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Modulatory effects 
of BPC 157 on vasomotor 
tone and the activation 
of Src‑Caveolin‑1‑endothelial nitric 
oxide synthase pathway
Ming‑Jer Hsieh1,2, Cheng‑Hung Lee2, Ho‑Yen Chueh3, Gwo‑Jyh Chang1, Hsiu‑Yun Huang1, 
Yuling Lin1 & Jong‑Hwei S. Pang1,4*

BPC 157-activated endothelial nitric oxide synthase (eNOS) is associated with tissue repair and 
angiogenesis as reported in previous studies. However, how BPC 157 regulates the vasomotor 
tone and intracellular Src-Caveolin-1 (Cav-1)-eNOS signaling is not yet clear. The present study 
demonstrated a concentration-dependent vasodilation effect of BPC 157 in isolated rat aorta. 
Attenuation of this vasodilation effect in the absence of endothelium suggested an endothelium-
dependent vasodilation effect of BPC 157. Although slightly increased vasorelaxation in aorta without 
endothelium was noticed at high concentration of BPC 157, there was no direct relaxation effect on 
three-dimensional model made of vascular smooth muscle cells. The vasodilation effect of BPC 157 
was nitric oxide mediated because the addition of L-NAME or hemoglobin inhibited the vasodilation 
of aorta. Nitric oxide generation was induced by BPC 157 as detected by intracellular DFA-FM 
DA labeling which was capable of promoting the migration of vascular endothelial cells. BPC 157 
enhanced the phosphorylation of Src, Cav-1 and eNOS which was abolished by pretreatment with Src 
inhibitor, confirming the upstream role of Src in this signal pathway. Activation of eNOS required the 
released binding with Cav-1 in advance. Co-immunoprecipitation analysis revealed that BPC 157 could 
reduce the binding between Cav-1 and eNOS. Together, the present study demonstrates that BPC 157 
can modulate the vasomotor tone of an isolated aorta in a concentration- and nitric oxide-dependent 
manner. BPC 157 can induce nitric oxide generation likely through the activation of Src-Cav-1-eNOS 
pathway.

Pentadecapeptide BPC 157 is known to possess therapeutic efficacy on variable tissue healing and angiogenesis 
that is considered through the activation of nitric oxide system as reported in previous studies1–6. Since the first 
demonstration of nitric oxide generation in gastric mucosa which contributed to the antiulcer effect of BPC 157 
in gastric lesion assay by Sikiric et al.5, following studies analyzing the influence by treating together or alone 
with nitric oxide inhibitor, Nω-nitro-l-arginine methyl ester (L-NAME) or nitric oxide precursor, L-arginine all 
showed that the nitric oxide modulation is involved in the healing effect of BPC 157 in different tissue injuries. 
A considerable number of evidences provided by Sikiric et al. further demonstrated the modulatory role of BPC 
157 on nitric oxide generation7–11. Our previous study reveals that BPC 157 can markedly promote the expression 
of vascular endothelial growth factor VEGF receptor 2 (VEGFR2) and angiogenesis in ischemic hind limb6. BPC 
157 accelerated the blood flow recovery in ischemic hind limb simply through angiogenesis, since there was no 
significant difference of the blood flow or pressure in tails between the control and BPC 157 groups. In the same 
study, the phosphorylation of endothelial isoform of nitric oxide synthase (eNOS) in vascular endothelial cells is 
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found to be quickly induced by BPC 157 within 30 min. Vessel relaxation is one of the various biological functions 
of nitric oxide12. Therefore, it is interesting to further investigate whether the activation of eNOS by BPC 157 
could induce nitric oxide generation in vessels and how the vessel tone could possibly be regulated by BPC 157.

The eNOS plays a major role in vascular homeostasis through release of nitric oxide13. The activity of eNOS 
is tightly regulated by multiple intracellular process including posttranslational modification, phosphorylation 
and protein–protein interactions14,15. Within vascular endothelial cell, a group of proteins include calmodulin, 
heat shock protein 90 and protein kinase B/AKT have identified as positive regulators of eNOS activity16. In 
addition, Caveolin-1 (Cav-1), a 21-kDa integral plasma membrane protein is a well-known negative regulator 
of eNOS activity in vascular endothelial cells17–22. Cav-1 directly interacts with eNOS and holds eNOS on an 
inactive status in caveolae. Upon stimulation by agents such as VEGF, the binding of eNOS and Cav-1 is released, 
eNOS associates with calmodulin, and then subsequently phosphorylated by heat shock protein 90 and AKT23. 
Cav-1 has also been proved to modulate vascular tone in animal models. In addition, Src-dependent Cav-1 
phosphorylation is a crucial process mediating caveolae-associated endocytosis and eNOS activation in vascular 
endothelial cells24,25. However, effects of BPC 157 on vascular tone and intracellular Src-Cav-1-eNOS signaling 
are still not understood. Hence there were two main goals of this study. First, we investigated effect of BPC 157 on 
vasomotor tone of blood vessel to study if it was in an endothelium- or nitric oxide-dependent manner. Second, 
we explored whether BPC 157 could modulate the protein–protein interaction between Cav-1 and eNOS, and 
the Src-Cav-1-eNOS signaling activation.

Methods and materials
Reagents.  Pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, M.W.1419) was synthesized by Kelowna 
International Scientific Inc. (Taiwan, ROC). Phenylephrine (PE), acetylcholine (ACh), L-NAME, hemoglobin 
and sodium nitroprusside (SNP) were purchased from Sigma Chemical Company (St. Louis, MO, USA). All the 
drugs were prepared by dissolving in ddH2O and sterilized before use.

Animal and tissue.  Adult male SD rats, weight 250–300 g were purchased from National Laboratory Ani-
mal Center (Taipei, Taiwan, ROC). The animals were sacrificed by cervical dislocation under anesthesia with an 
i.p. injection of 50 mg/kg sodium pentobarbital (Sigma), and thoracic aorta was carefully dissected and main-
tained at 37 °C in Krebs solution containing 118.2 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 25 mM NaHCO3, 
1.2 mM KH2PO4, 1.9 mM CaCl2 and 11.7 mM dextrose (pH 7.4, 95% O2, 5% CO2). All methods were approved 
by Chang Gung University Institutional Animal Care and Use Committee (Approval No. CGU15-001) and car-
ried out in accordance with relevant guidelines and regulations.

Vascular reactivity assessment.  The thoracic aorta was dissected into rings with 4–5 mm in width. In 
endothelium-denuded study, a cotton stick was used to gently remove the endothelium by rubbing the intimal 
surface of vessel. The rings were mounted in an isolated organ chamber containing Krebs solution (pH 7.4) at 
37 °C and kept constant aerating with 95% O2/5% CO2. Changes of isometric tension were measured with force 
transducer (FORT 10, WPI, Sarasota, FL, USA). The ring tension was manually adjusted to 1.0 g and equilibrated 
for 30 min. The plasma PE and ACh were used for the induction of vasoconstriction and vasorelaxation, respec-
tively. The lack of relaxation effects by 3 μM ACh in rings pre-contracted with 3 μM PE confirmed the complete 
endothelium removal. Vasorelaxation at least 60% by 3 μM ACh in rings pre-contracted with 3 μM PE was con-
sidered endothelium intact. Then, each ring was washed and re-equilibrated for 60 min. Aortic rings were then 
pre-contracted with 3 μM PE. After a stable plateau was reached, BPC 157 was added in a cumulative manner to 
the bath. Relaxation induced by each concentration of BPC 157 was measured after the response reached steady-
state, and the value was expressed as a percentage of the initial vasoconstrictor-induced tone. To examine the 
nitric oxide-dependency in this system, the rings were pretreated with 0.03 mM L-NAME, an eNOS inhibitor 
or 10 μM hemoglobin, a nitric oxide scavenger. Pretreatment continued for 20 min before PE was added. After 
sustained tone was established, BPC 157 was added cumulatively to the bath.

Human umbilical vein endothelial cells (HUVECs) culture.  HUVECs purchased from BCRC (Hsin-
chu, Taiwan, ROC) were grown in M199 medium supplemented with 16% fetal bovine serum and 20% EGM-2 
(Clonetics, USA). Cells were passaged at confluence with 0.05% trypsin and maintained in a 37 °C incubator 
with humidified atmosphere of 5% CO2 and 95% air. Cells were passaged 3–5 times prior to be used in experi-
ments.

Three‑dimensional (3‑D) model of vascular smooth muscle cells.  Rat vascular smooth muscle cells 
were maintained in high glucose DMEM supplemented with 10% fetal bovine serum. The 3-D cell model was 
made by culturing cells (2 × 105–1.0 × 106) with high glucose DMEM supplemented with 30% bovine collagen 
solution overnight. Cell disc formed in the 6 cm dish was ready for the test of contraction or relaxation by treat-
ing with different reagents including 1.0 μg/ml BPC 157, 100 μg/ml BPC 157 and 200 μM nitric oxide donor 
SNP. After incubation in indicated medium for 24 h, the diameter of each cell disc before and after incubation 
was measured and ratio was calculated.

Qualitative assessment of nitric oxide production by fluorescent dye 3‑Amino‑4‑aminomet
hyl‑2′,7′‑difluorescein, diacetate (DAF‑FM DA, Sigma).  HUVECs grown in M199 based culture 
medium was stimulated with 1.0 μg/ml BPC 157 for 30 min to induce the nitric oxide generation. Cells were 
labeled with 2 μM fluorescent nitric oxide indicator DFA-FM DA and fluorescence was detected by fluorescent 
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microscope with a standard fluorescein bandpass filter (FITC, 500–555 nm). The final fluorescence signal was 
normalized by cell number.

Transwell migration assay.  Transwell filters (Costar, Corning, Cambridge, MA, USA) with 8.0 μm pores 
were used for the migration assay. HUVECs were seeded at a density of 1 × 105 cells per filter. The inner chamber 
was filled with 200 μl M199, and the outer chamber was filled with 600 μl M199 containing 1% FBS and 1 μg/ml 
BPC 157. Cells were allowed to migrate for 4 h at 37 °C in an atmosphere of 95% air/5% CO2. Cells on the filter 
were stained with Liu’s stain and followed by washing three times with 1 × PBS. Cells on the upper surface of the 
filter were removed using a cotton swab. Cells on the lower surface of the filter were counted under microscope. 
Eight random fields (HPF) (200×) per filter and the mean number of migrating cells were calculated for each 
condition.

Co‑immunoprecipitation (Co‑IP) analysis.  The Co-IP was performed according to established method 
with minimal modification21. In brief, HUVECs were lysed in the Co-IP buffer containing 20 mM Tris-HCl 
(pH7.5), 100 mM NaCl, 0.5 mM EDTA, 0.5% NP-40, 0.5 mM PMSF, 0.5% protease inhibitor cocktail on ice 
for 20 min. The lysates were incubated with anti-eNOS antibody at 4 °C for 1 h. Dynabeads Protein G (Dynal 
Biotech: Invitrogen) equilibrated in Co-IP buffer was added to the solution and gently mixed for another 1 h. 
Insoluble immune complexes were rinsed once with Co-IP buffer then eluted by 0.1 mM citrate (pH3.0) twice 
for 5 min, resolved by sodium dodecyl sulfate–polyacrylamide gel, and transferred to nitrocellulose. Blots were 
blocked with phosphate buffered saline with 0.1% Tween 20 and then binding with antibodies for eNOS (1: 
1000) or caveolin-1 (1: 1000), followed by horseradish peroxidase-conjugated goat anti-rabbit (diluted 1: 5000) 
and enhanced chemiluminescence reaction was performed for blots development. Band intensities were quan-
titated by densitometry.

Western blot analysis.  Western blotting was used to identify the presence of specific proteins in electro-
phoretically separated samples. The standard western blot protocol was performed as our previous study6. The 
following antibodies were used: antibodies against human eNOS, phosphor-eNOS (Ser1177), Cav-1, phosphor-
Cav-1 (Tyr14), Src and phosphor-Src (Tyr416) were obtained from Cell Signaling (MA, USA). Antibody against 
β-tubulin was obtained from Thermo Scientific (MA, USA). The BioSpectrum Imaging System (UVP, LLC) was 
used to detect signal of immunopositive protein bands.

Statistics.  All results were represented as means ± standard error of the mean (SEM). The unpaired Stu-
dent t test for comparison between two groups was used to determinate statistical significance. A p value was 
considered to be statistically significant as its value was less than 0.05.

Results
BPC 157 induced a concentration‑ and endothelium‑dependent relaxation of isolated rat 
aorta.  The effects of the cumulative addition of 0.1–100  μg/ml BPC 157 were studied on rat aortic rings 
either with endothelium intact or removed. As shown in Fig. 1a, BPC 157 produced a concentration-dependent 
vasodilation in aortic rings with intact endothelium. The vasorelaxation induced by 0.1 or 1 μg/ml BPC 157 was 
16.5 ± 5.5% or 19.5 ± 3.0%, respectively. Low concentration of BPC 157 such as 0.1 or 1 μg/ml did not induce 
significant vasorelaxation. However, following the cumulative addition of BPC 157 up to 10 or 100 μg/ml, the 
vasorelaxation increased to 28.3 ± 3.5% or 48.3 ± 3.2%, respectively. The vasodilation response induced by BPC 
157 appeared immediately after the treatment and reached a maximum value 5  min after. This vasodilation 
response was sustained and continued without further change till the end of observation.

In aorta rings without endothelium, the vascular relaxation induced by BPC 157 was markedly attenuated 
(Fig. 1b). The induction of vasorelaxation in aorta without endothelium by 0.1, 1, 10, or 100 μg/ml BPC 157 was 
9.0 ± 2.5%, 13.1 ± 4.2%, 15.2 ± 3.2% or 19.2 ± 3.5%, respectively. There was no significant difference in vasore-
laxation induced by 0.1 or 1 μg/ml BPC 157 in aorta without endothelium. Following the cumulative addition 
of BPC 157 at high concentration such as 10 or 100 μg/ml, a slightly increased vasorelaxation in aorta without 
endothelium was noticed which deserved further investigation (Fig. 1c). Overall, these findings indicated that 
BPC 157 exerted a concentration- and endothelium-dependent effect on the relaxation of large vessels.

BPC 157 induced the vasorelaxation via eNOS/nitric oxide singling activation.  In order to 
investigate whether BPC 157 induced vasorelaxation via eNOS-nitric oxide singling activation, L-NAME (eNOS 
inhibitor) and hemoglobin (nitric oxide scavenger) were used in further studies. Following a single addition of 
100 μg/ml BPC 157, the vasorelaxation reached 37.6 ± 5.7% (Fig. 2a). In the presence of 0.03 mM L-NAME, the 
maximal vasorelaxation induced by 100 μg/ml BPC 157 was decreased to 10.0 ± 5.1% (Fig. 2b). In the presence 
with 10 μM hemoglobin, vasorelaxation induced by 100 μg/ml BPC 157 was decreased to 12.3 ± 2.3% (Fig. 2c). 
Together, these results demonstrated the important role of eNOS/nitric oxide activation in the BPC 157 effect 
on blood vessel (Fig. 2d).

No direct effect of BPC 157 on the relaxation of vascular smooth muscle cells in 3‑D model.  In 
order to investigate whether BPC 157 had relaxation effect on vascular smooth muscle cells, a 3-D model was 
used. 3-D cell discs were formed by culturing vascular smooth muscle cells in collagen first and then 3-D discs 
with similar size were incubated in different media for 24 h. The ratio of diameter change compared with the 
original size was 0.69 ± 0.02, 0.72 ± 0.02, 0.73 ± 0.04, and 1.35 ± 0.03 in control, 1.0 μg/ml BPC 157, 100 μg/ml 
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Figure 1.   BPC 157 induced concentration- and endothelium-dependent vasorelaxation in isolated rat aortas. 
Representative tracking graphs of BPC 157-induced vasorelaxation in PE-preconditioned aortic rings (a) 
with intact endothelium, (b) without endothelium. (c) The percentage of maximal relaxation in each dose of 
BPC157 was determined and compared. Data were mean ± SEM calculated from three individual experiments 
(significance comparing endothelium intact or not, *p < 0.05).
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Figure 2.   BPC 157 induced a NO-dependent vasorelaxation in isolated rat aortas. Representative tracking 
graphs of BPC 157 (100 μg/ml)-induced vasorelaxation in PE-preconditioned aortic rings in the presence of (a) 
vehicle, (b) 0.03 mM L-NAME, (c) 10 μM hemoglobin. (d) The percentage of vasorelaxation in each condition 
was determined and compared. Data were mean ± SEM calculated from three independent experiments 
(significance compared with vehicle, *p < 0.05).
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Figure 3.   BPC 157 did not induce the relaxation of vascular smooth muscle cells in 3-D models. Representative 
photos of vascular smooth muscle cells in 3D-models treated with (a) vesicle, 1 μg/ml BPC 157, 100 μg/ml BPC 
157 and 200 μM SNP, (b) representative data showed the ratio comparing the diameters of 3D-cell disc before 
and after treatment in 4 groups (*means compared with control p value < 0.05).
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BPC 157 and 200 μM SNP, respectively (Fig. 3a,b). Compared with control, the nitric oxide donor SNP resulted 
in the dilation of 3-D cell disc significantly. However, BPC 157 at low or high concentration did not cause 
any change of disc diameter as compared to control. This result indicated that BPC 157 could not induce the 
relaxation directly on the 3-D model composed of vascular smooth muscle cells, likely due to the lack of nitric 
oxide stimulation. It is therefore suggesting that the slight change of relaxation observed in the aorta without 
endothelium ex vivo might be due to some mechanism unrelated to the direct nitric oxide stimulation which 
needs further investigation.

Nitric oxide induced by BPC 157 contributed to the promoted cell migration.  The in vitro angi-
ogenic effect of BPC 157 has been shown to promote the cell migration of vascular endothelial cells in our pre-
vious study. Nitric oxide production is known to play an important role on mediating angiogenesis26. We then 
measured the effect of BPC 157 on nitric oxide production in vascular endothelial cells and examined the role 
of nitric oxide in BPC 157-induced cell migration. Cellular nitric oxide production in vascular endothelial cells 
was detected by the emitted fluorescence from DAF-FM DA probe upon the interaction with nitric oxide. Result 
in Fig. 4a indicated that BPC 157 at 1 μg/ml could increase the nitric oxide production in vascular endothelial 
cells up to 1.35 ± 0.1-fold compared with control. In Fig. 4b, cell migration enhanced by BPC 157 was completely 
suppressed in the presence of hemoglobin since nitric oxide were chelated (Fig. 4c).

BPC 157 activated the Src‑Cav‑1‑eNOS signal pathway and reduced eNOS/Cav‑1 binding in 
vascular endothelial cells.  It is known that phosphorylation of Src can promote Cav-1 activation and sub-
sequent endocytosis of tyrosine kinase receptors and eNOS activation20,24. The increase of eNOS phosphoryla-
tion upon stimulated with BPC 157 has been proved in our previous study6. Therefore, in this study we addressed 
whether BPC 157 could activate the Src-Cav-1-eNOS signal pathway. HUVECs were treated with 1.0 μg/ml BPC 
157 and the protein expressions of Src, Cav-1, eNOS and their phosphorylated forms were analyzed by western 
blot. Results shown in Fig. 5a demonstrated that BPC 157 could induce a quick increase of Src phosphorylation 
at 30 and 60 min with the amount of total Src remained constant. Similar change of pCav-1 was found, however, 
the total amount of Cav-1 was decreased. The phosphorylation of eNOS was also increased and peaked at 30 min 
after the BPC 157 stimulation. Also shown in Fig. 5a, the pretreatment with Src inhibitor (SKI-1) significantly 
reduced the effect of BPC 157 on the phosphorylation of Src, Cav-1 and eNOS, further confirming the critical 
upstream role of Src in this pathway. Digital scanning analysis of these protein bands was shown in Fig. 5b. 
The activity of eNOS is known to be regulated by its binding with Cav-1. Increased eNOS activity is associated 
with the reduced binding to Cav-117,18. BPC 157 increased nitric oxide production and activated the eNOS 
phosphorylation as reported in our previous study6. We therefore studied whether BPC 157 could modulate the 
interaction between eNOS and Cav-1. Results from CO-IP demonstrated that 1.0 μg/ml BPC 157 decreased the 
eNOS/Cav-1 binding to 50% relative to vehicle-treated control (Fig. 5c,d). Decrease of Cav-1 binding released 
the eNOS and subsequently enhanced the activation of eNOS.

Figure 4.   Nitric oxide induced by BPC 157 contributed to the promoted cell migration. (a) HUVECs were 
stimulated with 1 μg/ml BPC 157, then the amount of nitric oxide production was assessed by the fluorescence 
(white spots shown in upper panel) generated by DAF-FM DA fluorescent probe. Results were calculated 
and shown in lower panel (*means compared with control p value < 0.05), (b) Representative photos showing 
the migration of HUVECs treated with vehicle, 1 μg/ml BPC 157, 50 nM hemoglobin and 1 μg/BPC 157 
together with 50 nM hemoglobin. (c) Compared with vehicle, the number of cell migration in each group was 
determined. Data were shown as mean ± SEM of three independent experiments (*means compared in two 
groups, p value < 0.05).
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Discussion
The major findings of this study are as follows: (1) BPC 157 induces an ex vivo nitric oxide-mediated relaxation 
of large vessel in a concentration-dependent manner. (2) BPC 157 promotes the vessel relaxation mainly acting 
on vascular endothelial cells but much less on vascular smooth muscle cells. (3) BPC 157 increases the nitric 
oxide production that contributes to the migration of vascular endothelial cells. (4) BPC 157 activates the signal 
pathways of Src, Cav-1 and eNOS. (5) BPC 157 reduces the protein–protein interaction between eNOS and Cav-1.

Under ex vivo condition, BPC 157 induced a concentration-dependent vasodilation in intact aortic rings. 
Low concentration of BPC 157 at 0.1 or 1.0 μg/ml did not induce significant vasorelaxation. Only when BPC 157 
was cumulatively added up to 10 or 100 μg/ml, the increase of vasorelaxation became prominent. Our previous 
study reported that the treatment of 10 μg/Kg/day BPC 157 could accelerate the recovery of blood flow in the 
ischemic muscle of the rat hind limb as detected by laser Doppler scanning. The effect was due to accelerated 
angiogenesis but not vasodilation, since there was no significant difference of the blood flow in tails and non-
ischemic hind limb between the control and BPC 157 groups. In addition, the blood pressure of tails was not 
significantly different between the control and BPC 157 groups either5,6. In rat with the treatment of 10 μg/Kg/
day BPC 157, the concentration of BPC 157 was estimated to be less than 1 μg/ml in the blood which was too 
low to cause hypotension or hemodynamic change as demonstrated by the lack of vasodilation in the present 
study6. However, BPC 157 is relatively stable and small dose ranged between ng-μg/ml or ng-μg/kg is already 
effective on promoting tissue injury healing and angiogenesis in many animal studies4,27–30.

BPC 157 has been demonstrated to reverse the hypertension induced in hyperkalemic rat31. With BPC 157 
therapy, portal hypertension in bile duct ligation-rats is either not even developed or rapidly abated32. BPC 157 
has also been found to counteract both vein hypertension and arterial hypotension in rat interior vein ligature 
model33. The modulatory effect of BPC 157 on balancing the nitric oxide-related system including counter-
acting L-NAME-hypertension as well as L-arginine-hypotension in different animal studies have been largely 
reported2,7,8,34. In this study, although we proved that ex vivo nitric oxide- and endothelium-related vasodilation 
in normal large vessel was induced only by BPC 157 at high concentration, it could not be ruled out that BPC 
157 at low concentration might counteract the imbalanced blood pressure under an in vivo diseased condition 
through a currently unknown mechanism. Study using DAF-FM fluorescent dye revealed a 1.35-fold increase 

Figure 5.   BPC 157 activated the Src-Cav-1-eNOS signaling pathway and reduced Cav-1-eNOS interaction. 
HUVECs were stimulated with 1 μg/ml BPC 157 for different time periods as indicated and the phosphorylation 
of Src (Tyr 416), Cav-1 (Tyr14) and eNOS (Ser 1177) was analyzed by western blot. Representative blots were 
shown in (a) and bands were scanned and quantified by densitometric analysis in (b). Data were shown as 
mean ± SEM of three independent experiments (*means compared with control, p value < 0.05; #means BPC 
157 + SKI-1 compared with BPC 157 at same treatment period, p value < 0.05). The Co-IP was also used to assess 
the interaction between Cav-1 and eNOS. The representative blot and band quantified by densitometric analysis 
were shown in (c) and (d) respectively (*means compared with control p value < 0.05).
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of nitric oxide induced in vascular endothelial cells by 1.0 μg/ml BPC 157 which contributed to the enhanced 
cell migration. Hemoglobin, as an effective nitric oxide chelator, consumes one nitric oxide by binding to each 
heme group as demonstrated in Donadee’s equation35. The BPC 157-enhanced cell migration was completely 
suppressed in the presence of 50 nM hemoglobin, suggesting that the amount of nitric oxide produced by 1.0 μg/
ml BPC 157 did not exceed 200 nM because hemoglobin contains four heme groups in each molecule. The well-
known healing effect of BPC 157 occurring at low level of nitric oxide might potentially imply a more clinical 
utilization without toxicity relative to excessive nitric oxide36,37.

Cav-1 is crucial in maintaining vascular health but a paradoxical role of Cav-1 in cardiovascular patho-
physiology has also been reported19,38. Direct binding of eNOS to the scaffolding domain of Cav-1 is a well-
accepted mechanism to repress eNOS activity that is associated with endothelial dysfunction and cardiovascular 
disease39,40. Many cardiovascular risk factors such as diabetes mellitus, hypertension and hyperlipidemia are 
demonstrated to stimulate the interaction of Cav-1 and eNOS, reduce nitric oxide production resulting in 
endothelial dysfunction and subsequently the formation of atherosclerotic lesion41–43. Conversely, decreased 
Cav-1 level or obstructed Cav-1 and eNOS interaction can release eNOS favoring its activation and induction 
of nitric oxide production that is known for its protective effect on vessels44,45. The present study, for the first 
time, demonstrates an underlying mechanism for the activation of eNOS by BPC 157 on stimulating the Cav-1 
phosphorylation and reducing the binding of eNOS to Cav-1.

In addition to the regulation of eNOS activity, Cav-1 also can modulate the activation of VEGFR2. It has been 
shown that VEGFR2 is associated with Cav-1 and located in endothelial caveolae. The phosphorylation of Src 
and Cav-1 is an important process that mediates the endocytosis of VEGFR2 and triggers the eNOS activation 
in vascular endothelial cells19,20. BPC 157 can enhance the expression and endocytosis of VEGFR2, and subse-
quently the phosphorylation of AKT and eNOS as proved in our previous study6. In the present study, we further 
demonstrate that BPC 157 can promote the phosphorylation of Src and Cav-1, providing a strong explanation 
for the activation and endocytosis of VEGFR2 by BPC 157 as reported in our previous study. In conclusion, as 
shown in Fig S1, the activation of eNOS by BPC 157 is mediated through multiple regulation processes including 
the promotion of VEGFR2 activation and endocytosis, the activation of positive regulator AKT, the reduction of 
the interaction of negative regulator Cav-1 with eNOS. BPC157 modulated multiple intracellular signal pathways 
to enhance its clinical application potential46.
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