gilhodes J., Bouvier C., Aubert S., Guinebretiere J.-M., Marie B., Larousserie F., Entz-Werlé N., de Pinieux G., Filleron T., Minard V., Minville V., Mascard E., Gouin F., Jimenez M., Ledeley M.-C., Piperno-Neumann S., Brugieres L., Rédini F. CD163-positive tumor-associated macrophages and CD8-positive cytotoxic lymphocytes are powerful diagnostic markers for the therapeutic stratification of osteosarcoma patients: An immunohistochemical analysis of the biopsies fromthe French OS2006 phase 3 trial. OncoImmunology. 2017;6(9) doi: 10.1080/2162402X.2017.1331193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Han Y., Guo W., Ren T., Huang Y., Wang S., Liu K., Zheng B., Yang K., Zhang H., Liang X. Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis. Cancer Lett. 2019;440–441:116–125. doi: 10.1016/j.canlet.2018.10.011. [DOI] [PubMed] [Google Scholar]
- 53.Colombo M., Raposo G., Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289. doi: 10.1146/annurev-cellbio-101512-122326. [DOI] [PubMed] [Google Scholar]
- 54.Sullivan R., Maresh G., Zhang X., Salomon C., Hooper J., Margolin D., Li L. The Emerging Roles of Extracellular Vesicles As Communication Vehicles within the Tumor Microenvironment and Beyond. Front Endocrinol (Lausanne). 2017;8:194. doi: 10.3389/fendo.2017.00194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Jerez S., Araya H., Thaler R., Charlesworth M.C., López-Solís R., Kalergis A.M., Céspedes P.F., Dudakovic A., Stein G.S., van Wijnen A.J., Galindo M. Proteomic Analysis of Exosomes and Exosome-Free Conditioned Media From Human Osteosarcoma Cell Lines Reveals Secretion of Proteins Related to Tumor Progression. Journal of Cell Biochem. 2017;118(2):351–360. doi: 10.1002/jcb.25642. [DOI] [PubMed] [Google Scholar]
- 56.Garimella R., Washington L., Isaacson J., Vallejo J., Spence M., Tawfik O., Rowe P., Brotto M., Perez R. Extracellular Membrane Vesicles Derived from 143B Osteosarcoma Cells Contain Pro-Osteoclastogenic Cargo: A Novel Communication Mechanism in Osteosarcoma Bone Microenvironment. Transl Oncol. 2014;7(3):331–340. doi: 10.1016/j.tranon.2014.04.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Baglio S.R., Lagerweij T., Pérez-Lanzón M., Ho X.D., Léveillé N., Melo S.A., Cleton-Jansen A.-M., Jordanova E.S., Roncuzzi L., Greco M., van Eijndhoven M.A.J., Grisendi G., Dominici M., Bonafede R., Lougheed S.M., de Gruijl T.D., Zini N., Cervo S., Steffan A., Canzonieri V., Martson A., Maasalu K., Köks S., Wurdinger T., Baldini N., Pegtel D.M. Blocking Tumor-Educated MSC Paracrine Activity Halts Osteosarcoma Progression. Clin Cancer Res. 2017;23(14):3721–3733. doi: 10.1158/1078-0432.CCR-16-2726. [DOI] [PubMed] [Google Scholar]
- 58.Vallabhaneni K.C., Hassler M.Y., Abraham A., Whitt J., Mo Y.Y., Atfi A., Pochampally R. Mesenchymal Stem/Stromal Cells under Stress Increase Osteosarcoma Migration and Apoptosis Resistance via Extracellular Vesicle Mediated Communication. PLoS One. 2016;11(11) doi: 10.1371/journal.pone.0166027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Calin G.A., Dumitru C.D., Shimizu M., Bichi R., Zupo S., Noch E., Aldler H., Rattan S., Keating M., Rai K., Rassenti L., Kipps T., Negrini M., Bullrich F., Croce C.M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–15529. doi: 10.1073/pnas.242606799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Tao J., Jiang M.M., Jiang L., Salvo J.S., Zeng H.C., Dawson B., Bertin T.K., Rao P.H., Chen R., Donehower L.A., Gannon F., Lee B.H. Notch activation as a driver of osteogenic sarcoma. Cancer Cell. 2014;26(3):390–401. doi: 10.1016/j.ccr.2014.07.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Lu J., Song G., Tang Q., Yin J., Zou C., Zhao Z., Xie X., Xu H., Huang G., Wang J., Lee D.F., Khokha R., Yang H., Shen J. MiR-26a inhibits stem cell-like phenotype and tumor growth of osteosarcoma by targeting Jagged1. Oncogene. 2016;36(2):231–241. doi: 10.1038/onc.2016.194. [DOI] [PubMed] [Google Scholar]
- 62.Wang L., Hu K., Chao Y., Wang X. MicroRNA-1296-5p suppresses the proliferation, migration, and invasion of human osteosarcoma cells by targeting NOTCH2. J Cell Biochem. 2020;121(2):2038–2046. doi: 10.1002/jcb.29438. [DOI] [PubMed] [Google Scholar]
- 63.He C., Xiong J., Xu X., Lu W., Liu L., Xiao D., Wang D. Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Commun. 2009;388(1):35–40. doi: 10.1016/j.bbrc.2009.07.101. [DOI] [PubMed] [Google Scholar]
- 64.Liu C., Pan C., Cai Y., Wang H. Interplay Between Long Noncoding RNA ZEB1-AS1 and miR-200s Regulates Osteosarcoma Cell Proliferation and Migration. J Cell Biochem. 2017;118(8):2250–2260. doi: 10.1002/jcb.25879. [DOI] [PubMed] [Google Scholar]
- 65.Li Y., Zhang J., Zhang L., Si M., Yin H., Li J. Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of osteosarcoma cells by switching on suppressor microRNAs and inactivating of Notch-1 signaling. Carcinogenesis. 2013;34(7):1601–1610. doi: 10.1093/carcin/bgt065. [DOI] [PubMed] [Google Scholar]
- 66.Xia P., Gu R., Zhang W., Sun Y.-F. lncRNA CEBPA-AS1 Overexpression Inhibits Proliferation and Migration and Stimulates Apoptosis of OS Cells via Notch Signaling. Mol Ther Nucleic Acids. 2020;19:1470–1481. doi: 10.1016/j.omtn.2019.10.017. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 67.Cai Y., Cai T., Chen Y. Wnt Pathway in Osteosarcoma, from Oncogenic to Therapeutic. J Cell Biochem. 2014;115(4):625–631. doi: 10.1002/jcb.24708. [DOI] [PubMed] [Google Scholar]
- 68.Xia P., Gu R., Zhang W., Shao L., Li F., Wu C., Sun Y. MicroRNA-377 exerts a potent suppressive role in osteosarcoma through the involvement of the histone acetyltransferase 1-mediated Wnt axis. J Cell Physiol. 2019;234(12):22787–22798. doi: 10.1002/jcp.28843. [DOI] [PubMed] [Google Scholar]
- 69.Yang G., Zhang C., Wang N., Chen J. miR-425-5p decreases LncRNA MALAT1 and TUG1 expressions and suppresses tumorigenesis in osteosarcoma via Wnt/beta-catenin signaling pathway. Int J Biochem Cell Biol. 2019;111:42–51. doi: 10.1016/j.biocel.2019.04.004. [DOI] [PubMed] [Google Scholar]
- 70.Ren J., Yang M., Xu F., Chen J. microRNA-758 inhibits the malignant phenotype of osteosarcoma cells by directly targeting HMGA1 and deactivating the Wnt/beta-catenin pathway. Am J Cancer Res. 2019;9(1):36–52. [PMC free article] [PubMed] [Google Scholar]
- 71.Liu Y., Wang Y., Yang H., Zhao L., Song R., Tan H., Wang L. MicroRNA873 targets HOXA9 to inhibit the aggressive phenotype of osteosarcoma by deactivating the Wnt/betacatenin pathway. Int J Oncol. 2019;54(5):1809–1820. doi: 10.3892/ijo.2019.4735. [DOI] [PubMed] [Google Scholar]
- 72.Lin Z.W., Zhang W., Jiang S.D., Wei W.B., Li X.F. Inhibition of microRNA-940 suppresses the migration and invasion of human osteosarcoma cells through the secreted frizzled-related protein 1-mediated Wnt/β-catenin signaling pathway. J Cell Biochem. 2018;120(2):2657–2670. doi: 10.1002/jcb.27580. [DOI] [PubMed] [Google Scholar]
- 73.Perry J.A., Kiezun A., Tonzi P., Van Allen E.M., Carter S.L., Baca S.C., Cowley G.S., Bhatt A.S., Rheinbay E., Pedamallu C.S., Helman E., Taylor-Weiner A., McKenna A., DeLuca D.S., Lawrence M.S., Ambrogio L., Sougnez C., Sivachenko A., Walensky L.D., Wagle N., Mora J., de Torres C., Lavarino C., Dos Santos Aguiar S., Yunes J.A., Brandalise S.R., Mercado-Celis G.E., Melendez-Zajgla J., Cardenas-Cardos R., Velasco-Hidalgo L., Roberts C.W., Garraway L.A., Rodriguez-Galindo C., Gabriel S.B., Lander E.S., Golub T.R., Orkin S.H., Getz G., Janeway K.A. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci U S A. 2014;111(51):E5564–E5573. doi: 10.1073/pnas.1419260111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Duan Z., Choy E., Harmon D., Liu X., Susa M., Mankin H., Hornicek F. MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol Cancer Ther. 2011;10(8):1337–1345. doi: 10.1158/1535-7163.MCT-11-0096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Zhao J., Chen F., Zhou Q., Pan W., Wang X., Xu J., Ni L., Yang H. Aberrant expression of microRNA-99a and its target gene mTOR associated with malignant progression and poor prognosis in patients with osteosarcoma. Onco Targets Ther. 2016;9:1589–1597. doi: 10.2147/OTT.S102421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Ji X., Wang E., Tian F. MicroRNA-140 suppresses osteosarcoma tumor growth by enhancing anti-tumor immune response and blocking mTOR signaling. Biochem Biophys Res Commun. 2018;495(1):1342–1348. doi: 10.1016/j.bbrc.2017.11.120. [DOI] [PubMed] [Google Scholar]
- 77.Wang S.N., Luo S., Liu C., Piao Z., Gou W., Wang Y., Guan W., Li Q., Zou H., Yang Z.Z., Wang D., Wang Y., Xu M., Jin H., Xu C.X. miR-491 Inhibits Osteosarcoma Lung Metastasis and Chemoresistance by Targeting alphaB-crystallin. Mol Ther. 2017;25(9):2140–2149. doi: 10.1016/j.ymthe.2017.05.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Xu M., Jin H., Xu C.X., Sun B., Song Z.G., Bi W.Z., Wang Y. miR-382 inhibits osteosarcoma metastasis and relapse by targeting Y box-binding protein 1. Mol Ther. 2015;23(1):89–98. doi: 10.1038/mt.2014.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Ji Q., Xu X., Song Q., Xu Y., Tai Y., Goodman S.B., Bi W., Xu M., Jiao S., Maloney W.J., Wang Y. miR-223-3p Inhibits Human Osteosarcoma Metastasis and Progression by Directly Targeting CDH6. Mol Ther. 2018;26(5):1299–1312. doi: 10.1016/j.ymthe.2018.03.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Ji Q., Xu X., Li L., Goodman S.B., Bi W., Xu M., Xu Y., Fan Z., Maloney W.J., Ye Q., Wang Y. miR-216a inhibits osteosarcoma cell proliferation, invasion and metastasis by targeting CDK14. Cell Death Dis. 2017;8(10) doi: 10.1038/cddis.2017.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Wu Y., Xie Z., Chen J., Chen J., Ni W., Ma Y., Huang K., Wang G., Wang J., Ma J., Shen S., Fan S. Circular RNA circTADA2A promotes osteosarcoma progression and metastasis by sponging miR-203a-3p and regulating CREB3 expression. Mol Cancer. 2019;18(1):73. doi: 10.1186/s12943-019-1007-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Osaki M., Takeshita F., Sugimoto Y., Kosaka N., Yamamoto Y., Yoshioka Y., Kobayashi E., Yamada T., Kawai A., Inoue T., Ito H., Oshimura M., Ochiya T. MicroRNA-143 Regulates Human Osteosarcoma Metastasis by Regulating Matrix Metalloprotease-13 Expression. Mol Ther. 2011;19(6):1123–1130. doi: 10.1038/mt.2011.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Jiashi W., Chuang Q., Zhenjun Z., Guangbin W., Bin L., Ming H. MicroRNA-506-3p inhibits osteosarcoma cell proliferation and metastasis by suppressing RAB3D expression. Aging (Albany NY). 2018;10(6):1294–1305. doi: 10.18632/aging.101468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.He M., Shen P., Qiu C., Wang J. miR-627-3p inhibits osteosarcoma cell proliferation and metastasis by targeting PTN. Aging (Albany NY). 2019;11(15):5744–5756. doi: 10.18632/aging.102157. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 85.Huang G., Nishimoto K., Zhou Z., Hughes D., Kleinerman E.S. miR-20a Encoded by the miR-17-92 Cluster Increases the Metastatic Potential of Osteosarcoma Cells by Regulating Fas Expression. Cancer Res. 2011;72(4):908–916. doi: 10.1158/0008-5472.CAN-11-1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Zou Q., Xiao X., Liang Y., Peng L., Guo Z., Li W., Yu W. miR-19a-mediated downregulation of RhoB inhibits the dephosphorylation of AKT1 and induces osteosarcoma cell metastasis. Cancer Lett. 2018;428:147–159. doi: 10.1016/j.canlet.2018.04.027. [DOI] [PubMed] [Google Scholar]
- 87.Shen S., Huang K., Wu Y., Ma Y., Wang J., Qin F., Ma J. A miR-135b-TAZ positive feedback loop promotes epithelial–mesenchymal transition (EMT) and tumorigenesis in osteosarcoma. Cancer Lett. 2017;407:32–44. doi: 10.1016/j.canlet.2017.08.005. [DOI] [PubMed] [Google Scholar]
- 88.Li S., Sun W., Wang H., Zuo D., Hua Y., Cai Z. Research progress on the multidrug resistance mechanisms of osteosarcoma chemotherapy and reversal. Tumour Biol. 2015;36(3):1329–1338. doi: 10.1007/s13277-015-3181-0. [DOI] [PubMed] [Google Scholar]
- 89.Fu D., Lu C., Qu X., Li P., Chen K., Shan L., Zhu X. LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. Aging (Albany NY). 2019;11(19):8374–8385. doi: 10.18632/aging.102325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Long X., Lin X.J. P65-mediated miR-590 inhibition modulates the chemoresistance of osteosarcoma to doxorubicin through targeting wild-type p53-induced phosphatase 1. J Cell Biochem. 2019;120(4):5652–5665. doi: 10.1002/jcb.27849. [DOI] [PubMed] [Google Scholar]
- 91.Duan Z., Gao Y., Shen J., Choy E., Cote G., Harmon D., Bernstein K., Lozano-Calderon S., Mankin H., Hornicek F.J. miR-15b modulates multidrug resistance in human osteosarcoma in vitro and in vivo. Mol Oncol. 2017;11(2):151–166. doi: 10.1002/1878-0261.12015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Song B., Wang Y., Titmus M.A., Botchkina G., Formentini A., Kornmann M., Ju J. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer. 2010;9:96. doi: 10.1186/1476-4598-9-96. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Zhou Y., Huang Z., Wu S., Zang X., Liu M., Shi J. miR-33a is up-regulated in chemoresistant osteosarcoma and promotes osteosarcoma cell resistance to cisplatin by down-regulating TWIST. J Exp Clin Cancer Res. 2014;33:12. doi: 10.1186/1756-9966-33-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Wang Y., Zhang L., Zheng X., Zhong W., Tian X., Yin B., Tian K., Zhang W. Long non-coding RNA LINC00161 sensitises osteosarcoma cells to cisplatin-induced apoptosis by regulating the miR-645-IFIT2 axis. Cancer Lett. 2016;382(2):137–146. doi: 10.1016/j.canlet.2016.08.024. [DOI] [PubMed] [Google Scholar]
- 95.Fei D., Li Y., Zhao D., Zhao K., Dai L., Gao Z. Serum miR-9 as a prognostic biomarker in patients with osteosarcoma. J Int Med Res. 2014;42(4):932–937. doi: 10.1177/0300060514534643. [DOI] [PubMed] [Google Scholar]
- 96.Cai H., Zhao H., Tang J., Wu H. Serum miR-195 is a diagnostic and prognostic marker for osteosarcoma. J Surg Res. 2015;194(2):505–510. doi: 10.1016/j.jss.2014.11.025. [DOI] [PubMed] [Google Scholar]
- 97.Hua J., Liu D., Cao L., Wang D., Wu T., Lin F., Su P., Niu Y., Sun Y. Diagnostic and prognostic values of blood microRNA-Let7A for osteosarcoma. J Bone Oncol. 2018;12:65–68. doi: 10.1016/j.jbo.2018.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Liu W., Zhao X., Zhang Y.J., Fang G.W., Xue Y. MicroRNA-375 as a potential serum biomarker for the diagnosis, prognosis, and chemosensitivity prediction of osteosarcoma. J Int Med Res. 2018;46(3):975–983. doi: 10.1177/0300060517734114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Beg M.S., Brenner A.J., Sachdev J., Borad M., Kang Y.K., Stoudemire J., Smith S., Bader A.G., Kim S., Hong D.S. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 2017;35(2):180–188. doi: 10.1007/s10637-016-0407-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.van Zandwijk N., Pavlakis N., Kao S.C., Linton A., Boyer M.J., Clarke S., Huynh Y., Chrzanowska A., Fulham M.J., Bailey D.L., Cooper W.A., Kritharides L., Ridley L., Pattison S.T., MacDiarmid J., Brahmbhatt H., Reid G. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017;18(10):1386–1396. doi: 10.1016/S1470-2045(17)30621-6. [DOI] [PubMed] [Google Scholar]
- 101.Zhang L.L., Iyer A.K., Yang X.Q., Kobayashi E., Guo Y.Q., Mankin H., Hornicek F.J., Amiji M.M., Duan Z.F. Polymeric nanoparticle-based delivery of microRNA-199a-3p inhibits proliferation and growth of osteosarcoma cells. Int J Nanomedicine. 2015;10:2913–2924. doi: 10.2147/IJN.S79143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Magalhães M., Almeida M., Tavares-da-Silva E., Roleira F.M.F., Varela C., Jorge J., Gonçalves A.C., Carvalho R.A., Veiga F., Santos A.C., Figueiras A. miR-145-loaded micelleplexes as a novel therapeutic strategy to inhibit proliferation and migration of osteosarcoma cells. Eur J Pharm Sci. 2018;123:28–42. doi: 10.1016/j.ejps.2018.07.021. [DOI] [PubMed] [Google Scholar]
- 103.Zhao Y., Tu M.J., Wang W.P., Qiu J.X., Yu A.X., Yu A.M. Genetically engineered pre-microRNA-34a prodrug suppresses orthotopic osteosarcoma xenograft tumor growth via the induction of apoptosis and cell cycle arrest. Sci Rep. 2016;6 doi: 10.1038/srep26611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Shimbo K., Miyaki S., Ishitobi H., Kato Y., Kubo T., Shimose S., Ochi M. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun. 2014;445(2):381–387. doi: 10.1016/j.bbrc.2014.02.007. [DOI] [PubMed] [Google Scholar]
- 105.Zhang K., Dong C., Chen M., Yang T., Wang X., Gao Y., Wang L., Wen Y., Chen G., Wang X., Yu X., Zhang Y., Wang P., Shang M., Han K., Zhou Y. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma. Theranostics. 2020;10(1):411–425. doi: 10.7150/thno.33482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Saatci O., Kaymak A., Raza U., Ersan P.G., Akbulut O., Banister C.E., Sikirzhytski V., Tokat U.M., Aykut G., Ansari S.A., Dogan H.T., Dogan M., Jandaghi P., Isik A., Gundogdu F., Kosemehmetoglu K., Dizdar O., Aksoy S., Akyol A., Uner A., Buckhaults P.J., Riazalhosseini Y., Sahin O. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nat Commun. 2020;11(1):2416. doi: 10.1038/s41467-020-16199-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Xu W., Li Z., Zhu X., Xu R., Xu Y. miR-29 Family Inhibits Resistance to Methotrexate and Promotes Cell Apoptosis by Targeting COL3A1 and MCL1 in Osteosarcoma. Med Sci Monit. 2018;24:8812–8821. doi: 10.12659/MSM.911972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Zhu K.P., Ma X.L., Zhang C.L. LncRNA ODRUL Contributes to Osteosarcoma Progression through the miR-3182/MMP2 Axis. Mol Ther. 2017;25(10):2383–2393. doi: 10.1016/j.ymthe.2017.06.027. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 109.Chen B., Huang Z., Zhang Y., Chen Y., Li Z. MicroRNA-145 Suppresses Osteosarcoma Metastasis via Targeting MMP16. Cell Physiol Biochem. 2015;37(6):2183–2193. doi: 10.1159/000438575. [DOI] [PubMed] [Google Scholar]
- 110.Zhang M., Zhang J., Zhou Q. Elevated expression of microRNA-328-3p suppresses aggressive malignant behaviors via targeting matrix metalloprotease 16 in osteosarcoma. Oncotargets Ther. 2019;12:2063–2070. doi: 10.2147/OTT.S195022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Huang W.T., Liu A.G., Cai K.T., He R.Q., Li Z., Wei Q.J., Chen M.Y., Huang J.Y., Yan W.Y., Zhou H., Chen G., Ma J. Exploration and validation of downregulated microRNA-199a-3p, downstream messenger RNA targets and transcriptional regulation in osteosarcoma. Am J Transl Res. 2019;11(12):7538–7554. [PMC free article] [PubMed] [Google Scholar]
- 112.Andersen G.B., Knudsen A., Hager H., Hansen L.L., Tost J. miRNA profiling identifies deregulated miRNAs associated with osteosarcoma development and time to metastasis in two large cohorts. Mol Oncol. 2018;12(1):114–131. doi: 10.1002/1878-0261.12154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Kechagia J.Z., Ivaska J., Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol. 2019;20(8):457–473. doi: 10.1038/s41580-019-0134-2. [DOI] [PubMed] [Google Scholar]
- 114.Ponta H., Sherman L., Herrlich P.A. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4(1):33–45. doi: 10.1038/nrm1004. [DOI] [PubMed] [Google Scholar]
- 115.Liu X., Liang Z., Gao K., Li H., Zhao G., Wang S., Fang J. MicroRNA-128 inhibits EMT of human osteosarcoma cells by directly targeting integrin alpha2. Tumour Biol. 2016;37(6):7951–7957. doi: 10.1007/s13277-015-4696-0. [DOI] [PubMed] [Google Scholar]
- 116.Wang D., Tang L., Wu H., Wang K., Gu D. MiR-127-3p inhibits cell growth and invasiveness by targeting ITGA6 in human osteosarcoma. IUBMB Life. 2018;70(5):411–419. doi: 10.1002/iub.1710. [DOI] [PubMed] [Google Scholar]
- 117.Luo Z., Li D., Luo X., Li L., Gu S., Yu L., Ma Y. Decreased Expression of miR-548c-3p in Osteosarcoma Contributes to Cell Proliferation Via Targeting ITGAV. Cancer Biother Radiopharm. 2016;31(5):153–158. doi: 10.1089/cbr.2016.1995. [DOI] [PubMed] [Google Scholar]
- 118.Zhao H., Ma B., Wang Y., Han T.A.O., Zheng L., Sun C., Liu T.A.O., Zhang Y., Qiu X., Fan Q. miR-34a inhibits the metastasis of osteosarcoma cells by repressing the expression of CD44. Oncol Rep. 2013;29(3):1027–1036. doi: 10.3892/or.2013.2234. [DOI] [PubMed] [Google Scholar]
- 119.Gao Y., Feng Y., Shen J.K., Lin M., Choy E., Cote G.M., Harmon D.C., Mankin H.J., Hornicek F.J., Duan Z. CD44 is a direct target of miR-199a-3p and contributes to aggressive progression in osteosarcoma. Sci Rep. 2015;5:11365. doi: 10.1038/srep11365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.De Palma M., Biziato D., Petrova T.V. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457–474. doi: 10.1038/nrc.2017.51. [DOI] [PubMed] [Google Scholar]
- 121.Apte R.S., Chen D.S., Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248–1264. doi: 10.1016/j.cell.2019.01.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Gao S.M., Cheng C., Chen H.W., Li M., Liu K.H., Wang G.Y. IGF1 3'UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29 family in osteosarcoma. J Mol Histol. 2016;47(2):135–143. doi: 10.1007/s10735-016-9659-2. [DOI] [PubMed] [Google Scholar]
- 123.Liang W., Wei X., Li Q., Dai N., Li C.Y., Deng Y., Jiang X., Tan X.R., Dai X.Y., Li M.X., Xu C.X., Wang D., Zhong Z.Y. MicroRNA-765 Enhances the Anti-Angiogenic Effect of CDDP via APE1 in Osteosarcoma. J Cancer. 2017;8(9):1542–1551. doi: 10.7150/jca.18680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Fan L., Wu Q., Xing X., Wei Y., Shao Z. MicroRNA-145 targets vascular endothelial growth factor and inhibits invasion and metastasis of osteosarcoma cells. Acta Biochimica et Biophysica Sinica. 2012;44(5):407–414. doi: 10.1093/abbs/gms019. [DOI] [PubMed] [Google Scholar]
- 125.Liao Y.Y., Tsai H.C., Chou P.Y., Wang S.W., Chen H.T., Lin Y.M., Chiang I.P., Chang T.M., Hsu S.K., Chou M.C., Tang C.H., Fong Y.C. CCL3 promotes angiogenesis by dysregulation of miR-374b/ VEGF-A axis in human osteosarcoma cells. Oncotarget. 2016;7(4):4310–4325. doi: 10.18632/oncotarget.6708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Zhang L., Lv Z., Xu J., Chen C.L., Ge Q.F., Li P.C., Wei D.L., Wu Z.Z., Sun X.J. MicroRNA-134 inhibits osteosarcoma angiogenesis and proliferation by targeting the VEGFA/VEGFR1 pathway. Febs Journal. 2018;285(7):1359–1371. doi: 10.1111/febs.14416. [DOI] [PubMed] [Google Scholar]
- 127.Niu J., Sun Y., Guo Q., Niu D., Liu B. miR-1 Inhibits Cell Growth, Migration, and Invasion by Targeting VEGFA in Osteosarcoma Cells. Disease Markers. 2016;2016:1–8. doi: 10.1155/2016/7068986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Liu S.Y., Deng S.Y., He Y.B., Ni G.X. miR-451 inhibits cell growth, migration and angiogenesis in human osteosarcoma via down-regulating IL 6R. Biochem Biophys Res Commun. 2017;482(4):987–993. doi: 10.1016/j.bbrc.2016.11.145. [DOI] [PubMed] [Google Scholar]
- 129.Lamora A., Talbot J., Mullard M., Brounais-Le Royer B., Redini F., Verrecchia F. TGF-β Signaling in Bone Remodeling and Osteosarcoma Progression. J Clin Med. 2016;5(11) doi: 10.3390/jcm5110096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Wang C.Y., Ren J.B., Liu M., Yu L. Targeting miR-29 induces apoptosis of osteosarcoma MG-63 cells via regulation of TGF-beta1/PUMA signal. Eur Rev Med Pharmacol Sci. 2016;20(17):3552–3560. [PubMed] [Google Scholar]
- 131.Hu X., Li L., Lu Y., Yu X., Chen H., Yin Q., Zhang Y. miRNA-21 inhibition inhibits osteosarcoma cell proliferation by targeting PTEN and regulating the TGF-beta1 signaling pathway. Oncol Lett. 2018;16(4):4337–4342. doi: 10.3892/ol.2018.9177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Zhang L., Lu X.Q., Zhou X.Q., Liu Q.B., Chen L., Cai F. NEAT1 induces osteosarcoma development by modulating the miR-339-5p/TGF-beta1 pathway. J Cell Physiol. 2019;234(4):5097–5105. doi: 10.1002/jcp.27313. [DOI] [PubMed] [Google Scholar]
- 133.Niu G., Li B., Sun L., An C. MicroRNA-153 inhibits osteosarcoma cells proliferation and invasion by targeting TGF-beta2. PLoS One. 2015;10(3) doi: 10.1371/journal.pone.0119225. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 134.Yu B., Jiang K., Zhang J. MicroRNA-124 suppresses growth and aggressiveness of osteosarcoma and inhibits TGF-beta-mediated AKT/GSK-3beta/SNAIL-1 signaling. Mol Med Rep. 2018;17(5):6736–6744. doi: 10.3892/mmr.2018.8637. [DOI] [PubMed] [Google Scholar]
- 135.Zhao X., Yang Y., Xu J., Luo Y., Xin Y., Wang Y. Downregulation of microRNA-95-3p suppresses cell growth of osteosarcoma via CDKN1A/p21 expression. Oncol Rep. 2018;39(1):289–297. doi: 10.3892/or.2017.6065. [DOI] [PubMed] [Google Scholar]
- 136.Fu Y., Tang Y., Wang J., Guo Z. MicroRNA-181c Suppresses the Biological Progression of Osteosarcoma via Targeting SMAD7 and Regulating Transforming Growth Factor-beta (TGF-beta) Signaling Pathway. Med Sci Monit. 2019;25:4801–4810. doi: 10.12659/MSM.916939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Zhang Z., Zhao M., Wang G. Hsa_circ_0051079 functions as an oncogene by regulating miR-26a-5p/TGF-beta1 in osteosarcoma. Cell Biosci. 2019;9:94. doi: 10.1186/s13578-019-0355-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Jiang R., Zhang C., Liu G., Gu R., Wu H. MicroRNA-126 Inhibits Proliferation, Migration, Invasion, and EMT in Osteosarcoma by Targeting ZEB1. J Cell Biochem. 2017;118(11):3765–3774. doi: 10.1002/jcb.26024. [DOI] [PubMed] [Google Scholar]
- 139.Calandra T., Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol. 2003;3(10):791–800. doi: 10.1038/nri1200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Han I., Lee M.R., Nam K.W., Oh J.H., Moon K.C., Kim H.S. Expression of macrophage migration inhibitory factor relates to survival in high-grade osteosarcoma. Clin Orthop Relat Res. 2008;466(9):2107–2113. doi: 10.1007/s11999-008-0333-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Liu W., Liu S.Y., He Y.B., Huang R.L., Deng S.Y., Ni G.X., Yu B. MiR-451 suppresses proliferation, migration and promotes apoptosis of the human osteosarcoma by targeting macrophage migration inhibitory factor. Biomed Pharmacother. 2017;87:621–627. doi: 10.1016/j.biopha.2016.12.121. [DOI] [PubMed] [Google Scholar]
- 142.Liu Q.L., Zhang J., Liu X., Gao J.Y. Role of growth hormone in maturation and activation of dendritic cells via miR-200a and the Keap1/Nrf2 pathway. Cell prolif. 2015;48(5):573–581. doi: 10.1111/cpr.12206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Gao X., Han D., Fan W. Down-regulation of RBP-J mediated by microRNA-133a suppresses dendritic cells and functions as a potential tumor suppressor in osteosarcoma. Exp Cell Res. 2016;349(2):264–272. doi: 10.1016/j.yexcr.2016.10.019. [DOI] [PubMed] [Google Scholar]
- 144.Liu Z., Wen J., Wu C., Hu C., Wang J., Bao Q., Wang H., Wang J., Zhou Q., Wei L., Shen Y., Zhang W. MicroRNA-200a induces immunosuppression by promoting PTEN-mediated PD-L1 upregulation in osteosarcoma. Aging (Albany NY). 2020;12(2):1213–1236. doi: 10.18632/aging.102679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Valadi H., Ekstrom K., Bossios A., Sjostrand M., Lee J.J., Lotvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi: 10.1038/ncb1596. [DOI] [PubMed] [Google Scholar]
- 146.Wang J.W., Wu X.F., Gu X.J., Jiang X.H. Exosomal miR-1228 From Cancer-Associated Fibroblasts Promotes Cell Migration and Invasion of Osteosarcoma by Directly Targeting SCAI. Oncol Res. 2019;27(9):979–986. doi: 10.3727/096504018X15336368805108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Jerez S., Araya H., Hevia D., Irarrazaval C.E., Thaler R., van Wijnen A.J., Galindo M. Extracellular vesicles from osteosarcoma cell lines contain miRNAs associated with cell adhesion and apoptosis. Gene. 2019;710:246–257. doi: 10.1016/j.gene.2019.06.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Davis L.E., Bolejack V., Ryan C.W., Ganjoo K.N., Loggers E.T., Chawla S., Agulnik M., Livingston M.B., Reed D., Keedy V., Rushing D., Okuno S., Reinke D.K., Riedel R.F., Attia S., Mascarenhas L., Maki R.G. Randomized Double-Blind Phase II Study of Regorafenib in Patients With Metastatic Osteosarcoma. J Clin Oncol. 2019;37(16):1424–1431. doi: 10.1200/JCO.18.02374. [DOI] [PMC free article] [PubMed] [Google Scholar]

