Skip to main content
. 2020 Aug 28;9(9):1193. doi: 10.3390/foods9091193

Table 4.

Partial least squares (PLS) regression analysis for the prediction of well-modelled wine sensory variables from wine chemical data, excluding amino acid analysis .

Sensory Attribute Data Selected PLS Model Parameters
Factor No R2cal R2val RMSEcal RMSEval
Opacity all variables 1 0.82 0.58 0.34 0.58
sig var § 3 0.96 0.58 0.15 0.58
Brown colour all variables 1 0.92 0.86 0.10 0.14
sig var 3 0.98 0.94 0.05 0.09
Red fruit aroma all variables 1 0.61 0.49 0.16 0.21
sig var 3 0.57 0.38 0.17 0.23
Dark fruit aroma all variables 1 0.72 0.50 0.20 0.30
sig var 3 0.96 0.58 0.07 0.28
Dried fruit aroma all variables 1 0.83 0.73 0.13 0.18
sig var 3 0.87 0.73 0.13 0.20
Spice aroma all variables 1 - - - -
sig var 3 0.79 0.64 0.10 0.14
Earthy aroma all variables 1 0.79 0.67 0.10 0.13
sig var 3 0.78 0.62 0.09 0.14
Pepper aroma all variables 1 0.70 0.53 0.07 0.09
sig var 3 0.70 0.36 0.07 0.11
Pungent aroma all variables 1 0.79 0.65 0.11 0.15
sig var 3 0.87 0.62 0.08 0.16
Sweetness all variables 1 0.81 0.71 0.10 0.14
sig var 3 0.96 0.85 0.05 0.10
Viscosity all variables 1 0.69 0.43 0.16 0.24
sig var 3 0.89 0.35 0.09 0.25
Dark fruit flavour all variables 1 0.73 0.43 0.23 0.38
sig var 3 0.90 0.40 0.14 0.39
Dried fruit flavour all variables 1 0.95 0.88 0.09 0.15
sig var 3 0.95 0.90 0.09 0.14
Chocolate flavour all variables 1 0.61 0.40 0.19 0.26
sig var 3 0.79 0.38 0.14 0.26
Earthy flavour all variables 1 0.74 0.53 0.14 0.21
sig var 3 0.75 0.29 0.14 0.26
Spice flavour all variables 1 0.63 0.51 0.16 0.21
sig var 3 0.94 0.77 0.07 0.14

For the PLS model with all variables, Factor 1 explained 56% of the X variance and 57% of the Y variance; for the PLS model with a sub-set of significant variables, Factor 1 explained 84% of the X variance and 52% of the Y variance; Factor 2 explained a further 7% and 14% of the X and Y variance, respectively; PLS model parameters where cal = calibration, val = validation, RSME = root mean square error of prediction; § Sig var indicates a sub set of significant variables selected using an uncertainty test and high correlation loadings.