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Abstract: Rosmarinus officinalis L., commonly known as rosemary, has been largely studied for its wide
use as food ingredient and medicinal plant; less attention has been given to its edible flowers, being
necessary to evaluate their potential as functional foods or nutraceuticals. To achieve that, the phenolic
profile of the ethanolic extract of R. officinalis flowers was determined using LC-DAD-ESI/MSn and
then its antioxidant and anti-ageing potential was studied through in vitro and in vivo assays using
Caenorhabditis elegans. The phenolic content was 14.3 ± 0.1 mg/g extract, trans rosmarinic acid
being the predominant compound in the extract, which also exhibited a strong antioxidant capacity
in vitro and increased the survival rate of C. elegans exposed to lethal oxidative stress. Moreover,
R. officinalis flowers extended C. elegans lifespan up to 18%. Therefore, these findings support the
potential use of R. officinalis flowers as ingredients to develop products with pharmaceutical and/or
nutraceutical potential.
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1. Introduction

For many years, flowers have been used for a large number of applications including ornamental,
medicinal, cosmetic and culinary purposes. In Europe, edible flowers, such as roses, calendula or
saffron, have been consumed from ancient times [1]. Literature about these edible species is scarce,
however they are gaining attention as functional foods and as nutraceuticals [2].

In general, the nutritional composition of flowers is very similar to other plant organs [1];
by contrast, phytochemical constituents of flowers can differ from them [3,4]. These phytochemicals
are mainly phenolic compounds and are responsible for the health benefits associated with flowers
such as antioxidant, anti-inflammatory or neuroprotective effects [5]. Thus, the assessment of their
chemical composition and bioactive characteristics needs to be studied, particularly the impact of these
edible flowers on human health.

Rosmarinus officinalis L. (rosemary) is a traditional plant native to the Mediterranean area belonging
to the Lamiaceae family. This species is widely used in gastronomy, commonly consumed as a spice
or culinary herb, and may be less known as an edible flower [6,7]. Most of the previous research is
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focused on its leaves and its essential oil activity, which have been used as therapeutic agents since
ancient times [8], while the composition and bioactive potential of its flowers remain understudied.

The nematode Caenorhabditis elegans makes it possible to study the effects of natural products in
an in vivo model, especially for testing their antioxidant capacities and their influence on longevity.
This is due, in part, to the high similarity of its genome to the human one, including stress response
pathways. Nearly 60–80% of human genes have homologues in C. elegans [9]. Moreover, this model is
also very popular, among other reasons, because it has a short lifespan and can be easily maintained in
the laboratory [10].

Considering all the above, the aim of this study was to evaluate, for the first time, the antioxidant
and anti-ageing potential of rosemary flower ethanolic extract using in vivo tests on Caenorhabditis
elegans, and also to determine its phytochemical composition regarding phenolic compounds through
LC-DAD-ESI/MSn.

2. Materials and Methods

2.1. Standards and Reagents

DPPH (2,2-diphenyl-1-picrylhydrazyl), formic acid, and pyrogallol were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Juglone (5-hydroxy-1,4-naphthoquinone) was from Alfa
Aesar (Ward Hill, MA, USA), Folin–Ciocalteu reagent was purchased from Chem-lab (Zeldelgem,
Belgium). Phenolic compounds (apigenin-7-O-glucoside, chlorogenic acid, p-coumaric acid, caffeic acid,
isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucoside, quercetin-3-O-glucoside, and rosmarinic
acid) were from Extrasynthese (Genay, France). Water was treated in a Milli-Q water purification
system (TGI Pure Water Systems, Greenville, SC, USA). Other solvents and reagents were acquired
from common sources.

2.2. Samples and Preparation of Extract

Rosmarinus officinalis L. flowers used in this study were collected in March 2016 in Herrera de
los Navarros (Zaragoza, Spain). Voucher specimens were deposited in the herbarium of San Jorge
University. Ethanolic extract of fresh flowers was obtained by percolation with a Soxhlet apparatus for
4 h. The extract was concentrated to dryness with a rotary flash evaporator Buchi and stored at −20 ◦C
for further study.

2.3. Analysis of Phenolic Compounds

A Dionex Ultimate 3000 UPLC (Thermo Scientific, San Jose, CA, USA) chromatographic system
was used to profile the phenolic composition of R. officinalis flowers’ ethanolic extract. These compounds
were separated and identified as previously described by Bessada et al. [11], after re-dissolving the
extract at a concentration of 10 mg/mL with an ethanol:water (80:20, v/v) mixture. A double online
detection was performed using a DAD (280, 330 and 370 nm as preferred wavelengths) and a mass
spectrometer equipped with an ESI source (MS detection performed in negative mode, Linear Ion Trap
LTQ XL, Thermo Finnigan, San Jose, CA, USA).

Phenolic compounds identification was performed based on their chromatographic behavior and
UV-Vis and mass spectra by comparison with standard compounds, when available, and data reported
in the literature giving a tentative identification. Data acquisition was carried out with the Xcalibur®

data system (Thermo Finnigan, San Jose, CA, USA). A calibration curve for each available phenolic
standard was constructed based on the UV-Vis signal, for the quantification analysis. A manual
quantification was performed using the baseline to valley integration with baseline projection mode in
order to calculate peak areas. For the identified phenolic compounds for which a commercial standard
was not available, the most similar available standard was applied. The results were expressed as mg/g
of extract.
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2.4. C. elegans Assays

2.4.1. C. elegans Strains and Maintenance

The strains used in this study were obtained from the Caenorhabditis Genetics Center, CGC
(Minneapolis, MN, USA). N2 (wild type) worms were grown and maintained at 20 ◦C, while strain
SS104 glp-4(bn2) was maintained at 16 ◦C. Both C. elegans strains were routinely propagated on
Nematode Growth Medium (NGM) (bioWORLD, Ohio, OH, USA) plates with a lawn of Escherichia coli
OP50 (CGC, Minneapolis, MN, USA). Unless stated otherwise, age-synchronized populations were
obtained by sodium hypochlorite treatment of gravid adults according to standardized methods [12].

2.4.2. Acute Toxicity Assay

The Donkin and Williams method was followed with some modifications [13]. Synchronized
L4 were washed twice with M9 buffer and re-suspended in K-medium (32 mM KCl, 51 mM
NaCl). A quantity of 200 µL of this suspension was transferred to each well of the 96-well plates
(7–18 worms/well) and mixed with 50 µL of diluted extract or K-medium as negative control. After
24 h at 20 ◦C, survival was measured. The results were expressed as percentage of survival rate (%
Survival rate) or viability (Equation (1)):

% Survival rate = (Number of alive worms × 100)/Total number of worms (1)

At least 40 worms per condition were evaluated in each assay.

2.4.3. Oxidative Stress Resistance Assay

Oxidative stress resistance assay was based on the method described by Surco-Laos et al. with
modifications [14]. Synchronized L1 worms were cultured for 48 h at 20 ◦C in NGM plates containing
different concentrations of flower extract (50–500 µg/mL). Then, worms were washed twice with sterile
water and transferred to a microtiter plate containing NGM agar with 150 µM juglone, which induced
lethal oxidative stress. After 24 h of exposition, survival was scored. A worm was considered to be
dead when it did not respond to gentle touch with a platinum wire. Results were represented as a %
Survival rate and calculated using Equation (1). For each assay, about 120 individuals were used per
studied condition.

2.4.4. Lifespan Assay

Lifespan assay was carried out according to Virk et al. on C. elegans SS104 glp-4 (bn2) [15], which is
a temperature-sensitive strain that does not produce progeny at restrictive temperature (25 ◦C). Egg lay
were performed to obtain synchronized populations. Eggs were raised at 16 ◦C until the L4 stage; at
that time, worms were moved into a 25 ◦C environment. After 24 h, 25 worms were placed onto NGM
fresh plates containing the extract (25–250 µg/mL) or in absence of it (control group). A total of five
plates per condition were used. This moment was considered the day 0 for the counting of surviving
worms. Worms were moved to new plates after 7 and 14 days while scoring for survival every two or
three days. The scoring method was the same described in Section 2.4.3.

2.5. In Vitro Reducing/Antiradical Activity

The antioxidant capacity of the extract of rosemary flowers was determined by the Folin–Ciocalteu
reagent assay (Total Phenolic Content, TPC) [16], the DPPH· radical scavenging activity assay [17]
and the ferric reducing antioxidant power (FRAP) assay [18]. The results were expressed as mg of
pyrogallol equivalent per g of extract (mg PE/g extract), radical scavenging activity (%) and µmol
Fe2+/g extract, respectively.
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2.6. Statistical Analyses

Three replicates were carried out for all the performed assays. Results were represented as
mean ± SEM. Statistical analyses of the data were performed with GraphPad Prism version 6.0c for
Mac (GraphPad Software, San Diego, CA, USA). The 50% inhibitory concentration (IC50) was estimated
by a nonlinear regression for DPPH· assays. The results of toxicity and resistance to oxidative stress
assays were analyzed using ANOVA followed by Tukey’s multiple comparisons test. For lifespan
assay, the Kaplan–Meier survival model was utilized, and p values were calculated using the log-rank
test. p ≤ 0.05 was considered statistically significant.

3. Results and Discussion

3.1. Phenolic Compounds of Rosemary Flowers

The obtained extract from fresh flowers of R. officinalis had a yield of 3.75% (mass of extract/mass
of fresh flowers) and the characterization of the phenolic compounds present in it was performed by
LC-DAD-ESI/MSn. The analysis of the extract revealed the presence of 14 compounds, corresponding
to six phenolic acids and eight flavonoids (Table 1). The representative chromatogram is shown in
Figure 1.
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Figure 1. Phenolic profile of R. officinalis flowers recorded at 280 nm (A) and 370 nm (B). Numbers 1 to
14 refer to peaks from Table 1.
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Table 1. Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass spectral data, tentative identification and quantification (mg/g of
extract) of the phenolic compounds present in Rosmarinus officinalis L. flowers.

Peak Rt (min) λmax (nm) Molecular Ion
[M − H]− (m/z)

MS2 (m/z) Tentative Identification Quantification
(mg/g of Extract)

1 5.65 322 353 191(20),179(57),173(100),155(5),135(10) cis 4-O-Caffeoylquinic acid A 0.656 ± 0.003
2 6.47 324 353 191(17),179(52),173(100),155(3),135(8) trans 4-O-Caffeoylquinic acid A 0.91 ± 0.03
3 8.27 312 387 207(100),179(5),163(42) Medioresinol B 0.28 ± 0.02
4 9.8 327 179 135(100) Caffeic acid C 0.76 ± 0.02
5 16.39 340 609 285(100) Luteolin-O-di-hexoside D 0.52 ± 0.01
6 18.17 245/266/345 461 285(100) Luteolin-7-O-glucuronide D 0.99 ± 0.01
7 18.96 350 463 301(100) Quercetin-3-O-glucoside E 0.54 ± 0.01
8 19.28 350 623 315(100),301(42) Isorhamnetin-3-O-rutinoside E 0.55 ± 0.01
9 20.26 350 477 315(100) Isorhamnetin-3-O-glucoside E 0.62 ± 0.02

10 21.25 327 359 197(36),179(42),161(100),135(5) cis Rosmarinic acid F 2.64 ± 0.02
11 21.68 328 359 197(33),179(44),161(100),135(5) trans Rosmarinic acid F 3.4 ± 0.1
12 24.25 345 461 285(100) Luteolin-O-glucuronide D 1.03 ± 0.01
13 28.68 332 503 285(100) Luteolin-3′-acetyl-O-glucuronide D 0.60 ± 0.03
14 30.57 330 503 285(100) Luteolin-3′-acetyl-O-glucuronide D 0.9 ± 0.1

Total phenolic acids 8.69 ± 0.05
Total flavonoids 5.69 ± 0.04

Total phenolic compounds 14.3 ± 0.1

Letters correspond to the standard calibration curves: A—chlorogenic acid (y = 168823x − 161172, R2 = 0.9999; LOD = 0.20 µg/mL; LOQ = 0.68 µg/mL), B—p-coumaric acid (y = 301950x +
6966.7, R2 = 0.999; LOD = 0.68 µg/mL; LOQ = 1.61 µg/mL), C—caffeic acid (y = 388345x + 406369; R2 = 0.994; LOD = 0.19 µg/mL; LOQ = 0.65 µg/mL), D—apigenina-7-O-glucoside
(y = 10683x − 45794; R2 = 0.999; LOD = 0.10 µg/mL; LOQ = 0.53 µg/mL); E—quercetin 3-O-glucoside (y = 34843x − 160173, R2 = 0.999; LOD = 0.21 µg/mL; LOQ = 0.71 µg/mL); F—rosmarinic
acid (y = 191291x − 652903, R2 = 0.999; LOD = 0.15 µg/mL; LOQ = 0.68 µg/mL).
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4-O-caffeoylquinic acid (2 isomers), medioresinol (phenolic lignin), caffeic acid and rosmarinic acid
(2 isomers) were the identified phenolic acids, whereas the flavonoid compounds found were glycoside
derivates of luteolin (5 compounds), isorhamnetin (2 compounds) and quercetin (1 compound). All
the mentioned compounds, with the exception of the phenolic lignin and isorhamnetin glycoside
derivatives, have been previously described by the authors in other studies involving R. officinalis [19–21].
Thus, peak 3 ([M − H]− ion at m/z 387) presented two main MS2 fragment ions at m/z 207 and 163,
being tentatively identified as medioresinol, taking into account data reported in the literature [22–24].
This compound has been previously identified in the hydroethanol and acetone-based extracts of
R. officinalis leaves [22,24] and in the methanolic extract of Bituminaria bituminos (L.) C.H. Stirton
flowers [23]. Peaks 8 ([M −H]− ion at m/z 623) and 9 ([M −H]− ion at m/z 477) were positively identified
as isorhamnetin-3-O-rutinoside and isorhamnetin-3-O-glucoside in comparison with the commercial
standard. Nevertheless, most of the identified compounds have been previously identified by other
authors in different plant parts of R. officinalis [22,24–28].

The three major components, ordered from the highest to the lowest concentration, were identified
as trans rosmarinic acid (peak 11), cis rosmarinic acid (peak 10) and luteolin-O-glucuronide (peak 12),
respectively (Table 1). As reported by Del Baño et al., rosmarinic acid was the major compound found
in the flowers [3] and was at a slightly higher content than the one described by Moreno, Scheyer,
Romano, and Vojnov [29]. However, most of the compounds detected in the extract, such as caffeic
acid, medioresinol, luteolin, isorhamnetin and quercetin glycoside derivatives, have been previously
identified in different organs of R. officinalis [3,4,6,21,30], but not in its flowers.

On the other hand, the polyphenol content of the extract was higher than that described by
Chen et al. for a sample obtained from dried flowers using methanol–acetone–water as solvent and
ultrasound extraction [31]. These differences could be due to different geographical origins of the
plant material, or different geo-climatic conditions, and also different harvest times, but they could
also be explained by the application of different solvents and extraction systems. Thus, this result
demonstrated that R. officinalis flowers are a noticeable source of phenolic compounds.

3.2. Evaluation of Rosemary Flowers Acute Toxicity

Previous studies have demonstrated the lack of toxicity of extracts obtained from leaves of
R. officinalis, which are used as a food additive [32]; however, there is no data available about the
toxicity of its flowers.

Worms exposed to a concentration range of 10–2000 µg/mL for 24 h did not significantly reduce
viability, even at the highest tested dose. C. elegans maintained a viability rate of 96% ± 2 while the
viability of the control group was 96% ± 3. Thus, R. officinalis flowers at the assayed concentrations did
not produce lethal toxicity on this model organism. It should be noted that C. elegans is a powerful
tool in the toxicology field. Screenings using this organism have shown to be a predictive tool when
measuring rat or mouse LD50 [33].

3.3. Evaluation of Protective Effects on C. elegans under Lethal Oxidative Stress

We analyzed the effect of the studied extract on the resistance of C. elegans against lethal oxidative
stress induced by juglone. This natural compound is a strong pro-oxidant, which generates Reactive
Oxygen Species (ROS), inducing cell death [34]. As shown in Figure 2, the pre-treatment with
R. officinalis flower extract increased survival of C. elegans compared to the control group. The best
protective effect was found in groups pre-treated with 50 (p ≤ 0.01) and 250 (p ≤ 0.05) µg/mL of extract,
for which the survival rate was increased from 2.0% ± 0.6 (control group) to 10% ± 2. These results
are in concordance with the study carried out by Zamberlan et al., which evaluated the effect of
an extract obtained from dried leaves of R. officinalis on stress resistance induced with juglone [35].
The enhanced response to oxidative stress of R. officinalis could be attributed to the presence of phenolic
acids and flavonoids in the extracts, which are considered to be the main compounds responsible for
the antioxidant activity of R. officinalis, such as rosmarinic acid [36]. Lin et al. reported an increased
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survival rate in nematodes pre-treated with this phenolic acid and exposed to paraquat-induced
oxidative stress compared to the control group [37].
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3.4. Evaluation of C. elegans Lifespan

In order to determine the impact of the flowers’ extract on the life extension, a lifespan assay was
performed at 25 ◦C using SS104 glp-4 (bn2) worms, which were exposed to different concentrations of
R. officinalis flowers’ ethanolic extract. As shown in Figure 3, R. officinalis flowers had a noteworthy
effect on lifetime at concentrations of 25 (p ≤ 0.05) and 50 (p ≤ 0.01) µg/mL. The best result was found
in the group treated with 50 µg/mL, showing an increase of around 18% of median lifespan regarding
the untreated group.Antioxidants 2020, 9, x FOR PEER REVIEW 7 of 10 
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Figure 3. Effect of Rosmarinus officinalis flower extract on lifespan of C. elegans SS104 glp-4 (bn2).
The means of lifespan were: 14 days (control, 100 and 250 µg/mL groups), 16 days (25 µg/mL treated
group) and 17 days (50 µg/mL treated group). Results of lifespan experiments were analysed using the
Kaplan–Meier survival model, and for significance by means of a long rank pairwise comparison test
between the control and treatment groups. Differences in survival curves between the treatment and
control groups were found for the concentrations of 25 (p ≤ 0.05) and 50 (p ≤ 0.01) µg/mL.
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The present study does not allow us to conclude which mechanisms are involved in lifespan
lengthening, but similar experiments were carried out with an extract of R. officinalis leaves and with
the major phytochemicals present in this extract, as described later. The life-extending effect could be
due to up-regulating stress-resistance-associated genes such as DAF-16 and HSP-1, associated with the
insulin/IGF (insulin-like growth factor) signaling (IIS) pathway [35,37–39]. The IIS pathway is a key
regulator of aging and longevity in many organisms, including C. elegans [40].

3.5. In Vitro Reducing/Antioxidant Activity

In order to complete the antioxidant potential of fresh flowers of R. officinalis, different experiments
were carried out: Folin–Ciocalteu (TPC), DPPH radical scavenging, and FRAP assays. Results are
shown in Table 2.

Table 2. Reducing/antiradical activity of Rosmarinus officinalis L. flowers’ extract.

Assay Mean ± SEM

TPC
mg PE/g extract 48 ± 2

DPPH
IC50 [µg/mL] 67 ± 5

FRAP
µmol Fe2+/g extract 34 ± 2

TPC, Total Phenolic Content; DPPH, 2,2-diphenyl-1-picrylhydrazyl; FRAP, ferric reducing antioxidant power.

Firstly, TPC was determined by the Folin–Ciocalteu method, which is based on a redox reaction,
and the result was expressed in comparison to pyrogallol standard. Our extract contained 48± 2 mg PE/g
extract. This value is considerably higher than the one quantified by LC-DAD-ESI/MSn, which can
be attributed to the capacity of non-phenolic compounds (e.g., proteins, thiols or vitamins) to react
with the Folin–Ciocalteu reagent [41]. Therefore, TPC assay is considered as a measure of an overall
antioxidant capacity.

The IC50 value of R. officinalis flower extract for scavenging DPPH radicals was 67 ± 5 µg/mL
(Table 2). The reducing power of the sample, as measured by FRAP assay, was 34 ± 2 µmol Fe2+/g
extract. Our findings revealed that R. officinalis fresh flowers exhibited important phenolic content
with strong scavenging power when compared with the values reported for other flower species [42].

Several studies have demonstrated the beneficial impact of dietary intake of phenolic compounds
in health to a large extent due to their antioxidant properties. Polyphenols protect against diseases
associated with aging such as cardiovascular diseases, inflammation or neurodegeneration [43].
The ageing of the population has increased the incidence of these problems and, as a consequence, it is
necessary to design new strategies to counteract them. Therefore, the assessment of bioactivities of
edible flowers, which are rich in phenolic compounds, can contribute to achieve this goal.

4. Conclusions

To summarize, our study reveals that R. officinalis edible flowers are a good source of phenolic
compounds, in which rosmarinic acid was identified as the main phenolic compound. In addition,
for the first time it has been found that R. officinalis flowers possess both anti-aging and anti-oxidative
activities in vivo on C. elegans. Hence, this study promotes further research into the precise physiological
and molecular signaling mechanisms of R. officinalis flowers on elongated lifespan and increased
oxidative stress resistance in C. elegans.

Author Contributions: Conceptualization, C.G.-R., E.L., V.L. and I.C.F.R.F.; methodology, C.M., M.I.D. and L.B.;
formal analysis, C.M., V.L., L.B., M.I.D., I.C.F.R.F., E.L. and C.G.-R.; writing—original draft preparation, C.M.;
writing—review and editing, V.L., L.B., M.I.D., I.C.F.R.F., E.L. and C.G.-R.; supervision, V.L., I.C.F.R.F., E.L. and
C.G.-R. All authors have read and agreed to the published version of the manuscript.



Antioxidants 2020, 9, 811 9 of 11

Funding: This research received no external funding.

Acknowledgments: Universidad San Jorge is acknowledged for financial support and providing Cristina Moliner
with a PhD scholarship. The authors are grateful to the Foundation for Science and Technology (FCT, Portugal)
for financial support through national funds FCT/MCTES to CIMO (UIDB/00690/2020). National funding was
provided by FCT, P.I., through the institutional scientific employment program-contract for M.I. Dias’ and L.
Barros’ contracts. The authors are also grateful to the FEDER-Interreg España-Portugal programme for financial
support through the project 0377_Iberphenol_6_E and 0612_TRANS_CO_LAB_2_P.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends
Food Sci. Technol. 2011, 22, 561–569. [CrossRef]

2. Takahashi, J.A.; Rezende, F.A.G.G.; Moura, M.A.F.; Dominguete, L.C.B.; Sande, D. Edible flowers: Bioactive
profile and its potential to be used in food development. Food Res. Int. 2020, 129, 108868. [CrossRef]
[PubMed]

3. Del Baño, M.J.; Lorente, J.; Castillo, J.; Benavente-García, O.; Del Río, J.A.; Ortuño, A.; Quirin, K.-W.; Gerard, D.
Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers,
stems, and roots of Rosmarinus officinalis. Antioxidant activity. J. Agric. Food Chem. 2003, 51, 4247–4253.
[CrossRef]

4. Del Baño, M.J.; Lorente, J.; Castillo, J.; Benavente-García, O.; Marín, M.P.; Del Río, J.A.; Ortuño, A.; Ibarra, I.
Flavonoid Distribution during the Development of Leaves, Flowers, Stems, and Roots of Rosmarinus officinalis.
Postulation of a Biosynthetic Pathway. J. Agric. Food Chem. 2003, 52, 4987–4992. [CrossRef]

5. Lu, B.; Li, M.; Yin, R. Phytochemical Content, Health Benefits, and Toxicology of Common Edible Flowers:
A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, S130–S148. [CrossRef] [PubMed]

6. Loizzo, M.R.; Pugliese, A.; Bonesi, M.; Tenuta, C.; Menichini, F.; Xiao, J.; Tundis, R. Edible Flowers: A Rich
Source of Phytochemicals with Antioxidant and Hypoglycaemic Activity. J. Agric. Food Chem. 2015, 64,
2467–2474. [CrossRef]

7. Wang, F.; Miao, M.; Xia, H.; Yang, L.-G.; Wang, S.-K.; Sun, G.J. Antioxidant activities of aqueous extracts
from 12 Chinese edible flowers in vitro and in vivo. Food Nutr. Res. 2017, 61, 1265324. [CrossRef]

8. Committee on Herbal Medicinal Products (HMPC). Assessment Report on Rosmarinus officinalis L., Aetheroleum
and Rosmarinus officinalis L., Folium; Final Report; European Medicines Agency: London, UK, 2010; Volume
EMA/HMPC/1. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_
HMPC_assessment_report/2011/02/WC500101693.pdf (accessed on 13 October 2019).

9. Calvo, D.R.; Martorell, P.; Genovés, S.; Gosálbez, L. Development of novel functional ingredients: Need
for testing systems and solutions with Caenorhabditis elegans. Trends Food Sci. Technol. 2016, 54, 197–203.
[CrossRef]

10. Martorell, P.; Llopis, S.; Gonza, N.; Monto, F.; Ortiz, P.; Genove, S. Caenorhabditis elegans as a Model to
Study the E FF ectiveness and Metabolic Targets of Dietary Supplements Used for Obesity Treatment: The
Speci FI C Case of a Conjugated Linoleic Acid Mixture (Tonalin). J. Agric. Food Chem. 2012, 60, 11071–11079.
[CrossRef]

11. Bessada, S.; Barreira, J.C.; Barros, L.; Ferreira, I.C.; Oliveira, M.B.P. Phenolic profile and antioxidant activity
of Coleostephus myconis (L.) Rchb. F.: An underexploited and highly disseminated species. Ind. Crop. Prod.
2016, 89, 45–51. [CrossRef]

12. Stiernagle, T. Maintenance of C. elegans. WormBook 1999, 2, 51–67. [CrossRef] [PubMed]
13. Donkin, S.G.; Williams, P.L. Influence of developmental stage, salts and food presence on various end

points using Caenorhabditis Elegans for aquatic toxicity testing. Environ. Toxicol. Chem. 1995, 14, 2139–2147.
[CrossRef]

14. Surco-Laos, F.; Cabello, J.; Gómez-Orte, E.; González-Manzano, S.; González-Paramás, A.M.;
Santos-Buelga, C.; Dueñas, M.; Dueñas, M. Effects of O-methylated metabolites of quercetin on oxidative
stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans. Food Funct. 2011, 2, 445–456.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.tifs.2011.04.006
http://dx.doi.org/10.1016/j.foodres.2019.108868
http://www.ncbi.nlm.nih.gov/pubmed/32036873
http://dx.doi.org/10.1021/jf0300745
http://dx.doi.org/10.1021/jf040078p
http://dx.doi.org/10.1080/10408398.2015.1078276
http://www.ncbi.nlm.nih.gov/pubmed/26462418
http://dx.doi.org/10.1021/acs.jafc.5b03092
http://dx.doi.org/10.1080/16546628.2017.1265324
http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_HMPC_assessment_report/2011/02/WC500101693.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_HMPC_assessment_report/2011/02/WC500101693.pdf
http://dx.doi.org/10.1016/j.tifs.2016.05.006
http://dx.doi.org/10.1021/jf3031138
http://dx.doi.org/10.1016/j.indcrop.2016.04.065
http://dx.doi.org/10.1895/wormbook.1.101.1
http://www.ncbi.nlm.nih.gov/pubmed/18050451
http://dx.doi.org/10.1002/etc.5620141218
http://dx.doi.org/10.1039/c1fo10049a
http://www.ncbi.nlm.nih.gov/pubmed/21776484


Antioxidants 2020, 9, 811 10 of 11

15. Virk, B.; Correia, G.D.S.; Dixon, D.; Feyst, I.; Jia, J.; Oberleitner, N.; Briggs, Z.; Hodge, E.; Edwards, R.;
Ward, J.M.; et al. Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model. BMC Biol.
2012, 10, 67. [CrossRef]

16. Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid
reagents. Am. J. Enol. Vitic. 1965, 16, 144–158.

17. López, V.; Akerreta, S.; Casanova, E.; García-Mina, J.; Cavero, R.; Calvo, M. Screening of Spanish Medicinal
Plants for Antioxidant and Antifungal Activities Screening of Spanish Medicinal Plants for Antioxidant and
Antifungal Activities. Pharm. Biol. 2008, 46, 602–609. [CrossRef]

18. Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant Activity of Dietary Polyphenols As Determined by a
Modified Ferric Reducing / Antioxidant Power Assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [CrossRef]

19. Ribeiro, A.; Caleja, C.; Barros, L.; Santos-Buelga, C.; Barreiro, M.F.; Ferreira, I.C. Rosemary extracts in
functional foods: Extraction, chemical characterization and incorporation of free and microencapsulated
forms in cottage cheese. Food Funct. 2016, 7, 2185–2196. [CrossRef]

20. Gonçalves, G.D.A.; De Sá-Nakanishi, A.B.; Comar, J.F.; Bracht, L.; Dias, M.I.; Barros, L.; Peralta, R.M.;
Ferreira, I.C.; Bracht, A. Water soluble compounds of: Rosmarinus officinalis L. improve the oxidative and
inflammatory states of rats with adjuvant-induced arthritis. Food Funct. 2018, 9, 2328–2340. [CrossRef]

21. Gonçalves, G.A.; Corrêa, R.C.; Barros, L.; Dias, M.I.; Calhelha, R.C.; Correa, V.G.; Bracht, A.; Peralta, R.M.;
Ferreira, I.C. Effects of in vitro gastrointestinal digestion and colonic fermentation on a rosemary
(Rosmarinus officinalis L.) extract rich in rosmarinic acid. Food Chem. 2019, 271, 393–400. [CrossRef]
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