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Survival prediction of patients 
with sepsis from age, sex, 
and septic episode number alone
Davide Chicco  1* & Giuseppe Jurman  2

Sepsis is a life-threatening condition caused by an exaggerated reaction of the body to an infection, 
that leads to organ failure or even death. Since sepsis can kill a patient even in just one hour, survival 
prediction is an urgent priority among the medical community: even if laboratory tests and hospital 
analyses can provide insightful information about the patient, in fact, they might not come in time 
to allow medical doctors to recognize an immediate death risk and treat it properly. In this context, 
machine learning can be useful to predict survival of patients within minutes, especially when applied 
to few medical features easily retrievable. In this study, we show that it is possible to achieve this 
goal by applying computational intelligence algorithms to three features of patients with sepsis, 
recorded at hospital admission: sex, age, and septic episode number. We applied several data mining 
methods to a cohort of 110,204 admissions of patients, and obtained high prediction scores both on 
this complete dataset (top precision-recall area under the curve PR AUC = 0.966) and on its subset 
related to the recent Sepsis-3 definition (top PR AUC = 0.860). Additionally, we tested our models 
on an external validation cohort of 137 patients, and achieved good results in this case too (top PR 
AUC = 0.863), confirming the generalizability of our approach. Our results can have a huge impact on 
clinical settings, allowing physicians to forecast the survival of patients by sex, age, and septic episode 
number alone.

Sepsis is a dangerous condition triggered by an immune overreaction to an infection. According to the World 
Health Organization (WHO) estimates, sepsis affects more than 30 million people yearly worldwide , causing 
approximately 6 million deaths1, and causing more than US$24 billion healthcare related costs annually just in 
United States2. The scientific community is still investigating sepsis etiology3, whilst its management4–6 is trouble-
some due to the high disease’s complexity and heterogeneity7,8. A further complexity factor lies in a more restric-
tive definition of sepsis introduced in 20169; the new definition, named Sepsis-310, now requires the presence of 
additional organ dysfunctions for the condition to be labelled as sepsis. Although the usefulness of Sepsis-3 has 
recently been validated11, it is still debated within the medical community12. Additionally, early detection is criti-
cal to managing the attack and obtaining a favorable outcome, as Sepsis can kill a patient in as little as an hour.

Prediction of survival of patients with sepsis.  Medical literature is rich of general purpose articles 
on sepsis13, and quest for biomarkers in clinical settings have now spanned several decades, with papers dating 
back to early seventies still relevant today14. Initially, the core of the researches focused on clinical trials aimed at 
identifying therapeutic factors representing potential targets for novel or repurposed drugs. The crucial change 
of pace occurred in the early 2000s, when broad epidemiological data begun being publicly available, yielding 
the appearance of large retrospective studies2,15. Indeed, such recent influx of data has resulted in a steady flow 
of medical and computer science studies in which researchers have used various data science techniques to find 
associations between clinical factors and sepsis outcomes, with patient survival being among the most impor-
tant. Contributing to the landscape, the practitioners’ community started introducing different early warning 
scores, such as physiological monitoring systems for detecting of acutely deteriorating patients16. A small group 
of scores quickly gained popularity in the clinical settings, thus becoming de facto standards for benchmarking 
studies: APACHE17, SAPS18, SOFA19 and qSOFA score10. Adding to such established community shared scorxes, 
different formulas have been recently defined in the literature involving alternative variables: for instance, the 
dynamic pulse pressure and vasopressor (DPV), the delta pulse pressure ( �PP)20 and the sepsis hospital mor-
tality score (SHMS)21. However, although early warning scores have been widely adopted, there is only limited 
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evidence of their effectiveness in the improvement of patient outcome16. Among all statistical methods, algo-
rithms based on multivariate (Cox) regression on clinical variables have played a key role22,23, since back in 
the early years24 to nowadays25. Notably, the features involved in these methods are not limited to clinical vari-
ables: in the last few years a number of teams tried alternative elements from modern omics technologies, such 
as metabolomics26, SNPs genomics27, circulating microRNA28, blood metabolites29 or lymphocytes apoptosis30, 
often coupled with more classical biomarkers and compared with the different scores. Unfortunately, these sta-
tistical based approaches proved to be rather limited in their performances, with only a tiny fraction of studies 
achieving acceptable level of efficacy31. Indeed, Gwadry-Sridhar and colleagues32 claimed superiority of decision 
trees over regression methods already in 2010.

Sepsis and machine learning.  More recently machine learning has become the major player in the pre-
dictive analysis of sepsis data, leading to a massive wave of studies targeting different aspects of the problem, 
from the general issue33–51, to more specific objectives or methods. For instance, many studies have been defin-
ing, combining and validating score risks52,53, predicting early onset54–56, or focusing on pediatric aspects57 or on 
the immediate applicability to clinical practice58–60. Longitudinal studies have also appeared61–63, together with 
methods integrating alternative data sources such as omics64 and others. In the end of the 2010s, the computa-
tional intelligence revolution entered the playground too, and deep learning approaches flooded the specialized 
journals65–73, also considering the interpretability issue74,75. Fleuren et al.76 published comprehensive review of 
the different aspects. As mentioned earlier, many of these studies have been possible thanks to the public avail-
ability of curated clinical datasets related to sepsis. Among these datasets, we point out the Surviving Sepsis 
Campaign initiative77,78 (albeit not fully publicly released), the Medical Information Mart for Intensive Care 
database (MIMIC-III)79 and the electronic Intensive Care Unit (eICU) Collaborative Research Database80, which 
stand our for their completeness and integrity. Additionally, it is worth mentioning some notable studies aimed 
at identifying a restricted number of sepsis survival predicting features81,82: for instance, six predictors by Mao 
and colleagues83,84, five main predictive features by Shukeri et al.85, and three blood biomarkers by Dolin and 
coauthors86.

This study.  In the present manuscript, we take a similar approach: our driving goal is the prediction of the 
binary survival in a large cohort of Norwegian patients originally introduced and made public by Knoop and 
colleagues87. In addition to this prognostic task, as a distinguishing feature we also aim at proving that a minimal 
set of predictors can adequately predict the survival status. To further confirm the validity of our approach, we 
show that our approach can also be applied to an external South Korean dataset having the same clinical features, 
that we use as validation cohort. As a major outcome of such quest and improving over the published literature, 
we discovered that a single clinical factor, namely the progressive hospitalization episode, coupled with the two 
basic personal elements age and sex, can effectively predict the survival of the patients. Notably, we carried out 
the analysis both on the whole cohort, originally called primary cohort, corresponding to the admissions of the 
patients affected by sepsis potential preconditions (ante Sepsis-3 definition), and on a subset of the data includ-
ing only the patients’ admissions defined by the novel Sepsis-3 definition, called study cohort. We then repeated 
the same analysis entirely on the validation cohort, and finally trained our models on the primary and study 
cohorts to apply them afterwards to the validation cohort. For the first time, we show that is possible to apply 
machine learning to sex, age, and septic episode number collected from admission clinical records to predict 
the survival of the patients who had sepsis. Our very small set of detected predictors represent a sensible com-
promise between accuracy and simplicity of the model, requiring few resources as collected data. This balance 
is critical when considering the translation to clinical practice, which especially for sepsis management is rarely 
successful58 and not easily integrated with clinicians’ activities88. Although a number of digital handling propos-
als have appeared in the literature89, the impact of sepsis of Food and Drugs Administration (FDA) approved 
Software as Medical Devices (SaMD)90, for example, is yet far from being widespread, with perhaps the Sepsis 
Prediction and Optimization of Therapy system (SPOT)91 as the most famous example. This given, having a 
simple albeit accurate predictive test on patient survival as presented here is a promising initial step towards the 
development of a machine learning-based tool supporting clinicians in everyday practice.

We organized the rest of the manuscript as follows. After this Introduction, we describe the dataset ana-
lyzed (Datasets), and the results we obtained (Results) Afterwards, we discuss the impact and consequences 
of our results, and limitations and future developments of study (Discussion), and describe the methods we 
employed ((Methods).

Datasets
Primary cohort and study cohort.  We analyzed a dataset made of 110,204 admissions of 84,811 hospital-
ized subjects between 2011 and 2012 in Norway who were diagnosed with infections, systemic inflammatory 
response syndrome (SIRS), sepsis by causative microbes, or septic shock87. The data come from the Norwegian 
Patient Registry92 and the Statistics Norway agency93.

For each patient admission, the dataset contains sex, age, septic episode number, hospitalization outcome 
(survival), length of stay (LOS) in the hospital, and one or more codes of the International Classification of 
Diseases 10th revision (ICD-10) describing the patient’s disease (Table 1). Since the main goal of this study is to 
predict the survival of the patient, we discarded the length of stay because it strongly relates to the likelihood to 
survive: the longer the patient has to stay in the hospital, the less likely she/he will survive. The survival variable 
relates to the hospital length-of-stay, which ranges in the [0, 499] days interval and has mean of 9.351 days. Our 
prediction therefore refers to the likelihood of a patient to survive or decease in the 9.351 days after the collection 
of her/his medical record, in the hospital.
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The admissions are of 57,973 of men and of 52,231 of women, ranging from 0 to 100 years of age (Table 2 and 
Table 3). Most of the admissions (76.96%) relate to the first septic episode. More information about the dataset 
can be found in the original study87.

The original dataset curators Knoop et al.87 called the complete dataset with 110,204 admissions the primary 
cohort. From the primary cohort, they selected the admissions respecting the Sepsis-3 definition of sepsis (at 
least one several infection or sepsis related ICD-10 code and at least one codes for acute organ dysfunction)9, 
and they called this subset the study cohort.

Since the data of the primary cohort were recorded before the Sepsis-3 definition emerged in 2016, we cannot 
know if a patient diagnosed with an ICD-10 code related to sepsis actually had an organ dysfunction afterwards. 
Therefore, we cannot know if these admissions can be considered related to sepsis by the current Sepsis-3 defini-
tion today. What we know, instead, is that the conditions of the primary cohort (infections, systemic inflamma-
tory response syndrome (SIRS), sepsis by causative microbes, or septic shock) might have lead to sepsis. To reflect 
this information, we call these conditions sepsis potential preconditions in this study. We decided to consider both 
the primary cohort and the study cohort for our analysis because consensus on a unified definition of sepsis has 
not been reached by the medical community yet94.

We took the original dataset95 and applied the same selection, generating a study cohort having a different size 
from the one of Knoop et al.87: while their study cohort contained 18,460 admissions, our study cohort contains 
19,051. We were unable to obtain the original study cohort subset from Knoop unfortunately.

Both the primary cohort and our study cohort are positively imbalanced (Table 2). The primary cohort 
contains 102,099 admissions of patients who survived (92.65% positives) and 8,105 admissions of patients who 
deceased (7.35% negatives). Our study cohort contains 15,445 admissions of patients who survived (81.07% 
positives) and 3,606 admissions of patients who deceased (18.93% negatives).

We report the stacked barplots of sex and disease episode number (Fig. 1) and the histogram of the age distri-
bution (Fig. 2) for the primary cohort; we report the stacked barplots of sex and sepsis episode number (Fig. 3) 
and the histogram of the age distribution (Fig. 4) for the study cohort.

Validation cohort.  To confirm our findings, we also applied our methods to a dataset of South Korean criti-
cally ill patients whose medical records were collected between between January 2007 and December 2015 and 
publically released by Lee and colleagues96. From their original dataset, we selected the data of 137 patients who 
had already 1 or 2 septic episodes.

Since all these data were recorded before 2016, they are associated to a definition of sepsis earlier than Sepsis-3.

Table 1.   Meanings, measurement units, and intervals of each feature of the dataset. Ranges refer both to the 
primary cohort and the study cohort. We used survival as prediction the target in this manuscript.

Feature Explanation Measurement Range

Age Age of the patient at the hospital stay Years [0, ..., 100]

Episode number Number of septic episodes experienced by the patient Integer [1, ..., 5]

Sex 0: male; 1: female Binary 0, 1

[Target] survival 0: dead; 1: alive Boolean 0, 1

Table 2.   Statistical quantitative description of the category features. #: Number of admissions. %: percentage 
of admissions. Primary cohort full sample: 110,204 admissions. Study cohort full sample: 19,051 admissions.

Category feature

Primary cohort Study cohort

# % # %

Survival (0: dead) 8105 7.35 3606 18.93

Survival (1: alive) 102,099 92.65 15,445 81.07

Sex (0: male) 57,973 52.61 10,505 55.14

Sex (1: female) 52,231 47.39 8546 44.86

Table 3.   Statistical quantitative description of the numeric features. Primary cohort full sample: 110,204 
admissions. Study cohort full sample: 19,051 admissions. σ : standard deviation.

Numeric feature

Primary cohort Study cohort

Median Mean σ Median Mean σ

Age 68 62.74 24.13 77 72.50 18.61

Episode number 1 1.35 0.75 1 1.40 0.75
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The dataset already contained the sex and age features, while we deduced the septic episode feature by select-
ing all the patients that already had a sepsis before the surgery (“Preop shock = 1”), and devided them between the 
ones that had a second sepsis afterwards (“new sepsis = 1”) and the ones that did not have it (“new sepsis = 0”).

Figure 1.   Primary cohort: stacked barplots of the distribution of categories. Distribution of sepsis episode 
number and sex of the admissions of patients who deceased (left) and survived (right). Admissions of survived 
patients: positives data instances (class 1). Admissions of deceased patients: negative data instances (class 0).

Figure 2.   Primary cohort: histograms of the patients’ ages in relation with the number of admissions. On 
the left, the admissions of the patients who deceased. On the right, the admissions of patients who survived. 
Admissions of survived patients: positives data instances (class 1). Admissions of deceased patients: negative 
data instances (class 0).

Figure 3.   Study cohort: stacked barplots of the distribution of categories. Distribution of sepsis episode number 
and sex of the admissions of patients who deceased (left) and survived (right). Admissions of survived patients: 
positives data instances (class 1). Admissions of deceased patients: negative data instances (class 0).

Figure 4.   Study cohort: histograms of the patients’ ages in relation with the number of admissions. On the left, 
the admissions of the patients who deceased. On the right, the admissions of patients who survived. Admissions 
of survived patients: positives data instances (class 1). Admissions of deceased patients: negative data instances 
(class 0).
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The 137 patients of our validation cohort are 59.54 years old on average (median: 60), 47 women and 90 men. 
Among them, 115 had one septic episode and 22 had two septic episodes, while 113 survived and 24 deceased. 
Regarding the dataset imbalance, this validation cohort is positively imbalanced, having 82.482% positive data 
instances and 17.518% negative data instances.

More information about this dataset can be found in the original study96.

Results
In this section we first describe the results we obtained through the traditional univariate biostatistics tests (Sta-
tistical correlations) and then the results we achieved through the machine learning classifiers on the primary 
and study cohorts (Survival predictions), and on the external validation cohort (Validation on external cohort).

Statistical correlations.  We applied some traditional biostatistics tests  (Biostatistics univariate tests) to 
evaluate univariate associations between all three feature variables and survival status on the primary cohort. 
Their results showed they were statistically significant with p < 0.001 (Table 4).

The results of these tests state there are statistically meaningful relationships between age and survival, 
between disease episode number and survival, and between sex and survival. These results confirm that we can 
use these three clinical factors as predictive features to forecast survival.

Survival predictions.  We report the results of our machine learning predictions made on the primary 
cohort and on the validation cohort, measured with traditional confusion matrix rates, in Table 5. As mentioned 
earlier, we consider positive data instances the admissions of the survived patients (class 1), and negative data 
instances the admissions of the deceased patients (class 0).

We report two scores considering all the possible confusion matrix thresholds (precision-recall curve and 
receiver operating characteristic curve), and seven scores computed by artificially setting the confusion matrix 
threshold to 0.5 (TP rate, TN rate, PPV, NPV, MCC, F1 score, and accuracy). Since the main goal of our study is 
to predict the survived patients (positive data instances), and the inclusion of all the possible confusion matrix 
thresholds is more informative than the usage of an heuristic cut-off, we focused on the precision-recall area 
under the curve (PR AUC) as principal indicator (Table 5).

In the primary cohort, which contained admissions of patients diagnosed with sepsis before Sepsis-3, radial 
SVM and gradient boosting outperformed the other methods by achieving PR AUC = 0.966 and ROC AUC close 
to 0.7. Gradient boosting resulted being very efficient when predicting the survived patients, by achieving TP 
rate = 0.905, followed linear regression, that reached sensitivity = 0.805. Regarding the identification of deceased 
patients, the two SVM models attained the top TN rates: 0.898 for the linear SVM and 0.807 for the radial SVM.

All the five models obtained very high positive predictive values (PPVs), from linear SVM achieving 0.896 
to radial SVM reaching the almost perfect value of 0.970. All the five methods, also, had low negative predictive 
values (NPVs), ranging from 0.112 to 0.210, which resulted in Matthews correlation coefficients, too. Regard-
ing F1 score and accuracy, four methods obtained high or very high results, with top performance reached by 
gradient boosting ( F1 score = 0.916 and accuracy = 0.851), while linear SVM achieved low scores on both these 
rates (Table 5).

In the study cohort, which contains admissions of patients diagnosed with sepsis based on the 2016 Sepsis-3 
definition, the results were similar to those seen in the primary cohort, albeit a little lower.  (Table 5). All the 
five models obtained very high PR AUC, with linear SVM obtaining the top score of 0.860. Regarding the ROC 
AUCs, the two support vector machines gained the best results with 0.568 both. Gradient boosting and linear 
regression were capable to correctly predict most of the survived patients, reaching sensitivity scores of 0.837 and 
0.764, respectively. And linear SVM was the best at predicting deceased patients, with a specificity score of 0.898.

Regarding precision, all the five methods were capable to make accurate positive predictions, with linear SVM 
obtaining again the best PPV (0.896). Similar to the primary cohort, they also all had low NPV values (ranging 
from 0.210 to 0.239), which was reflected in their Matthews correlation coefficients. The low results on the NPVs 
are reflected in the Matthews correlation coefficients, too. Gradient boosting gained high values for F1 score and 
accuracy also in the primary cohort (0.819 and 0.718, respectively), followed by linear regression (Table S1).

Table 4.   Results of the application of univariate biostatistics tests between each feature and the survival 
target, in the primary cohort. Mann–Whitney test p-value: probability value generated by the application of 
the Mann–Whitney U test to the corresponding feature and survival. chi-squared test p-value: probability 
value generated by the application of the chi-squared test to sex and survival. We reported the features in 
alphabetical order.

Feature

Mann–Whitney Chi-squared

Test p value Test p value

Age < 2.20× 10
−16

Episode number 1.72× 10
−05

Sex 5× 10
−04
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Validation on external cohort.  To further verify the predictive power and the generalizability of our clas-
sifiers, we performed two additional analyses involving an external validation cohort containing medical records 
of patients from South Korea (Datasets)96.

In the first analysis, we both trained and tested our models on this external validation cohort, and reported 
the results (Table 6). In the second analysis, we trained our models on the Norwegian primary cohort or study 
cohort, applied the trained models to the external validation cohort, and reported the results (Table 7).

Train and test on the external validation cohort.  Our results we report show that all our five methods (naïve 
Bayes, linear SVM, radial SVM, gradient boosting, and linear regression) are capable of efficiently predict-
ing survival not only when trained and tested on the Norwegian cohorts, but also when trained and tested on 
another external dataset (Table 6). These results confirm the generalizability of our approach.

All the classifiers, in fact, obtained high PR AUC ranging from 0.873 (radial SVM) to 0.899 (linear SVM), 
and were able to correctly classify most of the positive data instances (minimum TP rate = 0.849) and most of 
the positive predictions (minimum PPV = 0.849). Only naïve Bayes and linear regression were able to correctly 
classify most of the negative data instances and correctly make most of negative predictions (specificity and NPV 
greater than 0.5 for both the methods).

Also the other indicators show good scores (ROC AUC and MCC) or optimal scores (accuracy and F1 score 
for all the five classifiers, Table 6).

Train on the primary or study cohort, and test on the external validation cohort.  The final part of our analysis 
involved the attempt to use our trained models to make survival predictions on an external dataset. In a real 
case scenario, in fact, physicians and medical doctors would apply our approach to the data of a new cohort of 
patients arriving to the hospital, and these patients of course would not be part of the original cohort where to 
train the models. To address this scenario, we performed an additional analysis where we trained our models 
on the Norwegian primary cohort or study cohort of Knoop et al.95 and we tested them on the South Korean 
external validation cohort by Lee et al.96. We reported the results in Table 7.

As one can noticed, the algorithms we employed were able to correctly predict most of the survived patients 
and to make most of correct predctions, obtaining PR AUC scores ranging from 0.821 (radial SVM trained on 
the primary cohort) to 0.863 (gradient boosting trained on the study cohort). Naïve Bayes obtained the top score 
for PR AUC when trained on the primary cohort (0.848), while gradient boosting achieved the top PR AUC 
when trained on the study cohort (0.863). Because of the imbalance of the cohorts, all the methods achieved high 

Table 5.   Results of the survival prediction made with machine learning classifiers, with training phase and 
testing phase done on the Norwegian primary cohort or study cohort87. Mean results of 100 executions 
with random selection of the elements in the training set and test set, with ROSE oversampling97 applied to 
the training set. Admissions of survived patients: positives data instances (class 1). Admissions of deceased 
patients: negative data instances (class 0). Linear SVM: support vector machine with linear kernel. Optimized 
cost regularization hyper-parameter of the linear SVM, most frequently selected C by the MCC-based grid 
search: C = 0.01 for primary cohort (63 times out of 100) and C = 0.001 for study cohort (51 times out of 100). 
Radial SVM: support vector machine with radial Gaussian kernel. Optimized cost regularization of the radial 
SVM, most frequently selected C by the MCC-based grid search: C = 0.1 for the primary cohort (56 times out 
of 100) and for the study cohort (51 times out of 100). MCC: Matthews correlation coefficient. MCC worst 
value = − 1 and best value = + 1 . TP rate: true positive rate, sensitivity, recall. TN rate: true negative rate, 
specificity. PR: precision-recall curve. PPV: positive predictive value, precision. NPV: negative predictive value. 
ROC: receiver operating characteristic curve. AUC: area under the curve. F1 score, accuracy, TP rate, TN rate, 
PPV, NPV, PR AUC, ROC AUC: worst value = 0 and best value = + 1 . We report the formulas of these rates 
in the Supplementary Information. ROSE minority class probability: p = 0.5 for SVMs; p = 0.38 for gradient 
boosting, naïve Bayes, and linear regression in the primary cohort; p = 0.45 for gradient boosting, naïve Bayes, 
and linear regression in the study cohort. We highlighted in italic and with an asterisk * the top result for each 
statistical indicator. We report the mean scores with the standard deviations in Supplementary Table S1.

Method PR AUC​ ROC AUC​ TP rate TN rate PPV NPV MCC F1 score accuracy

Training and testing on the primary cohort

Radial SVM 0.966* 0.701* 0.492 0.807 0.970* 0.112 + 0.157* 0.652 0.515

Gradient boosting 0.966* 0.690 0.905* 0.179 0.934 0.126 + 0.061 0.916* 0.851*

Naïve Bayes 0.954 0.649 0.553 0.745 0.965 0.117 + 0.156 0.703 0.567

Linear regression 0.941 0.599 0.836 0.361 0.943 0.149 + 0.135 0.886 0.801

Linear SVM 0.860 0.586 0.205 0.898* 0.896 0.210* + 0.104 0.333 0.337

Training and testing on the study cohort

Linear SVM 0.860* 0.586* 0.205 0.898* 0.896* 0.210 + 0.104* 0.333 0.337

Radial SVM 0.858 0.586* 0.408 0.718 0.861 0.222 + 0.102 0.553 0.467

Gradient boosting 0.856 0.574 0.837* 0.208 0.822 0.231 + 0.038 0.819* 0.718*

Naïve Bayes 0.841 0.562 0.405 0.718 0.861 0.220 + 0.100 0.551 0.465

Linear regression 0.826 0.541 0.764 0.318 0.828 0.239* + 0.074 0.794 0.679
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scores for positive data instances (sensitivity and precision) but low scores for negative data instances (specificity 
and NPV). Naïve Bayes achieved the top specificity both when trained on the primary cohort (0.415) and when 
trained on the study cohort (0.386).

Differently from the other tests we made, some methods failed in correctly predicting any negative data 
instances: the linear SVM method classified all the validation set data instances as positive, both when trained 

Table 6.   Results of the survival prediction made with machine learning classifiers on the South Korean 
external validation cohort96. Mean results of 100 executions with random selection of the elements in the 
training set and test set, with ROSE oversampling97 applied to the training set. In this analysis, both the 
training phase and the testing phase happened on the validation cohort. σ : standard deviation. Admissions of 
survived patients: positives data instances (class 1). Admissions of deceased patients: negative data instances 
(class 0). Linear SVM: support vector machine with linear kernel. Optimized cost regularization hyper-
parameter of the linear SVM, most frequently selected C by the MCC-based grid search: C = 0.1 (59 times out 
of 100). Radial SVM: support vector machine with radial Gaussian kernel. Optimized cost regularization of the 
radial SVM, most frequently selected C by the MCC-based grid search: C = 0.1 (70 times out of 100). MCC: 
Matthews correlation coefficient. MCC worst value = − 1 and best value = + 1 . TP rate: true positive rate, 
sensitivity, recall. TN rate: true negative rate, specificity. PR: precision-recall curve. PPV: positive predictive 
value, precision. NPV: negative predictive value. ROC: receiver operating characteristic curve. AUC: area 
under the curve. F1 score, accuracy, TP rate, TN rate, PPV, NPV, PR AUC, ROC AUC: worst value = 0 and 
best value = + 1 . ROSE p-value: 0.5 for all. We report the results with standard deviations in  Table S2 and the 
formulas of the statistical indicators in the Supplementary Information. We highlighted in italic and with an 
asterisk * the top result for each statistical indicator.

Training and testing on the validation cohort

Method PR AUC​ ROC AUC​ TP rate TN rate PPV NPV MCC F1 score accuracy

Linear SVM 0.899* 0.676 0.911 0.388 0.873 0.490 + 0.309 0.889 0.818

Naïve Bayes 0.887 0.713* 0.899 0.527* 0.891* 0.538 + 0.417* 0.893 0.828*

Gradient boosting 0.883 0.682 0.912 0.448 0.885 0.540* + 0.378 0.895* 0.828*

Linear regression 0.880 0.689 0.849 0.530 0.885 0.458 + 0.350 0.863 0.788

Radial SVM 0.873 0.642 0.929* 0.226 0.849 0.465 + 0.179 0.883 0.806

Table 7.   Results of the survival prediction made with machine learning classifiers, including standard 
deviation, with training phase done on the Norwegian primary cohort or study cohort87 and testing phase 
done on the South Korean external validation cohort96. Mean results of 100 executions with random selection 
of the elements in the training set and test set, with ROSE oversampling97 applied to the training set. σ : 
standard deviation. Admissions of survived patients: positives data instances (class 1). Admissions of deceased 
patients: negative data instances (class 0). Linear SVM: support vector machine with linear kernel. Optimized 
cost regularization hyper-parameter of the linear SVM, most frequently selected C by the MCC-based grid 
search: C = 0.01 for primary cohort (63 times out of 100) and C = 0.001 for study cohort (51 times out of 100). 
Radial SVM: support vector machine with radial Gaussian kernel. Optimized cost regularization of the radial 
SVM, most frequently selected C by the MCC-based grid search: C = 0.1 for the primary cohort (56 times out 
of 100) and for the study cohort (51 times out of 100). MCC: Matthews correlation coefficient. MCC worst 
value = − 1 and best value = + 1 . TP rate: true positive rate, sensitivity, recall. TN rate: true negative rate, 
specificity. PR: precision-recall curve. PPV: positive predictive value, precision. NPV: negative predictive value. 
ROC: receiver operating characteristic curve. AUC: area under the curve. F1 score, accuracy, TP rate, TN rate, 
PPV, NPV, PR AUC, ROC AUC: worst value = 0 and best value = + 1 . We report the formulas of these rates 
in the Supplementary Information, and the same results including the standard deviations in Table S3. ROSE 
minority class probability: p = 0.5 for SVMs; p = 0.38 for gradient boosting, naïve Bayes, and linear regression 
in the primary cohort; p = 0.45 for gradient boosting, naïve Bayes, and linear regression in the study cohort. 
We highlighted in italic and with an asterisk * the top result for each statistical indicator. We did not report the 
results of linear regression trained on the primary cohort and the results of the linear SVM on both the cohorts 
because these methods predicted all positives in the validation cohort.

method PR AUC​ ROC AUC​ TP rate TN rate PPV NPV MCC F1 score accuracy

Train on primary cohort and test on validation cohort

Naïve Bayes 0.848* 0.565* 0.715 0.415* 0.852* 0.236* + 0.107* 0.777 0.663

Gradient boosting 0.843 0.527 0.953 0.035 0.823 0.123 – 0.018 0.882 0.792*

Radial SVM 0.821 0.514 0.949 0.013 0.819 0.040 – 0.068 0.879 0.785

Train on study cohort and test on validation cohort

Gradient boosting 0.863* 0.552 0.973* 0.061 0.830 0.739* + 0.130* 0.895* 0.814*

Naïve Bayes 0.848 0.566* 0.747 0.386* 0.851* 0.244 + 0.113 0.795 0.683

Radial SVM 0.829 0.537 0.955 0.011 0.820 0.043 – 0.068 0.882 0.789

Linear regression 0.824 0.499 0.956 0.042 0.824 0.166 – 0.005 0.885 0.796
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on the primary cohort and on the study cohort, while the linear regression did the same for primary cohort. 
This aspect suggests additional future studies in the theoretical machine learning field about the behavior of 
these algorithms.

These results show, additionally, the level of generalizability of our approach, that is able to correctly predict 
survived patients just from sex, age, and septic episode even when our models are trained and tested on two 
different cohorts.

Discussion
Our results show that machine learning applied to minimal clinical records of patients diagnosed with sepsis, 
containing only age, sex, and number of septic episode, is sufficient to predict the survival outcome of the patients 
themselves. Most of our machine learning methods, in fact, were capable to correctly predict most of the survived 
patients (very high sensitivity rates) with high confidence probability (very high precision values).

To the best of our knowledge, no other study on sepsis has predicted patient survival outcomes with such little 
and easily obtainable information; age and sex are immediately available for each patient, while sepsis episode 
number can be easily found in the patient’s history.

Our finding can be consequential to the way that sepsis is managed around the world. If validated, hospitals 
will be able to quickly and reliably predict a patient’s survival in few seconds, . allowing for quicker action from 
the doctors, which is crucial for a quick-to-kill illness like sepsis. The finding will be especially useful to hospitals 
that lack personnel and machinery, like those in rural or developing areas.

Our findings were not identified by the study of the original Norwegian dataset curators, which instead pro-
vides an overall general analysis about the correlation between features of the patients’ cohort87, and not even 
by the study of the validation cohort96.

As a limitation, we have to report that, even if our machine learning methods resulted being effective in 
identifying the admissions of survived patients, the same cannot be said for the admissions of deceased patients. 
Our data mining techniques, in fact, were able to correctly predict most of the admissions of the deceased 
patients (high TN rates), but with low diagnostic proportions (low NPVs)98. We believe this drawback of our 
study is due to the huge imbalance of the datasets: during training, the machine learning methods do not see 
enough negative elements, and therefore they generate many false negatives when making predictions on the 
test set. We tried to tackle this problem with ROSE oversampling97, which improved the situation, but did not 
solve the issue. This drawback is critical because the patients who are more likely to decease are the ones who 
need urgent therapies and cures in a hospital setting. We hope to overcome this issue in the future by employing 
other oversampling techniques.

We also have to report that the absence of a temporal feature expressing the time passed between a septic 
episode and decease has been a limitation for this study. The presence of this time feature, in fact, would have 
allowed us to make time-related predictions which would have higher impact in a hospital setting, by helping 
doctors understanding which patients are more in need of immediate help.

In the future, we plan to further investigate the theme of the minimal clinical record for computational predic-
tion of survival on other diseases such as cervical cancer99, neuroblastoma100, breast cancer101, and amyotrophic 
lateral sclerosis102.

Methods
In this section, we briefly describe the traditional biostatistics tests we employed to detect correlation between 
each clinical feature and survival target (Biostatistics univariate tests), and the machine learning methods we 
used to predict survival (Machine learning classifiers).

We implemented our software code with the free open source R programming language and platform103, and 
made it publicly available online on GitHub (Data and software availability).

Biostatistics univariate tests.  To identify preliminary associations between feature (age, sex, septic epi-
sode number) and target (survival), we performed univariate biostatistics analyses. We used the Anderson–
Darling test104 to test for normality of continuous variables. As the normality assumptions were not met, we 
employed the Mann–Whitney U test105 to evaluate associations between the continuous features and survival. 
We used the chi-squared (χ2 ) test106 to evaluate the association between sex and survival. We considered p-val-
ues less than 0.05 as statistically significant.

For both the Mann–Whitney U test and the chi-squared test, a low p-value (close to 0) means that the two 
analyzed features strongly relate to each other, while a high p-value (close to 1), instead, means there is no 
correlation107.

Machine learning classifiers.  To predict the survival of patients from only three features, we initially 
employed function approximation methods108, trying to frame this scientific problem into a linear setting, with 
a mathematical formula such as y = f (x,w, z) where where y is survival, x is age, w is sex, and z episode number. 
After several attempts, however, we realized that this problem could not be solved through a simple linear func-
tion with three variables, and therefore decided to take advantage of machine learning.

We employed five machine learning classifiers from four different method families: linear regression109, 
support vector machine with linear kernel (linear SVM)110, support vector machine with radial kernel (radial 
SVM)111, gradient boosting112, and naïve Bayes113.

We first chose linear regression because it is a baseline statistical model and one of the simplest methods in 
computational intelligence; starting an analysis with a simple method is considered a good practice in machine 
learning114. We then chose two support vector machines with different kernels (linear and Gaussian radial), 
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because they can project data into a hyperplane suitable for classification. After that, we tried gradient boost-
ing, an ensemble boosting method capable of training several weak classifiers to build a strong one. Finally, we 
employed a probabilistic classifier, such as naïve Bayes, which is based on the Bayesian conditional probability 
and can estimate how likely a data instance can belong to a class.

All these methods have shown their effectiveness in binary classification of biomedical data in the past, and 
therefore represented suitable candidates for this study as well.

We applied each algorithm 100 times both to the primary cohort and the study cohort and reported the mean 
result (Results). For methods that needed hyper-parameter optimization (linear SVM and radial SVM), we split 
the dataset into 60% randomly selected admissions for the training set, 20% randomly selected admissions for 
the validation set, and 20% remaining admissions for the test set. To choose the top hyper-parameter C, we used 
a grid search and selected the model that generated the highest Matthews correlation coefficient114,115. For the 
other methods (linear regression, naïve Bayes, and gradient boosting), instead, we severed the dataset into 80% 
randomly selected data instances for the training set, and 20% remaining data instances for the test set.

For each of the 100 executions, our script randomly chose admissions for the training set and for the test set 
(and for the validation set, in the case of hyper-parameter optimization) from the complete original primary 
cohort or study cohort. We trained each model on the training set (and validated it on the validation set, in the 
case of hyper-parameter optimization), and we then applied the model to the test set. Given the different selec-
tions of admissions for the dataset splits, each script execution generated slightly different results even when 
employing the same method.

Because of the huge imbalance of the datasets (92.65% positives and 7.35% negatives in the primary cohort, 
and 81.07% positives 18.93% negatives in the study cohort), we had to employ an oversampling technique at each 
execution, to make the training set more balanced. We applied the Randomly Over Sampling Examples (ROSE) 
method97, which creates and adds artificial synthetic data instances of the minority class (the deceased patients, 
in our datasets) to the training sets. Since we split the datasets into training set, validation set, and test set for the 
support vector machines, and just into training set and test set for the other methods, we had to select different 
optimized probability values for the ROSE minority class for these two groups of algorithms.

We measured the classifiers’ performances by using typical confusion matrix evaluation scores such as Mat-
thews correlation coefficient (MCC), receiver operating characteristic area under the curve (ROC AUC), preci-
sion recall area under the curve (PR AUC), and other ones. Since our main goal is to correctly predict the survival 
of patients, we ranked the results based on the PR AUCs, which highlight the true positive rates and positive 
predictive values reached by each method116.

Data availability
The dataset of the primary cohort and of the study cohort95 used in this study is publicly available at: https​://
plos.figsh​are.com/artic​les/Epide​miolo​gy_and_impac​t_on_all-cause​_morta​lity_of_sepsi​s_in_Norwe​gian_hospi​
tals_A_natio​nal_retro​spect​ive_study​/56134​24. The dataset of the validation cohort96 used in this study is publicly 
available at: https​://figsh​are.com/artic​les/Sever​e_persi​stent​_hypoc​holes​terol​emia_after​_emerg​ency_gastr​ointe​
stina​l_surge​ry_predi​cts_in-hospi​tal_morta​lity_in_criti​cally​_ill_patie​nts_with_diffu​se_perit​oniti​s/67706​60. Our 
software code is publicly available at: https​://githu​b.com/david​echic​co/sepsi​s_survi​val_from_age_sex_episo​de
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