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ABSTRACT
Purpose  Hyperprogression is an atypical response pattern 
to immune checkpoint inhibition that has been described 
within non-small cell lung cancer (NSCLC). The paradoxical 
acceleration of tumor growth after immunotherapy has 
been associated with significantly shortened survival, and 
currently, there are no clinically validated biomarkers to 
identify patients at risk of hyperprogression.
Experimental design  A total of 109 patients with advanced 
NSCLC who underwent monotherapy with Programmed 
cell death protein-1 (PD1)/Programmed death-ligand-1 
(PD-L1) inhibitors were included in the study. Using RECIST 
measurements, we divided the patients into responders 
(n=50) (complete/partial response or stable disease) and 
non-responders (n=59) (progressive disease). Tumor growth 
kinetics were used to further identify hyperprogressors (HPs, 
n=19) among non-responders. Patients were randomized 
into a training set (D

1=30) and a test set (D2=79) with the 
essential caveat that HPs were evenly distributed among 
the two sets. A total of 198 radiomic textural patterns from 
within and around the target nodules and features relating 
to tortuosity of the nodule associated vasculature were 
extracted from the pretreatment CT scans.
Results  The random forest classifier using the top features 
associated with hyperprogression was able to distinguish 
between HP and other radiographical response patterns 
with an area under receiver operating curve of 0.85±0.06 
in the training set (D

1=30) and 0.96 in the validation set 
(D2=79). These features included one peritumoral texture 
feature from 5 to 10 mm outside the tumor and two nodule 
vessel-related tortuosity features. Kaplan-Meier survival 
curves showed a clear stratification between classifier 
predicted HPs versus non-HPs for overall survival (D

2: 
HR=2.66, 95% CI 1.27 to 5.55; p=0.009).
Conclusions  Our study suggests that image-based 
radiomics markers extracted from baseline CTs of 
advanced NSCLC treated with PD-1/PD-L1 inhibitors may 
help identify patients at risk of hyperprogressions.

INTRODUCTION
The addition of immune checkpoint inhibi-
tors (ICIs) to the armamentarium of cancer 

therapies has resulted in unprecedented 
improvement in survival outcomes for a wide 
range of malignancies, including non-small 
cell lung cancer (NSCLC). With the approval 
of ICIs for clinical use in these malignancies, 
a phenomenon of paradoxical acceleration of 
disease progression after initiation of immu-
notherapy has been recently described by a 
few groups.1–4 This phenomenon was labeled 
‘hyperprogressive disease’ with the reported 
incidence varying from 8.0% to 25.7%, 
depending on tumor histology and criteria 
used to identify hyperprogressors (HPs).2 4–6

The biological and clinical factors that 
contribute to the development of hyperpro-
gressive disease with ICIs are yet to be under-
stood. Evidence from studies published to 
date have shown associations between hyper-
progression and advanced age,6 7 a higher 
number of metastatic sites at baseline4 and 
specific genetic alterations, such as murine 
double minute-2 (MDM2) amplification or 
epidermal growth factor receptor (EGFR) 
mutations.2 However, these observations have 
not been consistently noted in all the studies, 
and some of them have reported unexpected 
rapid disease progressions.8 There is, there-
fore, a pressing need to identify biomarkers 
that could identify and help stratify this 
unique group of patients in whom ICI therapy 
not only may lack efficacy but also could lead 
to rapid disease progression and worse clin-
ical outcomes.

CT images of tumors contain a vast amount 
of valuable information in the form of subtle 
variations in shape, intensity, gradient, 
and texture beyond the semantic features 
that are routinely used by radiologists to 
describe radiographical appearances of 
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tumors.9 10 Radiomics11 involves the use of computer vision 
and machine learning methods to quantitatively interro-
gate the subtle subvisual characteristics of radiographical 
images in a high-throughput manner in order to answer 
relevant clinical questions. Radiomic features have shown 
prognostic and predicting response to multiple different 
treatments across a wide variety of cancers, including 
lung,12–17 breast,18–21 21 brain,22–26 prostate27 28 and 
colorectal29 cancers. Specifically, in lung cancer,9 radio-
mics approaches have been used to predict the benefit 
of adjuvant chemotherapy, prognosticate disease risk in 
early-stage lung cancer,30 predict treatment response to 
concurrent chemoradiation in locally advanced disease15 
and to predict response to immune checkpoint inhibition 
in advanced NSCLC.31 32

These features are sought to capture the extent of 
heterogeneity and other biologically relevant features, 
such as interaction with stromal or vascular compo-
nents within the given region of interest. Our group and 
several others have examined the region beyond the 
tumor boundaries for this approach and interrogated 
the peritumoral or space immediately adjacent to the 
tumor. In our recently published work, we have shown 
that these peritumoral radiomic textural patterns can 
determine the response to ICI in patients with late-stage 
NSCLC.31

Another important hallmark of more aggressive 
cancers is the extent of neovascularization and angiogen-
esis present in the tumor microenvironment (TME). Our 
groups have looked at quantifying this vessel tortuosity as 
a radiomic feature—quantitative vessel tortuosity (QVT) 
on the CT scan as a way of representing the curvedness of 
the blood vessels feeding the tumor. We have previously 
shown that QVT features could be used to distinguish 
malignant adenocarcinomas with more tortuous vascula-
ture versus benign granulomas from non-contrast chest 
CT scans.33 A marked decrease in QVT in patients with 
advanced NSCLC treated with ICI has been associated 
with response to therapy.34

In this study, we sought to evaluate the ability of 
radiomic features pertaining to intratumoral and peritu-
moral textural patterns and tortuosity of tumor-associated 
vasculature to further characterize the response patterns 
seen in patients with NSCLC treated with ICI. In this 
work, we hypothesize that hyperprogressive disease 
would have a unique radiomics pattern associated with 
it when compared with other response patterns, such as 
responders (stable disease (SD), partial response (PR), 
complete response (CR)) and non-responders (progres-
sive disease (PD)) as determined by RECIST V.1.1.33 We 
studied the performance of each feature family (intra-
tumoral, peritumoral texture, and vessel tortuosity) 
within unsupervised as well as within the unified super-
vised classification model in predicting HPs from other 
response patterns. We developed our radiomic model on 
a training set and validated our findings on a validation 
set in a blinded manner. Additionally, we also performed 
a survival analysis based on our radiomic model using the 

log-rank test to stratify predicted HP patients based on 
overall survival (OS).

MATERIALS AND METHODS
Study design and subjects
In this study, we retrospectively reviewed electronic 
medical records of 524 consecutive patients with NSCLC 
who received monotherapy with either a PD1 or PD-L1 
inhibitor between January 1, 2015, to April 30, 2018, 
at Cleveland Clinic. Data pertaining to demographics, 
smoking history, histology, and molecular testing, 
number of prior lines of therapy, performance status 
per the Eastern Cooperative Oncology Group (ECOG) 
scale, response to ICI on first radiographical assessment, 
follow-up, and vital status were extracted from electronic 
medical records. We identified patients who received ≤3 
cycles of therapy and also noted the reason for discontin-
uation of treatment.

Identifying HPs, responders and non-responders
All CT scans were independently reviewed by two clini-
cians (PDP and PJ) and a senior radiologist (AG). To be 
eligible, patients had to have CT images available at a 
minimum of three time points at least 2 weeks apart—a 
baseline CT scan immediately before starting immu-
notherapy, a prebaseline CT scan at diagnosis, and the 
first post-treatment scan after initiating the ICI. Patients 
without measurable disease per RECIST V.1.1 or lung 
lesions on baseline pretherapy scans were excluded from 
the analysis. RECIST V.1.1 criteria were used to calculate 
the sum of the largest diameters of the target lesions on 
each of the CT scans. New lesions on treatment were 
excluded from calculations.

Response assessment on all patients was performed as 
per RECIST V.1.1 criteria. Specifically, two target lesions 
per organ to a maximum of five lesions were identified 
and measured by a thoracic radiologist (10 years of expe-
rience), on prebaseline, baseline, and post-ICI therapy 
scans for every patient. The four RECIST categories 
were defined using the target lesions observed on three 
consecutive CT scans. The sum of diameters of the target 
lesions (longest for non-nodal lesions and the short axis 
for the nodal region) were compared for prebaseline, 
baseline, and post-ICI therapy scans. The four catego-
ries were defined as CR, that is, the disappearance of all 
the lesions, PR, that is, ≥30% decrease in the sum of the 
longest diameters of target lesions compared with base-
line; PD, that is, ≥20% increase in the sum of the longest 
diameter of target lesions; and SD, that is, neither PR or 
PD.35 For the present study, the responders to ICI therapy 
were identified as those patients with CR, PR, and SD, 
and non-responders were patients with PD. To determine 
hyperprogressive disease, tumor-growth kinetics, which 
measures the change in tumor size per unit time, were 
calculated for all the PD lesions using the previously 
defined methodology.35 The details regarding the calcu-
lations of tumor growth kinetics are described in online 
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supplemental appendix 1. TGKpre was defined as the 
change in tumor size per unit of time (months) between 
the baseline and prebaseline scans.

Meanwhile, TGKpost was defined as the change in tumor 
size per unit time (months) between the baseline and 
post-ICI therapy scans. HPs were defined when TGKpost 
was twice of TGKpre. The details about three class selec-
tions are described in the flowchart and online supple-
mental appendix 1 (pp3).

Nodule identification and annotation of vasculature and 
peritumoral region
All the target lesions used for response assessment were 
manually segmented and annotated on all the slices of 
axial CT for the baseline CT scan. The previous published 
work shows that manual segmentations are still considered 
the gold standard for radiomics studies. We did not want 
to confound the radiomic analysis with possible errors on 
account of the automated segmentation; hence, manual 
segmentation was preferred over automatic segmentation 
analysis. The radiologists used 3D Slicer software and a 
manual hand tool (3D Slicer V.4.6) for the annotations. 
All the annotated lesions were further used for radiomic 
intratumoral analysis, that is, features extracted from 
inside the nodule.

Following annotations, the peritumoral mask was 
defined using morphological dilation and erosion 
operations (online supplemental appendix 1, pp1,2). 
Annular rings of 5 mm width up until a radial distance 
of 0–15 mm outside the nodule were identified for 
extracting peritumoral features. Further, 3D vascula-
ture surrounding the nodule was segmented. A fast-
marching algorithm was employed to identify the center 
lines of the 3D segmented vasculature for extracting 
QVT features.

Radiomic feature extractions
Radiomic features were extracted using software devel-
oped at the Center of Computational Imaging and 
Personalized Diagnostics, Case Western Reserve Univer-
sity (Cleveland, Ohio, USA), implemented on a MATLAB 
release V.2015 platform.

Textural radiomic features from Gabor, Haralick, Laws, 
Laplace, and Collage feature families were extracted from 
each annotated intratumoral and peritumoral region. 
To ensure the stability and reproducibility of radiomic 
features, we used the test–retest Reference Image Data-
base to Evaluate Response lung CT dataset (online 
supplemental appendix 1, pp2).

A set of 74 QVT features were extracted from the 
segmented vasculature surrounding the nodule. These 
features pertain to the tortuosity, curvature, and 
branching statistics as well as the volume of the vascula-
ture. In addition, we measured the angles of each three 
consecutive points of the vasculature and computed 
the distribution of these angles33 (online supplemental 
appendix 1, pp1).

Feature evaluation and classifier construction
First, to evaluate and analyze the structure of an entire 
dataset, unsupervised clustering was performed on the 
radiomics feature pool using heatmaps and K-mean 
clustering. External validation of the clustering anal-
ysis was performed by comparing the clustering results 
against ground truth to identify high-risk patient cohort 
within the dataset without prior knowledge of biology or 
outcome.

Second, the supervised experiment was performed by 
considering the primary endpoint of the study to differen-
tiate HPs from the other response patterns. A radiomics 
model was developed using the training cohort. For the 
purposes of feature and classifier selection, 300 iterations 
of threefold cross-validation were used within the training 
dataset. The minimum redundancy maximum relevance 
feature selection algorithm was implemented within 
the cross-validation setting to select the top-performing 
radiomic features. Top features were analyzed with box 
and whisker plots, Wilcoxon rank-sum tests, p values,as 
well as feature maps.

The five machine learning classifiers implemented 
within the training set included Random Forest (RF), 
linear discriminant analysis, diagonal linear discriminant 
analysis, quadratic discriminant analysis, and support 
vector machine. The best performing classifier modeled 
on the training set was then validated on an independent 
and blinded validation set.

Statistical analysis
The statistical analysis was performed using MATLAB 
V.2015 and R V.3.5.3. A two-sided p value of <0.05 was 
considered significant for all the statistical analyses. 
Differences in distributions between the patient dataset 
and variables were assessed with the unpaired, two-tailed 
χ2 test, or the Fisher exact test as appropriate.

The selected top features were analyzed using box 
and whiskers plots, along with the Wilcoxon rank-sum 
tests. Next, the feature maps of the top features were 
compared against three classes. To validate the classi-
fier performance, the area under the receiver operating 
curve (AUC), accuracy, sensitivity (true positive rate; ie, 
predicting HPs accurately from the rest), and specificity 
(true negative rate; ie, predicting other classes accurately) 
were calculated for training as well as validation datasets.

Further, the patients were stratified into two groups 
based on the labels/output predicted by the locked-
down machine learning classifier. The OS was compared 
against the two predicted groups. The OS was defined as 
the time between the initiation of ICI to the death of the 
patient. The patients were censored if the date of death 
was unknown. The Kaplan-Meier (KM) survival curves 
were plotted for two groups using OS. The survival anal-
ysis was performed using log-rank tests and HRs with 
corresponding CIs.

The survival analysis and classification were further 
performed within individual groups of response 
patterns (responders, non-responders, and HPs). The 
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classifier performance was compared for differentiating 
HPs from responders, HPs from other non-responders 
and responders from non-responders. The three models 
were compared with classifier AUC as well as HRs and KM 
curves.

The overall work pipeline is explained in figure 1.

RESULTS
Patient cohort
A total of 524 patients with advanced NSCLC who 
received ICIs were analyzed in the study, out of which 
315 received ≤3 cycles of an ICI. The patients who either 
did not have CT images available for analysis, or no avail-
able OS or had an unmeasurable disease or had no target 
lung lesions on baseline scans or poor image quality as 
determined by a radiologist were excluded from the anal-
ysis. The study included the remaining 109 patients after 
excluding these cases. After implementing RESIST V.1.1 
criteria and tumor growth kinetics, a total of 19 HPs were 
identified. For the cohort with other response patterns 
(CR, PR, SD, and PD), we identified n=90 based on their 
first imaging assessment (usually post two cycles) after 
immune checkpoint blockade (figure 2).

The clinical characteristics are listed in table  1. The 
distribution of patients in the training and testing sets is 
listed in online supplemental appendix 1 (pp1).

Experiment 1: analyzing radiomic features
Unsupervised clustering analysis on the feature set
First, the patterns of radiomic features were analyzed 
using clustering-based heatmap analysis. The approach 
involves plotting out the individual feature values for 
each patient within a matrix and performing unsuper-
vised clustering. Heatmap analysis on intratumoral and 
peritumoral textural patterns resulted in 78.9% of HPs 
being colocated within cluster 1. Similarly, heatmap 
analysis with QVT features revealed the HPs aggregating 
together (figure 3A).

Next, the entire feature pool, that is, the combination 
of intratumoral textural, peritumoral textural, and QVT 
radiomics were used with principal component analysis 
and k-means clustering to identify four clusters. The 
compactness within the clusters, that is, how similar are 
the members within the same group, was observed to 
be 78.1%. The validation of the constructed cluster was 
performed using heatmaps and silhouette coefficient 
(silhouette width). The silhouette plot36 suggests that 
the clustering using the four groups was optimal with no 
negative silhouette width and most cluster values of >0.5 
(online supplemental appendix 1, pp4).

Within the constructed clusters, 80% of combined 
cluster 3 and cluster 4 comprised 80% of HPs. The 
remaining 20% HPs were part of cluster 1, making up 

Figure 1  Overall workflow and pipeline of the project. The first step involves identifying and annotating lung nodules on 
prebaseline, baseline, and post-ICI therapy scans. The next step involves calculating TGKs and defining responders, non-
responders, and hyperprogressors. After defining the three groups, intratumoral and peritumoral textural features are extracted 
using MATLAB V.2015a. For the peritumoral region, features were extracted from 0 to 15 mm region outside the tumor and 
divided into three 5 mm peritumoral rings. Feature statistics included mean, median, SD, skewness, kurtosis, and range and 
were calculated for each of the individual annular rings. The whole dataset was divided into training and validation sets. Top 
features were selected using the minimum redundancy maximum relevance feature selection algorithm using the training 
dataset. A classifier was trained using the training cohort, and the performance was validated using the validation set using 
clustering, classifiers, and KM plots. ICI, immune checkpoint inhibitor; KM, Kaplan-Meier; TGK, tumor growth kinetic; TGKpre, 
change in tumor size per unit time (months) between the baseline and pre-baseline scans; TGKpost, change in tumor size per unit 
time (months) between the baseline and post-ICI therapy scans.
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15.38% of cluster 1. Twenty percent of responders were 
clustered together with HPs in cluster 4. The remaining 
two clusters (clusters 1 and 2) comprised primarily of the 
responders and non-responders (figure 3B). Specifically, 
cluster 2 did not have a single HP within it. The detailed 
results showed that 53.85% cluster 1 and 42.85% cluster 2 
contained non-responders, whereas 30.76% cluster 1 and 
57.14% cluster 2 had responders. The unsupervised clus-
tering analysis suggests that high-risk HPs were all clus-
tered together, potentially suggesting that these specific 
patient groups had a distinct radiomic signature when 
compared against responders and non-responders.

Experiment 2: supervised classifier for distinguishing HPs 
from other response patterns
Supervised analysis for selecting the top features
The top three features during feature discovery within 
the training cohort included one peritumoral texture 
and two QVT features. The peritumoral feature observed 
was from the Gabor feature family from a 5–10 mm peri-
tumoral region. The other two features were observed 
from the QVT feature family explaining local curvature 
and tortuosity of the vessels surrounding the nodule 
(online supplemental appendix 1, pp4). Hyperprogres-
sive patients were observed to have high feature expres-
sions as compared with responders and non-responders 
(figure 4).

The selected top features were further compared 
against clinical variables and tumor volume using Pear-
son’s correlation coefficients. (online supplemental 
appendix 1, pp4 5). The maximum correlation was 
observed within the Radiomics Gabor feature and tumor 
volume (rho=0.588).

Supervised classifier performance
Optimal classifier performance with the highest speci-
ficity within the training set D1 was achieved using the RF 
classifier with 50 trees. On the training cohort (D1, n=30), 

300 iterations of threefold cross-validation yielded an 
average AUC of 0.85±0.06 and an accuracy of 0.86±0.06 
for predicting HPs from the other response patterns. 
The sensitivity, that is, identifying HPs, was observed 
to be 0.78±0.11, whereas specificity was observed to be 
0.91±0.10. The performance of all the five classifiers, 
along with the feature selection method, is listed in online 
supplemental appendix 1 pp4.

The same classifier was further used for the indepen-
dent validation set. Within an independent blinded 
test set, (D2, n=79), the same RF classifier yielded an 
AUC of 0.96. The accuracy of the classifier was 0.83, 
whereas the sensitivity and specificity were 1.0 and 0.81, 
respectively. The F1 score was observed to be 0.58. In 
the testing set, all the HPs were identified correctly. 
Among the remaining cases, eight responders and six 
non-responders were mistakenly classified as HPs. The 
confusion matrix is reported in online supplemental 
appendix 1, pp4.

Within D2, a subset analysis for differentiating 
responders against HPs, AUC was observed to be 0.96, 
and sensitivity and specificity were 1 and 0.91, respectively. 
The accuracy was observed to be 0.86. For differentiating 
non-responders against HPs, AUC, accuracy, sensitivity, 
and specificity were 0.97, 1, 0.86 and 0.89, respectively.

The specific selected top feature set, along with the RF 
classifier, could not differentiate responders and non-
responders within the validation set D2 (AUC 0.43).

Experiment 3: predicted radiomic response groups can also 
stratify patients with NSCLC treated with ICI based on OS
On D2, the two predicted groups by the radiomic model, 
RF classifier, had a statistically significant difference for 
predicting OS (HR=2.66, 95% CI 1.27 to 5.55, p=0.009). 
The predicted HPs had significantly lower OS compared 
with those patients identified as non-HPs by the RF clas-
sifier. The mean survival time for predicted HPs was 20 

Figure 2  CT scans: (A) responders, (B) non-responders and (C) hyperprogressors. The first row shows baseline CT scans and 
the second row represents CT scans for the same patient after two cycles of immunotherapy.
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months, whereas the predicted survival meantime for 
non-HPs was 38 months.

Within the subset analysis of D2, radiomic analysis on 
predicted HPs had an HR for OS of 3.86 (95% CI 1.52 
to 9.86, p=0.0046) when compared with responders 
alone, whereas predicted HPs had an HR of 5.93 (95% CI 
2.25 to 15.64, p<0.0001) with respect to non-responders 
(figure  5). These results suggest that predicted hyper-
progressors had statistically significant worse OS 
when compared against either responders or even 
non-responders.

Meanwhile, a comparison between predicted 
responders and non-responders based on selected top 

three radiomic features did result in a statistically signif-
icant difference between the two groups (HR=1.29, 95% 
CI 0.49 to 3.35, p=0.59).

DISCUSSION
The introduction of ICIs has led to a paradigm shift in the 
management of a vast range of malignancies, including 
NSCLC. However, ICIs have been associated with atyp-
ical response patterns such as hyperprogression, a novel 
pattern of disease acceleration after the use of PD1/PD-L1 
inhibitors,1 2 which has been reported across different 
tumor types such as melanoma, head, and neck squamous 

Table 1  Clinical characteristics of the dataset

All patients Responders Non-responders Hyperprogressors
P value
(χ2)

Number of 
patients

109
(100%)

50
(45.87%)

40
(36.70%)

19
(17.43%)

–

Gender Female 51
(46.79%)

24
(48.00%)

20
(50.00%)

7
(36.84%)

0.62

Male 58
(53.21%)

26
(52.00%)

20
(50.00%)

12
(63.16%)

Smoking Current 18
(16.51%)

6
(12.00%)

7
(17.50%)

5
(26.13%)

<0.001

Former 68
(62.38%)

40
(80.00%)

25
(62.50%)

3
(15.79%)

Never 23
(21.10%)

4
(8.00%)

8
(20.00%)

11
(57.89%)

Stage at 
diagnosis

Stages I and II 13
(11.93%)

6
(12.00%)

7
(17.50%)

0
(0.00%)

0.084

Stage III 14
(12.84%)

8
(16.00%)

6
(15.00%)

0
(0.00%)

Stage IV 82
(75.23%)

36
(72.00%)

27
(67.50%)

19
(100.00%)

Histology Adenocarcinoma 71
(65.14%)

37
(74.00%)

23
(57.50%)

12
(63.16%)

0.38

SCC 27
(24.77%)

8
(16.00%)

13
(32.50%)

6
(31.58%)

Other 10
(9.17%)

5
(10.00%)

4
(10.00%)

1
(5.26%)

EGFR mutation Yes 9
(8.26%)

2
(4.00%)

3
(7.50%)

4
(21.05%)

0.021

No 78
(71.56%)

42
(84.00%)

26
(65.00%)

10
(52.63%)

Unknown 22
(20.18%)

6
(12.00%)

11
(27.50%)

5
(26.32%)

ICI agent Nivolumab 91
(83.49%)

34
(68.00%)

39
(97.50%)

17
(89.47%)

0.0046

Pembrolizumab 13
(11.93%)

11
(22.00%)

0
(0.00%)

2
(10.53%)

Atezolizumab 6
(5.50%)

5
(10.00%)

1
(2.50%)

0
(0.00%)

ICI, immune checkpoint inhibitor; SCC, squamous cell carcinoma.
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cell cancer, NSCLC, and urothelial carcinoma, to name a 
few. It has been postulated that this paradoxical acceler-
ation of disease with ICI may, in fact, be responsible for 
the higher progression rates and mortality noted early on 
in patients undergoing immunotherapy in comparison to 
the chemotherapy, as shown in the phase III trials such as 
CheckMate 057 that led to the approval of these agents.37 
Due to the lack of a standard definition and different 
criteria used to define hyperprogression, the reported 
incidence varies significantly among these studies. For 
patients with NSCLC, the previously reported incidence 
ranges between 8% and as high as 25.7%.2 4

In our study of patients with advanced NSCLC treated 
with a PD1 or PD-L1 inhibitor, we observed hyperprogres-
sion in 19 patients. Since most patients receiving ICIs at 
our institution have a response assessment with imaging 
performed within 9 weeks or three cycles of therapy, we 
used this time point as a cut-off for our definition of hyper-
progression. Although this varies slightly from previous 
studies that have used a 2-month or 8-week cut-off, we 
believe that using the 9-week limit allowed us to capture 
the true incidence of hyperprogression in our cohort.

The biology of hyperprogressive disease is yet to be 
understood. In a previous study by Kato et. al,2 the authors 
noted an association with certain genetic alterations 
such as EGFR mutations and MDM2 amplification.2 In 
our study, a majority of the patients did not have any 
genetic alterations detected on our in-house lung hotspot 

panel of actionable mutations in NSCLC. Although nine 
patients did have EGFR sensitizing mutations, we did not 
observe any significant correlation with hyperprogression. 
The association of certain clinical variables with hyper-
progression such as age,1 the number of distant meta-
static sites38 has not been consistently confirmed across 
different studies. There is, therefore, an unmet need for 
biomarkers that could potentially identify patients at risk 
of worse clinical outcomes with therapy.

Imaging-based response assessment in patients 
receiving immunotherapy is fraught with challenges due 
to the inability of traditional criteria (RECIST) to account 
for atypical responses observed with these agents. In 
some of our previously published work,31 we have iden-
tified novel imaging-based radiomic biomarkers to assess 
responses to ICIs in patients with advanced NSCLC. The 
foundation of radiomics is that CT images contain a vast 
amount of information in the form of subtle variations 
in shape, intensity, gradient, and texture beyond the 
semantic features that are routinely used by radiologists 
to describe radiographic appearances of tumors. In the 
aforementioned studies, we are also tried to understand 
the morphological/pathological correlates of the predic-
tive radiomic features that correspond to responses to 
immunotherapy. In doing so, we have identified certain 
radiomic features that correlate with tumor-infiltrating 
lymphocyte density on digitalized histopathology speci-
mens from patients treated with ICIs.1 4 7

Figure 3  Unsupervised clustering analysis: (A) heatmaps for (i) radiomics intratumoral and peritumoral features where 78.9% 
HPs clustered together in cluster 1, (ii) quantitative vessel tortuosity features. (B) K-mean clustering analysis: (i) elbow curve 
representing an optimum number of clusters formed using the top three principal components after performing principal 
component analysis on the entire feature cohort. The optimum number of clusters were observed to be four. (ii) clusters after 
performing clustering using k=4. These clusters had 78.1% compactness within the clusters. Almost all the HP (80%) were 
clustered in clusters 3 and 4. Responders and non-responders formed clusters 2 and 1. HP, hyperprogressor.
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While the biological underpinnings of hyperprogres-
sion are yet to be uncovered, many of the current theories 
postulate that dysregulation of various immunoregula-
tory cells in the tumor microenvironment may be respon-
sible for this phenomenon. One hypothesis that has been 
put forth is that of ‘contrasuppression’ or activation 

and proliferation of regulatory T cells in the presence 
of ICIs.38 Other theories suggest that an imbalance in 
the cytokine milieu and resultant immunosuppression 
may play a role in paradoxical disease progression with 
ICIs.15 16 Lo Russo et al6 demonstrated the role of tumor-
associated macrophage enrichment in immunodeficient 

Figure 4  Top feature analysis: (A) The box plots for the top three selected features for (i) training cohort and (ii) validation 
cohort. HPs had statistically significant high-feature values when compared against both responders and non-responders 
in both pieces of training as well as validation sets. (B) Top feature expression maps with corresponding CT scans for (i) 
responders, (ii) non-responders and (iii) HPs.Corresponding peritumoral Gabor feature maps are represented in (iv) responders, 
(v) non-responders and (vi) HPs. similarly, corresponding vessel tortuosity expressions and expressed for (vii) responders, (viii) 
non-responders and (ix) HPs. HPs were observed to have more convoluted vessel maps. Similarly, radiomic Haralick texture 
maps represented chaotic peritumoral microarchitecture of HPs. HP, hyperprogressor; (ns, not significant * = p<0.05, ** = 
p<0.005, *** = p<0.0005).

Figure 5  Kaplan-Meier survival curves for OS according to predicted labels by random forest classifiers: OS for the test set D2 
consisting of patients who were (A) combined responders, non-responders, and HPs. Within predicted two groups, predicted 
HPs had significantly shorter OS compared with predicted non-HP (B) subset of D2 consisting only HPs and non-responders 
and (C) subset of D2 consisting HPs and responders. HP, hyperprogressor; OS, overall survival.



9Vaidya P, et al. J Immunother Cancer 2020;8:e001343. doi:10.1136/jitc-2020-001343

Open access

mice injected with patient-derived xenografts belonging 
to patients with NSCLC with hyperprogression after PD1/
PD-L1 blockade.

In this study, we evaluated the performance of a new 
radiomic model using the integration of intratumoral and 
novel peritumoral texture and vessel tortuosity metrics 
(QVT) in predicting hyperprogressive disease using only 
pretreatment CT scans. Our approach is novel being the 
first Radiomics study that included intratumoral, peri-
tumoral textural patterns along with vessel tortuosity 
features to predict specific patterns associated with hyper-
progressive disease.39 Our results suggest that these peri-
tumoral texture and vasculature patterns are significantly 
different in HPs when compared with either responders 
or other non-responders.

The peritumoral area is an integral part of the TME. 
Recent work has suggested that TME embeds informa-
tion that relates to drug resistance, and the effectiveness 
of chemotherapy and immunotherapy.14 17 18 40 Previous 
investigations of radiomic features from the TME have 
shown their utility in differentiating lung adenocar-
cinomas from granulomas, predicting response to 
neoadjuvant chemoradiation and surgery, pemetrexed 
chemotherapy in locally advanced NSCLC.14 17 18 Sun et 
al40 have used a radiomic approach on tumor region and 
the area surrounding it to detect CD8 cells and used that 
signature to predict ICI response in multiple retrospec-
tive cohorts. For predicting hyperprogressive disease, 
our results are in line with the recent study by Tunali et 
al,39 where top radiomic features reported in the study 
were also observed from the tumor boundary.38 Our top 
radiomic features were also observed from peritumoral 
regions and represent peritumoral heterogeneity within 
the textural patterns. These features had higher expres-
sion in the baseline CT scans of HPs when compared 
with responders or non-responders. One of the unique 
strengths of our study was that in addition to textural 
feature analysis, we also used a novel approach to quantify 
the blood vessel morphology (QVT) in the peritumoral 
area. These QVT features were two of the top three distin-
guishing radiomic features, emphasizing the importance 
of peritumoral vasculature in the phenomenon of hyper-
progression. QVT features showed more tortuous and 
disordered vessel architecture for HPs compared with 
responders or non-responders. We also evaluated the 
prognostic ability of the radiomic features by performing 
a survival and classification analysis within the three 
response categories: responders, non-responders, and 
HPs. The radiomics classifier correctly predicted that the 
HP patients would have worse OS when compared with 
responders and non-responders.

We acknowledge the limitations of our study, many of 
which are a consequence of the retrospective nature of 
this study and a limited number of HPs cases. Since the HP 
phenomenon is quite rare and observed within less than 
8% cases, we were limited in the total number of HP cases 
in the analysis. Further, ours is a single-institution study, 
but further validation in independent cohorts of patients 

is warranted. Since the hyperprogression phenomenon is 
very rare and observed within less than 8% cases, we were 
limited in the HP cases. Further, the exclusion of patients 
without adequate scans for analysis could have affected 
the incidence of hyperprogression and the performance 
of our discriminative radiomic signature. While there is 
no standardized definition of hyperprogression, some 
previous studies4 5 38 have used volumetric changes to iden-
tify hyperprogressive disease. We acknowledge the limita-
tions of using non-volumetric tumor growth kinetics for 
identifying hyperprogression, but believe that this would 
be a methodology that clinicians could easily replicate in 
practice to identify this subset of patients. PD-L1 expres-
sion data were unavailable for a majority of patients in 
our cohort. The correlation between PD-L1 expression, 
which is a clinically validated biomarker of benefit from 
PD1/PD-L1 blockade and hyperprogression, poses an 
interesting question which could not be addressed in our 
study.

CONCLUSIONS
Our findings suggest that radiomic analysis of pretherapy 
CT scans of patients with NSCLC who are being consid-
ered for immune checkpoint blockade could be used to 
identify patients who are at a higher risk of hyperprogres-
sion with this treatment. Added benefits of using radiomic 
analyses include the ability to analyze readily available 
routine CT scan images and the non-invasive nature of 
the risk assessment without the need for additional biopsy 
specimens.

Further rigorous validation in independent cohorts of 
patients and radiomic–histopathological correlative anal-
yses would further strengthen the argument for using 
radiomic analyses in routine clinical practice.
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