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Abstract: High-throughput DNA sequencing (HTS) has changed our understanding of the microbial
composition present in a wide range of environments. Applying HTS methods to air samples
from different environments allows the identification and quantification (relative abundance) of the
microorganisms present and gives a better understanding of human exposure to indoor and outdoor
bioaerosols. To make full use of the avalanche of information made available by these sequences,
repeated measurements must be taken, community composition described, error estimates made,
correlations of microbiota with covariates (variables) must be examined, and increasingly sophisticated
statistical tests must be conducted, all by using bioinformatics tools. Knowing which analysis to
conduct and which tools to apply remains confusing for bioaerosol scientists, as a litany of tools
and data resources are now available for characterizing microbial communities. The goal of this
review paper is to offer a guided tour through the bioinformatics tools that are useful in studying
the microbial ecology of bioaerosols. This work explains microbial ecology features like alpha and
beta diversity, multivariate analyses, differential abundances, taxonomic analyses, visualization tools
and statistical tests using bioinformatics tools for bioaerosol scientists new to the field. It illustrates
and promotes the use of selected bioinformatic tools in the study of bioaerosols and serves as a good
source for learning the “dos and don’ts” involved in conducting a precise microbial ecology study.
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1. Introduction

The development of next-generation sequencing (NGS) platforms for DNA samples has
grown exponentially in recent years [1–3]. This burst in high-throughput sequencing (HTS) has
revolutionized our understanding of the microbial composition of a wide range of environments [4–9].
More specifically, amplicon-based sequencing is the most commonly used method for characterizing
microbial diversity [10–13]. This method includes the use of a taxonomically informative genomic
marker that is common to all microorganisms of interest and that is targeted by an amplification
step prior to sequencing. For bacteria and archaea, amplicon-based sequencing studies target the
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gene that codes for the small 16S ribosomal subunit [14]. For fungi, the gene that codes for the
Internal Transcribed Spacer (ITS) is considered the universal maker for the study of fungal diversity by
molecular approaches [15]. The sequenced amplicons are characterized using bioinformatics tools to
determine which microbes are present in a sample and at what relative abundance. Comparing the
targeted sequences across samples gives insight into how microbial diversity associates with and scales
across environmental conditions.

HTS approaches have been used to characterize the microbial composition of various environments,
from soil, water, and the rhizosphere to the human gut [16–19]. In 2010, Peccia and his collaborators [20]
highlighted the importance of incorporating DNA sequencing methods into the study of aerosol
science. In fact, molecular methods have made it possible to characterize new archaeal diversity in
bioaerosols, which would’ve been impossible with culture-dependent methods [21]. This opened the
door to understanding strictly anaerobic archaea. Applying HTS methods to air samples from different
environments allows the identification and quantification (relative abundance) of the microorganisms
present and gives a better understanding of human exposure to indoor and outdoor bioaerosols.
Using HTS approaches offers a thorough picture of the microbial content of aerosols and leads to
millions of sequences generated from that single sample [22–27]. In order to make full use of the
information made available by these sequences, repeated measurements must be taken, community
composition described, error estimates made, correlations of microbiota with covariates (variables)
must be examined, and increasingly sophisticated statistical tests must be conducted, all by using
bioinformatics tools [28].

Bioinformatics is not new to science, as it was first mentioned back in 1970 in a conversation
between Dutch scientist Paulien Hogeweg and her colleague Ben Hesper to describe their work on
the study of informatic processes in biotic systems [29]. Consistent with the rise in NGS, the past
few years represent a surge in bioinformatics tool development for analyzing the large amounts of
data generated by amplicon-based sequencing approaches [30–35]. Bioinformatics can be divided
into computational biology, which uses algorithms to build mathematical models to solve biological
problems using a computational method, and analytical bioinformatics, which uses bioinformatics
tools to analyze biological data [36]. This definition of bioinformatics inspired conversations about
the status of bioinformaticians. Vincent and Charette tried to answer the question “Who qualifies
as a bioinformatician?” by suggesting that the status should be reserved for experts who develop
bioinformatics algorithms and tools (software) and for those who design architectural models to
maintain databases [37]. This definition did not elicit unanimity amongst the scientists who do not
develop algorithms, but who use bioinformatics tools on a daily basis to analyze data, generate results
and solve problems [38]. While this distinction is important as it allows universities, human resources
and governments to accurately recognize and certify students, employees and others as bioinformatics
experts, it is important to remember that using computers to understand biological concepts is as
important and necessary as using any other laboratory tool/equipment. Because microbiology is
entering a new era, bioaerosol scientists, among others, should not fear using bioinformatics tools to
conduct microbial community studies.

Knowing which analysis to conduct and which tools to apply remains confusing for bioaerosol
scientists, as a litany of tools and data resources are now available for characterizing microbial
communities. The goal of this review paper is to offer a guided tour through the bioinformatics
tools that are useful in studying the microbial ecology of bioaerosols. This paper does not focus
on sequence data processing (quality filtering, Operational Taxonomic Unit clustering, etc.) as this
information is described in previously published work [25,26] and there is ample literature available
on bioinformatics pipelines for processing sequences [30,32,39–41]. This work explains microbial
ecology features like alpha and beta diversity, multivariate analyses, differential abundances, taxonomic
analyses, visualization tools and statistical tests using bioinformatics tools for bioaerosol scientists new
to the field.
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2. Methods and Software

The methodological bioinformatics approaches proposed in this manuscript for studying
the microbial ecology of bioaerosols rely on the use of widely adopted QIIME pipelines,
Mothur software [30,32] and R packages; particularly, the vegan [42], phyloseq [43], DADA2 [44],
and RAM packages (https://rdrr.io/cran/RAM/man/RAM-package.html). All of the analyses proposed
in this manuscript can be done using these software programs and R packages. Detailed documentation
about their usage is available online. Additionally, Bioconductor is an open-source software package
for bioinformatics that offers different features, courses and training on the usage of R for sequencing
data associated with microbial ecology (https://www.bioconductor.org/).

Before starting the diversity analyses, users are recommended to build a metadata mapping file.
The mapping file is a tabulated text file (it can be constructed using excel or LibreOffice) that contains all
of the information about the samples necessary to perform the data analysis. In general, the mapping file
should contain the name of each sample, the barcode sequence used for each sample, the linker/primer
sequence used to amplify the sample, and a description column. It is important to include in the
mapping file any metadata related to the samples (e.g., age, gender, temperature, season, pH, etc.) and
any additional information relating to specific samples that may influence the microbial content of the
samples (e.g., type of samplers used). QIIME offer a guideline on how to build a metadata mapping
file: http://qiime.org/scripts/validate_mapping_file.html. Figure 1 is a quick overview showing the
succession of all the major steps of the microbial ecology analyses using bioinformatics tools that will
be discussed in this work. Each step is divided into three stages: data transformation, visualisation
and statistical analysis.
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shows the succession of analyses from alpha diversity to differential abundance and the three stages of
analysis: data transformation, visualization tools, statistical analysis, of each step.

2.1. Controls and Bio-informatic Management of Controls

It has been reported numerous times that NGS is prone to the incorporation of contaminants,
both bacterial and fungal, and that they can have a significant impact on the conclusions of studies,
even more so when looking at low-microbial-biomass samples, such as aerosols samples [12,45–47].

https://rdrr.io/cran/RAM/man/RAM-package.html
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These contaminants can originate from a variety of sources, including the different reagents used in the
extraction protocols and even from cross contamination between samples [48]. The NGS platforms
can also erroneously label nucleotides, which can lead to the misidentification of microbes [49].
Technical biases, such as preferential amplification by the primers used to prepare sequencing libraries
and polymerase errors, have also been widely described [50].

Incorporating positives controls, such as a mock community, and negatives controls (such as field
blanks) in a study design is now a well-spread practice in order to observe the possible biases induced
by contaminants, library preparation and sequencing itself and attempt to compensate for them.

2.2. Mock Microbial Communities

Comparing taxonomic information of bioaerosol samples to a mock community sample can help
determine technical biases linked to sequencing approaches. A mock community is a consortium
of microorganisms of known composition and structure. It can be a whole-cell or DNA community,
in which either the complete microorganisms or only their genomes are present. The first type can
allow comparisons of extraction protocols efficiencies, while the DNA mock communities give a better
insight at the library preparation, sequencing and bio-informatic analysis steps [12]. The sequencing
results of these known samples can be compared with the expected data in order to observe and
quantify the possible bias introduced by the method on the samples. Then, the relative abundance of
the different taxa identified in the actual samples can be adjusted to take into account this observed
bias. Those types of modification must be made cautiously, as they can have a major impact of the final
results. For example, the latter analysis is achieved by simply comparing the relative abundance of the
expected data (e.g., Streptococcus 20%; Pseudomonas 20%; Staphylococcus 20%; etc.) to the sequencing
results after library preparation (e.g. Streptococcus 15%; Pseudomonas 22%; Staphylococcus 10%; etc.).
Then, the relative abundance of the taxa in the samples could be readjusted by taking into account the
rise or the drop of the percentage of relative abundance.

The use of mock bacterial communities is more and more frequent in the literature and they are
commercially available [51]. On the other hand, mock fungal communities are not as readily available
as their bacterial counterparts. Although there have been recent attempts at creating one [52], the lack of
accessibility seems to refrain its implementation. Additional work must be deployed in order to create
standardized communities and procedures that can become the gold standard for microbial ecology
studies. In the meantime, creating your own custom-made community might be good way to get better
insight of the possible biases of your methodology. Like for bacteria, archaeal mock communities are
also commercially available, and are used as controls in sequencing microbial studies [53].

2.3. Negative Controls

Negative controls are typically blank samples that have been process alongside the samples in
order to quantify and identify the possible contaminants introduced by the experimental method.
Field blanks should also be included when natural environments are sampled (human gut, air, water,
soil, etc.). As NGS is particularly likely to be affected by the presence of contaminants, the use of
negative controls in such studies is mandatory [54]. Multiples negative controls can also be incorporate
in a study design to assess to incorporation of contaminants at different step of the procedure [55,56].

There is currently no consensus on how to bioinformatically manage the negative controls.
The OTUs identified in them are usually completely removed from the entire dataset [55]. However,
such strategy could also take out OTUs that are naturally present in the samples and reduce the
observed diversity. More sophisticated techniques, such as the use of quantitative polymerase chain
reaction (qPCR) data to correct absolute counts [57], have also been developed, but these are not
broadly accepted as they can also skew the results. Furthermore, even if no corrections are applied to
the samples according the OTUs found in the negative controls, they can act as a good indication of
contamination and help construct a certain level of trust over the conclusions of a study using NGS.
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In short, the use of NGS in microbial ecology can be a double-sided sword, as its power of
analysis makes it more vulnerable to contaminations and technical biases. Precautions in the form of
positives and negatives controls must be taken to ensure the validity of the results it produces and the
conclusions it can lead to.

2.4. Data Transformation

Common outputs of sequence data processing pipelines include OTU and taxonomic tables that
contain the identification number, the abundance (absolute counts) and taxonomic information of the
OTUs in each sample. In order to compare the samples truthfully with one another, mathematical
transformations must be applied to theses tables. They account for the sequencing depth and allow
diversity comparisons, both for alpha and beta diversity.

3. Sequencing Depth

Sequencing depth can be defined as the number of reads obtained in a sample. It depends
on the NGS platform used and the higher the sequencing depth, the more likely it is that diversity
coverage will be attained [58]. Sequencing depth can affect diversity measures, as samples with more
reads may appear richer and cluster differently in multivariate analyses. In order to counterbalance
this effect, it is essential to normalize the data, so that all samples are brought down to the same
sequencing depth or so they are compared on a relative basis. It is always recommended to try different
data normalizing methods because the mentioned biases can remain present and can sometimes be
considerable. One way to verify this trend is to add information about the number of reads per
sample into the metadata before normalizing and see if samples with higher numbers of reads tend to
cluster together.

Data normalization methods can include rarefaction or normalization. Rarefaction creates a
subsampled data set by randomly sampling the input sequences up to a giving number. Samples with
fewer sequences than the requested rarefaction depth are not included in the analyses. The outputs are
diversity curves based on the number of sequences in a sample; rarefaction curves. These types of
curves provide insightful information about how much microbial diversity is covered. If plateaus of
richness and diversity are attained after a certain number of sequences per sample, they signify that
sequencing efforts were sufficient enough to cover all of the diversity in the sample. Different rarefaction
depth values should be tested. Two important considerations are: (1) finding the highest value for
which the majority of samples would be included, and (2) finding the highest value that provides the
best coverage plateau. The Vegan package using the R program can be used to rarefying the samples:
https://rdrr.io/rforge/vegan/man/rarefy.html.

As an alternative to rarefaction, normalization accounts for uneven sample sequencing depth
and attempts to correct compositionality. In other words, samples represent a fraction of the
ecosystem and the observed sequences are relative abundances; therefore, the data are compositional.
In general, normalization procedures attempt to minimize the technical variability between samples
and sample-specific dispersion [59]. A novel normalization technique, CSS (cumulative sum scaling)
by metagenomeSeq, corrects the bias associated with the assessment of differential abundance to a
pre-determined percentile by dividing raw counts by the cumulative sum of counts [60]. It is not
recommended to use normalized data with presence/absence metrics like binary metrics or unweighted
UniFrac, because CSS methods are abundance-based. Although used mainly for differential abundance
analysis (statistically significant differences in microbe abundance across samples), DESeq can also be
used as another data normalization alternative to rarefaction [59,61,62]. The Differential Abundance
section of this paper addresses the DeSeq method in the context of differential abundance analysis.

Normalization and rarefaction present both advantages and disadvantages. When a subsample is
generated to an even depth (rarified), some observations are discarded which reduces the ability to detect
differences in diversity measures [63]. Although there is a definite reduction in resolution, the simplicity
and clarity of the method can be worth the loss of a few reads. Furthermore, microbial communities

https://rdrr.io/rforge/vegan/man/rarefy.html


Life 2020, 10, 185 6 of 20

are often different enough that the loss of a few reads won’t affect the overall measure of diversity [62].
Despite normalizing data using CSS being a promising technique, it should be used with caution as it
can dramatically exaggerate the low-abundance taxa which can lead to their over-representation in
a CSS normalized data set [63]. Also, DESeq produces negative values for Operational Taxonomic
Units (OTUs) with low abundances as a result of its log transformation. Some diversity metrics,
like Bray-Curtis, cannot be used with negative values and therefore can’t be used to analyze a data
set normalized by DESeq. The key is to verify the results using multiple normalizing approaches,
as different methods can complement each other depending on the goal of the research. Verifying the
normalization outcome include considering the bias introduced by the method and stating it as a
limitation. The latter limitation could be compensated by a second method, which corrects the bias.
For example, the CSS normalization corrected the bias in the assessment of differential abundance
introduced by total-sum normalization (TSS). It is important to consider that normalization is a highly
debated topic and there is currently no consensus from experts on which normalization method is
better [64].

Alpha and Beta Diversity

The measurement of species diversity was first introduced by Whittaker and defined as the number
of species and their proportion within one sampling site [65]. There are different ways to measure
alpha diversity depending on the context of the study. A list of indexes is presented by Magurran
and McGill [66]. The number of observed OTUs, Chao1, Shannon and Simpson are commonly
used alpha diversity measures and have been shown to perform well in the context of bioaerosol
exposure studies [26,27,67]. More specifically, Chao1 is a richness estimator. The higher the number
of unique OTUs in a sample, the higher the value of the Chao1 index. For Shannon and Simpson,
the species richness is combined with the abundance to give one diversity measure. The Simpson
index represents the probability of two randomly selected OTUs from the same sample, being of/from
the same species. The output values are bounded between 0 and 1, where 0 represents the highest
diversity. Shannon output values start at 0, and higher values are associated with higher diversity.

An important factor to consider when choosing an alpha diversity measure for comparing sets of
samples is the gene marker used for HTS, as the use of some markers may limit your choices of indexes.
For example, PD Whole Tree is a phylogenetic alpha diversity measure and is defined as the minimum
length of all phylogenetic branches acquired to span a given set of taxa on the phylogenetic tree [68].
Thus, the use of a reliable phylogenetic tree is necessary when applying the PD Whole Tree analysis.
Compared to the markers for 16S bacterial and archaea genes, the fungal ITS gene marker is subject to
intraspecific variability [69]. The construction of a phylogenetic tree is not recommended due to the
possibility of obtaining different results using the same dataset but with different tree construction
methods (data not shown). Every metric has different strengths and limitations. Technical information
on each metric is available in ecology textbooks and is beyond the scope of this paper.

As alpha diversity was a measure of diversity inside individual samples, beta diversity compares
the microbial composition between samples from different environments [70]. It measures the
differences in overall microbial profiles. The output of beta diversity measures is a distance matrix
containing a dissimilarity value for each pairwise comparison (each sample compared to another).
Before any comparison can be accurately made, samples must be normalized as described above,
normalized by relative abundance inside each sample, or rarefied so that they all have the same
sequencing depth [59,60]. There are a number of metrics for beta diversity measurements that can
be classified into two categories: those that use phylogenetic information (rely on the quality of the
constructed phylogenetic tree) and those that do not, which are formally known as non-phylogenetic
methods [71–74]. One of the most used phylogenetic beta diversity measures is Unique Fraction
(UniFrac), which measures the degree of unique evolution of one microbial community compared
to others [75]. With the assumption that closely related species have similar genetic functions,
the abundances of phylogenetically similar taxa have less importance when using UniFrac for
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beta diversity measurements [76]. Quantitative measures (e.g., weighted UniFrac) are suited for
revealing community differences that are due to changes in relative taxon abundance (e.g., when a
particular set of taxa is more abundant in bioaerosol samples compared to the source of aerosolization).
Qualitative measures (e.g., unweighted UniFrac) consider the presence/absence of OTUs and are
most informative when bioaerosol microbial communities differ according to various factors such
as temperature, relative humidity, season, and time. In fact, information on relative abundance can
sometimes mask significant patterns of variation in which taxa are present [71]. The Bray-Curtis
Dissimilarity Index is one of the most popular non-phylogenetic measures [77]. It quantifies the
compositional dissimilarity between two different samples, based on the counts from each sample.
The Bray–Curtis dissimilarity is bounded between 0 and 1, where 0 means the two samples have the
same composition and 1 means the two samples do not share any taxa. It is not considered a distance
because it does not satisfy the triangle inequality rule and should be called a dissimilarity to avoid
confusion. Bray–Curtis and Jaccard indices both use rank-order but the Jaccard index is metric while
Bray-Curtis is semi-metric.

Alpha and beta diversity indexes can be calculated using the scripts described in QIIME1 at
http://qiime.org/scripts/alpha_diversity.html and http://qiime.org/scripts/beta_diversity.html or using
QIIME2 at https://forum.qiime2.org/t/alpha-and-beta-diversity-explanations-and-commands/2282.
Alternatively, the Vegan package can also be used for more control over options and parameters:
https://cran.r-project.org/web/packages/vegan/vegan.pdf.

4. Visualization Tools

4.1. Alpha and Beta Diversity

Once distances/dissimilarities between samples are computed, hierarchical clustering can be
used to detect patterns of sample grouping. Samples with similar microbial compositions are
grouped together in the branches of a dendrogram [78]. Hierarchical clustering is a useful tool for
sample grouping visualization but should be coupled with additional statistical tests [32]. Moreover,
the information in the distance matrices generated can be displayed in a dimensional space (two or three
orthogonal axes) for better visualization of the sample closeness. Two popular ordination techniques
in microbial ecology are non-metric multidimensional scaling (NMDS) and metric multidimensional
scaling (MDS). The classic example of multidimensional scaling is the Principal Coordinates Analyses
(PCoA) [32,75,79]. MDS algorithms aim to place each sample in N-dimensional space such that the
inter-sample distances are preserved as much as possible. Each sample is assigned coordinates in each
of the N dimensions. The number of dimensions on an MDS plot can exceed 2 and is specified a priori.
Choosing N = 2 optimizes the object locations for a two-dimensional scatterplot. The stress value
associated with the MDS expresses the goodness of fit of the ordination and is better when nearing zero.
The accuracy of the PCoA plot can be evaluated using jackknifing which is an iterative resampling
procedure where one OTU from the data set is omitted in each iteration. Then, the average is represented
on a PCoA plot with variance represented as confidence ellipsoids [75]. On the contrary, the position
of samples in NMDS represents the rank order of inter-sample distances. In general, both ordination
techniques should lead to similar conclusions and it is recommended to test both methods on each
data set. To choose the method that is most appropriate for the dataset, there are several papers
that are dedicated to the subject and that go into greater details [80–82]. Constrained ordinations differ
from unconstrained ordinations, such as PCoA and MDS/NMDS, because they maximize the plot to
display the greatest separation of samples from selected variables. On the other hand, unconstrained
ordinations try to explain the variability of the dataset on a limited number of axis for every variable
(dependent or independent), which can lead to less separation in clusters and a harder to detect
trends [80]. Multiple versions of constrained ordinations are available, such as Canonical Analysis of
Principal coordinates (CAP) [83] and Distance-Based Redundancy Analysis (db-RDA) [84].

http://qiime.org/scripts/alpha_diversity.html
http://qiime.org/scripts/beta_diversity.html
https://forum.qiime2.org/t/alpha-and-beta-diversity-explanations-and-commands/2282
https://cran.r-project.org/web/packages/vegan/vegan.pdf
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It is advised to use both a robust unconstrained ordination (e.g., MDS) and constrained ordination
(e.g., CAP), combined with appropriate statistical tests, to get the best picture out of a dataset [83].

4.2. Additional Visualization Tools

Creating a scatterplot representing average distances between samples (distance matrices),
broken down by specified parameters (categories) is an alternative way to compare the microbial
compositions of samples. The inputs are a distance matrix and a mapping file. The x-axis represents
a category and must be numerical. In the primary state, each sample within the category will be
compared to the other samples (or the one representing the secondary state) and an average of their
distances will be calculated. The average distances will be plotted against a numerical category and
are represented in the y-axis. The numerical category in the x-axis should preferably be linear and
correlated somehow to the primary state. The points on the plot can then be colored according to
another defined category. Thus, we have average distances between the groups we are comparing
according to a linear parameter (e.g., variation of the microbial composition of bioaerosols according to
days, temperature, etc.). An example of a scatterplot representing average distances between samples
is presented in Figure 2. The distances were calculated between air samples collected in different
wastewater treatment plants during summer and winter. The temperature did not affect the distance
between air samples.
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Figure 2. Scatterplot representing average distances between samples. The distances were calculated
between groups of air samples collected in different wastewater treatment plants during summer
and winter.

Similar to scatterplots, boxplots can be used to compare distances between categories of samples.
The boxplots can compare distances within all samples of a category, as well as between different
categories. Thus, individual-, within- and between-distances can be plotted. The input for a scatterplot
is a distance matrix with the mapping file explaining the categories of samples. Statistical test comparing
all combinations of paired boxplots can help determine which microbial distributions are significantly
different from the others.

In addition to using NMDS and MDS plots, building a neighbor joining tree or a Unweighted Pair
Group Method with Arithmetic mean (UPGMA) tree that compares samples, using a distance matrix
as input, is another way to examine sample grouping. Neighbor joining is an agglomerative clustering
method for creating phylogenetic trees. Typically used for trees based on DNA data, the algorithm
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requires knowledge of the distance between each pair of taxa. In this case, it is used to cluster samples.
Compared to UPGMA, the advantage of neighbor joining is that it does not assume that all lineages
evolve at the same rate [85].

Information in an OTU table can be visualized as a heatmap where each row corresponds to
an OTU and each column corresponds to a sample. The higher the relative abundance of an OTU
in a sample, the more intense the color at the corresponding position on the heatmap. The OTUs
can be clustered by UPGMA hierarchical clustering, and the samples are presented in the order
in which they appear in the OTU table. This is useful for establishing a general overview of the
samples that have equal abundance of OTUs and are clustered together. However, identification
of specific OTUs is difficult to visualize when the number of OTUs from the OTU table is very
high. Therefore, presenting the OTUs in bar graphs taxonomic analyses are preferred for OTU
identification. The Vegan package offers functions to generate all the plots mentioned in this section:
https://cran.r-project.org/web/packages/vegan/vegan.pdf.

5. Statistical Analysis

5.1. Parametric VS. Nonparametric Statistics

Nonparametric statistics are not based on parameterized families of probability distributions [86].
Some examples of the typically used parameters are mean, median, mode, variance, range, and standard
deviation. Unlike parametric statistics, nonparametric statistics make no assumptions about the
probability distributions of the variables being assessed. The difference between parametric and
nonparametric models is that the former has a pre-established number of parameters, while the latter
determines the number of parameters depending on the dataset. In other words, the parameters are
determined by the dataset in nonparametric statistics, and by the model in parametric statistics.

Since ecological datasets rarely conform to the normal distribution [87], parametric tests are
often not the right fit. In order to use parametric tests on these datasets, one should verify that their
characteristics are in line with the assumptions of the tests. The combined use of visual approaches
(frequency distribution) and of a statistical test for normality, such as the Shapiro-Wilk test, is advised to
confirm the normality of the dataset [88]. Sample size and dispersion (data spread in all groups) should
also be checked before using a parametric test with data that do not have a normal distribution in order
to choose the right test. For example, the 2-sample t-test and One-Way ANOVA assume equal variances
and these options should not be selected when the dispersion of data in each group of samples is
different. Usually, parametric tests have equivalent nonparametric tests that can be used as alternatives.
Here are a few examples of related pairs of tests: 1-sample t-test and Wilcoxon; 2-sample t-test and
Mann-Whitney test; One-Way ANOVA and Kruskal-Wallis. Even though parametric tests have more
statistical power for detecting significance, nonparametric tests can be more suitable when a dataset is
better represented by the median rather than the mean [89]. Also, nonparametric tests perform better
with ordinal and ranked data compared to parametric tests that can only assess continuous data. Thus,
nonparametric tests can better handle exceptions that cannot be removed [90].

According to the central limit theorem, if the mean accurately represents the center of the
distribution of the dataset and the sample size is large enough (>30), one might consider a parametric
test even with a non-normal distribution [88]. However, if the median is a better representative of the
center of the distribution of the dataset, nonparametric tests can give more accurate results even with a
large number of samples. It should be noted that when the sample size is very small, nonparametric
tests are the only option. Overall, checking the assumptions associated with the statistical test is crucial
for making the best choice as each one has its own data requirements [91].

5.2. Comparisons Using Alpha and Beta Diversity Measures

Alpha diversity index values obtained for each sample can be compared based on parametric or
nonparametric tests that use multiple groupings of sample data. For example, air samples may be
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labeled as one of three types: outdoor control, sampling site 1 or sampling site 2. Statistics comparing
each combination of two sample groups (outdoor control and sampling site 1; outdoor control and
sampling site 2; sampling site 1 and sampling site 2) can be used. The results include the means and
standard deviations of the alpha diversities of the two groups, along with the p-value of the statistical
test. Based on these results, one can determine which groups of samples are significantly richer and
more diverse than the others. Commonly used tests include paired or unpaired t-test and Wilcoxon
test and the Kruskal-Wallis test.

5.3. Statistical Significance of Sample Groupings

The analysis of the strength and statistical significance of sample groupings using a distance
matrix as the primary input can be used in combination with the previously discussed NMDS or
MDS (PCoA) to further validate that the detected patterns of sample groupings are statistically robust.
There are several methods available for analyzing the statistical significance of sample groupings
using distance matrices. The suitability of these methods should be evaluated based on parametric
or nonparametric features and on distance matrices that are constructed with metric, semi-metric or
non-metric dissimilarities. The following tests are among the most used in microbial ecology studies,
and are well suited for bioaerosol studies more specifically: Adonis ANOSIM, BIO-ENV, Moran’s I,
MRPP, PERMANOVA, PERMDISP, and db-RDA (vegan package, R).

The Adonis test partitions distance matrices among sources of variation in order to describe the
strength and significance that a categorical or continuous variable has in determining variation of
distances. This is a nonparametric method and is almost equivalent to db-RDA, except when distance
matrices are constructed with semi-metric or non-metric dissimilarities, which may result in negative
eigenvalues. Adonis is very similar to PERMANOVA, though it is more robust because it accepts
both categorical and continuous variables in the metadata mapping file, while PERMANOVA only
accepts categorical variables [92]. Moreover, PERMANOVA is based on the ANOVA experimental
design, but because it is a non-parametric test it analyzes the variance and determines the level of
significance using permutations [93]. While ANOVA/MANOVA assumes normal distributions and
Euclidean distance, PERMANOVA can be used with any distance measure as long as it is appropriate
to the dataset. PERMDISP is a method that analyzes the multivariate homogeneity of group dispersion
(variances). It determines whether the variances of groups of samples are significantly different.
The results of both parametric and nonparametric significance tests are provided in the output.
This method is generally used in combination with PERMANOVA [94]. MRPP is another method that
tests whether two or more groups of samples are significantly different based on a categorical variable
found in the metadata mapping file. Since MRPP is nonparametric, significance is determined through
permutations [95]. ANOSIM tests whether two or more groups of samples are significantly different
based on a categorical variable found in the metadata mapping file. Since ANOSIM is nonparametric,
significance is also determined through permutations [96]. Similar to Adonis, db-RDA differs if
certain non-Euclidean semi or non-metrics are used to produce the distance matrix, and negative
eigenvalues are encountered. This difference will be apparent in the p-values, not the R2 values.
BIO-ENV (BEST) finds subsets of variables whose Euclidean distances are maximally rank-correlated
with the distance matrix. For example, the distance matrix might contain UniFrac distances between
communities, and the variables might be numeric environmental variables (e.g., pH and latitude).
Correlations between the community distance matrix and Euclidean environmental distance matrix is
computed using Spearman’s rank correlation coefficient (rho). This method will only accept continuous
or discrete numerical categories [97–99]. Interestingly, this method accepts more than one category to
explain variation between groups of samples. Moran’s I is another method that uses numerical data to
identify which type of numerical variables explains sample grouping [100]. In short, a multitude of
tests have been developed to statistically test the significance of grouping. One should ensure that the
selected method is appropriate for the type of data being analyzed and for scientific questions it is
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trying to answer. Table 1 presents a summary of the applicable methods with the important parameters
to consider when choosing one.

Table 1. Summary of methods to test the significance of sample grouping.

Methods Type of Statistics Type of Variables Comment

Adonis Nonparametric Categorical and
Numerical

Semi-metric and non-metric
dissimilarities

ANOSIM Nonparametric Categorical -

BIO-ENV N/A Numerical (continuous
or discrete)

Rank-correlation between Euclidean
distances and distance matrix

Moran’s I N/A Numerical Identify spatial configuration in samples

MRPP Nonparametric Categorical -

PERMANOVA Nonparametric Categorical Uses an ANOVA experimental design
and returns pseudo-F and a p-value

PERMDISP Parametric and
nonparametric Categorical Analysis of multivariate homogeneity of

variances

db-RDA Nonparametric Categorical
A category in the metadata can be
specified to explain the variability

between samples

5.4. Correlations

One common application of distance matrix comparison techniques is to determine if a correlation
exists between an ecological distance matrix (e.g., UniFrac distance matrix) and a second matrix derived
from an environmental parameter that is numeric/continuous (e.g., differences in pH, temperature,
or geographical location). For example, one might be interested in knowing if aerosol samples with
different pH levels are more different from one another than from aerosol samples with similar pH levels.
If so, this would indicate a positive correlation between the two distance matrices. Mantel correlation
tests allow for the comparison of two or more distance/dissimilarity matrices to determine if there is a
correlation. It tests the hypothesis that distances between samples within a given matrix are linearly
independent of the distances within those same samples in a separate matrix.

A Mantel correlogram produces a plot of distance classes versus Mantel statistics. Briefly, an
ecological distance matrix and a second distance matrix (e.g., spatial distances, pH distances, etc.)
are provided. In the second distance matrix distances are split into a number of distance classes
(this number is determined by Sturge’s rule). A Mantel test is applied to these distance classes versus
the ecological distance matrix. The Mantel statistics obtained from each of these tests can then be
plotted in a correlogram. A filled symbol on the plot indicates that the Mantel statistic was statistically
significant [101]. An example of a mantel correlogram plot is presented in Figure 3, using air samples
from wastewater treatment plants compared with weighted and unweighted distance matrices.

Moreover, correlations between abundances (relative or absolute) and numerical metadata can also
be used to correlate features to sample metadata values. Several methods are available to accomplish
this. Pearson is a parametric and linear measure of correlation. It is a scaled measure of the degree to
which two sequences of numbers co-vary. For correlated sequences, Pearson > 0, and for anticorrelated
sequences, Pearson < 0 (uncorrelated implies Pearson = 0). The Spearman correlation is a nonparametric
measure of the correlation between two sequences of numbers. Kendall’s Tau is an alternative method of
calculating correlations between two sequences of numbers. However, it is slower and utilized less often
than Spearman or Pearson scores [102]. Statistics can be added to these correlation approaches in order to
generate p-values to confirm the correlation scores obtained. Bootstrapping is the most robust procedure
for calculating the p-value of a given correlation score. Bootstrapping takes the input sequences,
randomly changes the order of one, and then recomputes the correlation score. The p-value represents
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the number of times (out of the given number of permutations) that the score of the permuted sequence
pair was more extreme than the observed pair. Bootstrapping is preferred when information about
statistical distributions is unknown (https://cran.r-project.org/web/packages/bootstrap/bootstrap.pdf).
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plot indicates that the Mantel statistic was statistically significant.

Finally, the correlation between samples in terms of their taxonomic composition can also be
computed. This is useful for determining if the taxonomic compositions of mock communities that
were assigned using different taxonomy assigners are correlated. Another usage is to compare the
taxonomic compositions of several mock community samples to a single known sample community.
In general, correlations in the taxonomic composition between different groups of samples can be
useful (e.g., aerosol samples collected from different sites). The correlation coefficient, an associated
confidence interval, and p-values (nonparametric or parametric) should also be included using the
method discussed previously.

6. Taxonomic Analyses

The taxonomic analysis uses an OTU table containing taxonomic information as input data.
This information was obtained by comparing the consensus nucleotide sequence of the OTU to a public
database. The databases should be chosen based on the gene marker used for the study. Greengenes is
a 16S rRNA gene database suited for bacterial diversity [103]. UNITE is more appropriate for the fungal
ITS gene [104]. SILVA is a wider database of small (16S/18S, SSU) and large subunit (23S/28S, LSU)
rRNA sequences for all three domains of life (Bacteria, Archaea and Eukarya) [105]. SILVA is the
most up-to-date database and should be chosen over other databases as they tend to be outdated.
Even though, some might go to the species rank, these tend to be unreliable. Next, the taxonomic level
for which the summary information is provided is designated. This level will depend on the format of
the taxon strings that are returned from the taxonomy assignment step. The taxonomy strings that are
most useful are those that standardize the taxonomic level with the depth in the taxonomic strings.
For instance, for the RDP classifier taxonomy: level 2 = Domain (e.g., Bacteria), 3 = Phylum (e.g.,
Firmicutes), 4 = Class (e.g., Clostridia), 5 = Order (e.g., Clostridiales), 6 = Family (e.g., Clostridiaceae),
and 7 = Genus (e.g., Clostridium). Although, the relative abundance of each taxonomic group is
the most used technique to compare taxa, raw counts can also be used for an absolute abundance.
Results can be displayed with bar or area charts comparing taxonomy between groups of samples or
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between all individual samples. In addition, each pair of samples can be compared and the number of
their shared OTUs is displayed in order to focus only on common OTUs between groups of samples.

Furthermore, the inclusion of taxonomic information in the mapping file allows NMDS or MDS
plots to be colored based on taxonomy. More specifically, results displayed on principal coordinate
plots can be colored based on any of the metadata fields in the mapping file. Coloration of the plots
based on the relative abundances of each taxon can help in distinguishing which taxonomic groups are
responsible for the sample grouping patterns.

Taxonomic analyses can also include the calculation of the ratio of abundance of specified
taxonomic groups. This method is based on the microbial dysbiosis index described by Gevers and
his coauthors [106]. Microbial Dysbiosis index (MD-index) is used as an indicator of the microbial
imbalance within samples. One should specify the taxonomic groups to be used for the analyses
according to their susceptibility to being affected by the different environmental conditions that define
the samples. This index provides the option to choose the numerator and the denominator of the log
ratio. The index must include the taxonomic groups that will be tested for increase (numerator) and
decrease (denominator). For example, the ratio comparing firmicutes and proteobacteria would have
firmicutes as the numerator and the proteobacteria as the denominator. To determine the taxonomic
biomarkers, one can use a distance matrix plotted on ordination and validate which variable in the
metadata mapping file best/most explains the variation observed, and then use taxonomic analyses
to visualize the taxonomic composition of the samples based on the variable chosen. That way, it is
possible to determine which taxonomic groups exhibit differential abundance and can be used for
the specified MD-index. The comparisons between samples based on microbial dysbiosis and the
categories they belong to in the metadata mapping file can help determine which environmental
condition creates a microbial dysbiosis. In bioaerosol studies, the analyses of dysbiosis can be very
useful in determining if there is a microbial imbalance between a given source and the aerosols released.

Finally, identification of the core microbiome is another example of taxonomic analyses that provide
useful information on the ecology of bioaerosols. The core of a microbiome is defined as the minimum
community of microbes that is essential for a well-functioning ecosystem. This concept that has mostly
been applied to the gut ecosystem may also be applicable to bioaerosols [107,108]. The identification of
the species that are found in a certain percentage (e.g., 50% to 95%) of all aerosol samples from a specific
environment can determine the core microbial composition (core microbiome) of the environment
being investigated. The importance of characterizing a core microbiome for each environment is
extremely evident when searching for biomarkers of bioaerosol exposure in hazardous environments.
The characterization of these biomarkers plays a key role for better evaluating the risk of bioaerosol
exposure and will help in the standardization of bioaerosol studies.

7. Differential Abundance

Differential abundance analyses allow for the identification of OTUs that are differentially
abundant across two sample categories in the mapping file (e.g., outdoor and indoor air samples).
Two parametric tests are available for such analyses: MetagenomeSeq zero-inflated Gaussian (ZIG) and
DESeq2 negative binomial Wald test. It is recommended to have at least five samples in each category
to apply these methods. However, caution is required as parametric tests assume a normal distribution
and perform poorly when assumptions about the data are not met. The input is a raw (not normalized,
not rarefied) matrix with uneven column sums. With these techniques, it is still recommended to
remove low depth samples (e.g., below 1000 sequences per sample), and low abundance/rare OTUs
from the datasets. It is also possible to remove low variance OTUs across the entire dataset to limit the
number of comparisons being made and lower the statistical corrections being applied to the resulting
p-values. QIIME offers a diagnostic plot along with the differential abundance analyses. The DESeq2
method should not be used if the fit line on the dispersion plot is not smooth, if there are big gaps in
the point spacing, or if the fitted line does not look appropriate to the data [32]. DESeq2 is stronger
when used with very small datasets, while MetagenomeSeq’s fitZIG uses an algorithm better suited for
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larger sized libraries with over 50 samples per category (the more the better). The results are presented
in the form of a list of all of the OTUs in the input matrix, along with their associated statistics and the
p-values that determine the statistical power of the differential abundance in the compared categories.
These methods can be used in combination with the rarefied approaches to compare their outcomes.
This manuscript is meant as a guide presenting recommended analyses for use in bioaerosol microbial
ecology studies and the tools to achieve them. However, more detailed technical information can be
found in the original papers describing the methods [64,67,109].

In the context of differential abundance analyses, here defined as rarefied approaches are statistical
tests that compare OTU frequencies in sample groups and ascertain whether or not there are statistically
significant differences between the OTU abundances of different sample groups. Rarefying the samples
prevents zero-variance errors and spurious significance for low abundance OTUs and focuses on the
abundant OTUs, which likely play the most important role in the differential abundance. Put differently,
the most abundant OTUs are the ones of interest in differential abundance analyses. Thus, losing low
abundance OTUs is worth it. Examples of statistical test that can be applied to rarefied data are
the G-test, Kruskal-Wallis, ANOVA, Mann-Whitney U and t-test. Each test has its own null and
alternate hypotheses and its own assumptions. It is important to check the sample size requirements,
assumptions, and the null and alternate hypotheses of each test in order to determine which is most
appropriate for the dataset. Documentation on QIIME and R packages provides useful information on
the subject, as does key literature on the subject of statistics in ecology [110]. The three nonparametric
tests (Kurskal-Wallis, Wilcoxon, and Mann-Whitney U) are most suited for bioaerosol sequencing data
when the statistical distribution is not known. The t-test and Mann-Whitney U test may only be used
when there are two sample groups, while Kruskal-Wallis can also be used when three or more groups
of samples are compared (e.g., outdoor, indoor, source and samples).

A new method emerged that produces exact sequence variants (ESVs) instead of OTUs for a
greater resolution than OTU-based methods. DADA2 processes data from fastq files, removes errors
and chimeras, and produces sample abundances and taxonomic assignments [44]. Other synonyms
of ESVs are amplicon sequence variant (ASV), zero radius OTU (ZOTU), or simply an OTU defined
by 100% sequence similarity. ASVs prone a better amplicon resolution by distinguishing sequence
variants differing by one nucleotide. ASVs most prominent advantage is the combination of the
benefits from overcoming limitations inherent to closed-reference and de novo methods. For instance,
closed-reference OTUs cannot document biological variations outside of the reference database used for
their construction. On the other hand, the validity of de novo OTUs outside of the dataset in which they
were defined is also questionable, which make cross-studies comparison invalid. While ASVs capture
all biological variations present in a dataset, and ASVs inferred from a given dataset can be reproduced
in future datasets and validly compared [111]. However, ASVs method also comes with its share of
limitations. Allowing 100% sequence similarity may lead to a wrong differentiation between the SNPs
of the same species. In addition, the zero percent difference may give an extremely high number of ASVs
in a sample, which, in return, causes the missing of the core microbiome information’s (unpublished
data). Above all, the same genome can contain multiple ASVs if there are multiple copies of the targeted
gene. For this matter, ASVs can be validly compared between studies, only when the same primers
were used on the targeted gene. Furthermore, the high variability of the ITS region makes us reconsider
the automatic replacement of the traditional OTUs by ASVs. To sum up, ASVs and de novo OTUs are
more precise in describing diverse biological sequences in a less represented environment in reference
databases like bioaerosols, compared to closed-reference OTUs. Most importantly, no matter the
methodology used, downstream analyses should consider the methodological differences, accordingly.

8. Conclusions

The analysis of microbial diversity is becoming a crucial component in several fields of
scientific research, and bioaerosols is no exception. Many of the bioinformatics tools used to study
microbial diversity were developed for researchers comfortable with a command line environment.
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This manuscript is intended as a guide to the types of useful bioinformatics tools that provide a
thorough investigation of the microbial communities of bioaerosols. Many questions can be answered,
hypotheses confirmed and critical thinking can be triggered by such analyses. Thus, the main goal is
not to provide command lines about how to perform the analyses, but to offer important information
and insight on tests typically used in microbial ecology. We do this by providing examples of their
application in bioaerosols studies. Bioinformatics tools are still underutilized by bioaerosol scientists
and they can, in some cases, lead to spurious analyses and interpretations. The authors hope that this
work represents a popularization of bioinformatics in the study of bioaerosols and will provide a good
source for the «dos and don’ts» when conducting a critical microbial community study.
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