Skip to main content
. 2020 Sep 15;10(9):696. doi: 10.3390/diagnostics10090696

Table 5.

Estimated performance of the different combination feature sets/classifiers and pairwise differences. Key to symbols: “ACC” = accuracy, “SP” = specificity, “SN” = sensitivity. Values are in %, differences in percentage points. Boldface figures indicate significant differences. For a comparison: accuracy of a random classifier (blind to prior class probabilities) = 50%; with prior class probabilities = 54.4%.

Model Classifier
ClT KNN NBGaussian
ACC SN SP ACC SN SP ACC SN SP
CTb 58.8 67.6 42.2 59.5 65.9 47.5 69.5 83.5 43.3
CTe 62.2 69.6 48.2 70.7 78.7 55.8 74.3 86.9 50.8
PETb 73.4 78.7 63.5 72.5 76.9 64.4 72.2 69.9 76.6
PETe 75.7 82.1 63.6 77.1 81.4 69.1 82.4 87.6 72.6
CTb+PETb 71.2 77.1 60.1 74.4 78.9 66.1 70.6 71.3 69.1
CTe+PETe 72.3 78.9 59.8 73.7 75.7 70.1 80.4 88.5 65.2
CTe-CTb + 3.4 +2.0 + 6.0 + 11.2 + 12.8 + 8.3 + 4.8 + 3.4 + 7.5
PETe-PETb + 2.2 + 3.4 +0.1 + 4.6 + 4.5 + 4.7 + 10.2 + 17.7 −3.9