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ABSTRACT
Breast cancer is one of the most common malignant tumors among women worldwide
and has a high morbidity and mortality. This research aimed to identify hub genes
and small molecule drugs for breast cancer by integrated bioinformatics analysis.
After downloading multiple gene expression datasets from The Cancer Genome Atlas
(TCGA) andGene ExpressionOmnibus (GEO) database, 283 overlapping differentially
expressed genes (DEGs) significantly enriched in different cancer-related functions and
pathways were obtained using LIMMA, VennDiagram and ClusterProfiler packages
of R. We then analyzed the topology of protein–protein interaction (PPI) network
with overlapping DEGs and further obtained six hub genes (RRM2, CDC20, CCNB2,
BUB1B, CDK1, and CCNA2) from the network via STRING and Cytoscape. Subse-
quently, we conducted genes expression verification, genetic alterations evaluation,
immune infiltration prediction, clinicopathological parameters analysis, identification
of transcriptional and post-transcriptional regulatory molecules, and survival analysis
for these hub genes. Meanwhile, 29 possible drug candidates (e.g., Cladribine, Gallium
nitrate, Alvocidib, 1β-hydroxyalantolactone, Berberine hydrochloride, Nitidine chlo-
ride) were identified from the DGIdb database and the GSE85871 dataset. In addition,
some transcription factors and miRNAs (e.g., E2F1, PTTG1, TP53, ZBTB16, hsa-miR-
130a-3p, hsa-miR-204-5p) targeting hub genes were identified as key regulators in the
progression of breast cancer. In conclusion, our study identified six hub genes and 29
potential drug candidates for breast cancer. These findings may advance understanding
regarding the diagnosis, prognosis and treatment of breast cancer.

Subjects Biochemistry, Bioinformatics, Molecular Biology, Oncology, Pharmacology
Keywords Breast cancer, Biomarkers, Traditional Chinese medicine, Bioinformatics analysis,
Immune infiltration

INTRODUCTION
Among cancers affecting females, breast cancer has a particularly high incidence, recurrence
and mortality rate. Although encouraging progress has been made in the early diagnosis
and systemic treatment over several decades, the overall 5-year survival rate for patients
with breast cancer is still low, and the incidence rate continues to increase annually
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(Bray et al., 2018; Waks & Winer, 2019). Breast cancer has become a serious public health
problem all over the world, which brings great economic burdens to individuals and
families. Thus, more efforts are required to find effective biomarkers for the early diagnosis,
accurate prognosis, and targeted therapy of breast cancer.

High-throughput sequencing technology and bioinformatics analysis methods can
reveal changes in the expression of a vast amount of genes and are also effective tools
to identify candidate biomarkers for breast cancer research (Kulasingam & Diamandis,
2008). Liu et al. (2020) explored the expression and prognostic value of TDO2 in breast
cancer using transcriptome data, and analyzed the correlation between TDO2 gene and
tumor immune invasion, suggesting that TDO2 was a promising new immunotherapy
target for breast cancer. Others (Li et al., 2020b) studied the biological mechanism
of BRCA1/2 mutant breast cancer and evaluated the diagnosis and prognosis values
of key genes using bioinformatics methods. In addition, to clarify the role of low-
frequency mutated genes in breast cancer, Lusito et al. (2019) used functional network
construction, genemutation analysis, hierarchical clustering and cancermodule recognition
to analyze the gene expression and mutation datasets of breast cancer. Similarly,
Wang et al. (2019) used research samples from The Cancer Genome Atlas (TCGA,
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga)
and Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database to
analyze the pathogenesis and potential prognostic marker genes of breast cancer. In general,
the majority of bioinformatics studies focused on how key genes affect the tumorigenesis
and prognosis of breast cancer, with limited research on the systemic analysis of multi-gene
and multi-pathway as well as potential drugs.

In the present study, we applied comprehensive bioinformatics methods, such as
differentially expressed genes (DEGs) identification, protein–protein interaction (PPI)
network integration, hub genes identification, correlation prediction between hub genes,
determination of genetic alterations, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment, immune cell infiltrates evaluation,
clinicopathological features analysis and survival analysis to process large-scale DNA
microarrays and RNA-seq data from GEO, TCGA and other public databases so as to
explore potential hub genes and biological pathways related to the occurrence, development
and prognosis of breast cancer. We also explored the transcription factors (TFs) and
miRNAs that regulate the transcriptional and post-transcriptional processes of hub genes,
respectively. In addition, several small molecule drugs for breast cancer were obtained
from the DGIdb drug relocation database (http://dgidb.org/) and the GSE85871 dataset.
Compared with similar publications, this study involved over 10,000 samples and more
comprehensive analysis methods. Therefore, we may get more reliable and accurate
information about breast cancer through this exploration. The workflow was explained in
Fig. 1, and the details were provided in the Materials and Methods section.
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Figure 1 Process of the present study.GEO: Gene Expression Omnibus; TCGA: The Cancer Genome
Atlas; Overlapping DEGs: Overlapping differentially expressed genes; GO: Gene Ontology; KEGG: Kyoto
Encyclopedia of Genes and Genomes; PPI: protein-protein interaction; TFs, transcription factors.

Full-size DOI: 10.7717/peerj.9946/fig-1

MATERIALS & METHODS
Download of datasets and identification of DEGs
Five independent gene expression profiles (GSE3744,GSE21422,GSE42568,GSE61304, and
GSE65194) based on GPL570 Platform (Affymetrix Human Genome U133 Plus 2.0 Array)
were downloaded from GEO database to identify DEGs. After normalization between
arrays, we investigated DEGs among each dataset with the threshold of |log2FoldChange
(log2FC)|> 1 and adj.P.Val < 0.05 using LIMMA package of R (Ritchie et al., 2015).

For validation, GEPIA2 online tool (http://gepia2.cancer-pku.cn/#index) was used to
analyze the differential expression of TCGA Breast invasive carcinoma (BRCA) RNA-seq
dataset composed of 1,085 tumor samples and 112 normal samples according to the cut-off
standard (|log2FC|>1 and q-value <0.05). Lastly, the common results of TCGA BRCA
dataset and GEO datasets were selected as the overlapping DEGs of breast cancer, which
could reduce the influences resulted from the heterogeneity of the different datasets. Venn
diagram and volcano plot were drawn by VennDiagram and other packages of R. Table 1
listed the details of datasets.
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Table 1 Characteristics of datasets in this study.

Expression profile dataset Breast cancer Normal

GSE3744 40 7
GSE21422 14 5
GSE42568 104 17
GSE61304 58 4
GSE65194 167 11
TCGA BRCA 1085 112

Protein–protein interaction (PPI) network integration and hub genes
screening
STRING (version 11.0; https://string-db.org/) is a biological database designed to analyze
functional interactions between proteins (Szklarczyk et al., 2019). In this study, we used
STRING to construct a PPI network with overlapping DEGs under the premise of an
Interaction score of 0.7. Then, we utilized the cytoHubba plug-in of Cytoscape (version
3.7.2) which provided the calculated results bymaximal clique centrality (MCC),maximum
neighborhood component (MNC) and Degree methods to identify hub genes from the PPI
network (Chin et al., 2014).

Verification of hub genes
The Oncomine database (https://www.oncomine.org) was used to verify the mRNA
expression of hub genes with the threshold of P <0.05 and fold change >2. Next, the
Human Protein Atlas database (HPA, https://www.proteinatlas.org) was used to validate
the protein expression of genes by immunohistochemistry data.

BC-GenExMiner (http://bcgenex.centregauducheau.fr/BC-GEM/GEM-Accueil.php)
is a statistical mining tool that contains published breast cancer transcription data
(10,716 DNA microarray samples and 4,712 RNA-seq samples) (Jézéquel et al., 2012). We
performed correlation analysis between hub genes in breast cancer using BC-GenExMiner
and GEPIA2 online tool.

GO functional and KEGG pathway enrichment analysis
ClusterProfiler package of R can automatically classify biological terms and gene clusters
(Yu et al., 2012). To elucidate the biological characteristics of breast cancer-related genes,
we performed GO functional and KEGG pathway enrichment analysis by ClusterProfiler
with p-value <0.05 and q-value <0.05.

Analysis of genetic alterations of hub genes
The cBioPortal for Cancer Genomics (cBioPortal; http://cbioportal.org) provides
online resources for the exploration, visualization and analysis of multidimensional
cancer genomics data (Gao et al., 2013). In this study, 6618 breast cancer samples from
13 related reports in cBioPortal were used as research materials to explore genetic
alterations connected with the selected hub genes. Afterward, we utilized COSMIC
(https://cancer.sanger.ac.uk/cosmic), the most comprehensive resource for studying
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somatic mutation information in human cancer, to analyze hub genes alterations in breast
cancer (Forbes et al., 2010).

Evaluation of clinicopathological characteristics and immune
infiltration
We used BC-GenExMiner to analyze the correlations between hub genes expression and
clinicopathological variables such as Oestrogen receptor status (ER), Progesterone receptor
status (PR), HER2 receptor status (HER2), Nodal status (N), Scarff Bloom & Richardson
grade status (SBR), Nottingham Prognostic Index status (NPI), Age status, P53 status,
Basal-like and Triple negative breast cancer (TNBC) subtypes. P < 0.05 was considered to
be statistically significant.

TIMER (https://cistrome.shinyapps.io/timer/) is a comprehensive resource for
systematic analysis of tumor-infiltrating immune cells across 32 different cancers from
TCGA database (Li et al., 2017). In this experiment, we estimated the associations between
hub genes expression and immune cell populations (B Cell, CD8+ T Cell, CD4+ T Cell,
Macrophage, Neutrophil, and Dendritic Cell) in breast cancer using TIMER.

Prediction of TFs-hub genes and miRNAs-hub genes interaction
TRRUST (version 2, https://www.grnpedia.org/trrust/), a manually curated database
of human and mouse transcriptional regulatory networks, was used to explore the
TFs of hub genes (Han et al., 2018). Meanwhile, we used Encyclopedia of RNA
Interactomes Platform (ENCORI, http://starbase.sysu.edu.cn/) to unearth the miRNAs
targeting hub genes (Li et al., 2014). In addition, we utilized GEO2R online tool
(https://www.ncbi.nlm.nih.gov/geo/geo2r/) to analyze breast cancer differentially expressed
miRNAs (DEmiRNAs) in GSE97811 dataset including 45 tumor tissues and 16 normal
tissues. Then, we got miRNAs-hub genes interaction combined with miRNAs-target genes
analysis and DEmiRNAs data. Finally, Cytoscape was used to visualize transcriptional and
post-transcriptional regulatory networks.

Survival analysis
In this section, we applied the Kaplan–Meier Plotter (http://kmplot.com/analysis/) to
evaluate prognostic information of previously identified hub genes and important reporter
regulatory molecules (Nagy et al., 2018). The expression values of these genes were split
into either high (expression value ≥ median) or low (expression value <median). Hazard
ratio (HR) was calculated to evaluate the association between genes expression and survival,
and p < 0.05 was considered statistically significant.

Small molecule drugs analysis
The DGIdb online tool (http://www.dgidb.org/)—an available resource containing
drug-gene interaction information from more than 30 databases—was used to screen
antineoplastic drugs targeting hub genes (Cotto et al., 2018). We also downloaded the
GSE85871 dataset, which is a gene expression data ofMCF7 cells treatedwith 102 traditional
Chinese medicine (TCM) ingredients recorded in the GEO database. LIMMA package of
R was used to analyze the differential expression genes in each TCM ingredient treatment
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group compared with the untreated group (adj .p. val < 0.05). Then, we evaluated the
reversal effects of each TCM ingredient on overlapping DEGs induced by breast cancer.

RESULTS
Dataset processing and DEGs acquisition
After data normalization, the black lines of gene expression box plots of all samples in
each single dataset were almost on the same level, which was an important marker to
predict the reliability and accuracy of the experimental results (Fig. S1). Next, DEGs
(1,738 in GSE3744, 2,430 in GSE21422, 3,116 in GSE42568, 990 in GSE61304 and 4,181 in
GSE65194) were identified (Figs. 2A–2E; Tables S1–S5), and 302 integrated DEGs (110 up-
and 192 down-regulated) from 5 GEO datasets were found (Figs. 2F and 2G). Similarly, we
identified 3,559 DEGs from TCGA BRCA dataset with the cut-off criteria of |Log2FC| > 1
and q-value < 0.05 (Table S6). Then, 283 overlapping DEGs which might play promoting
or inhibitory roles in breast cancer progression were confirmed from the analysis results
of GEO datasets and TCGA BRCA dataset (Figs. 2H and 2I).

PPI network construction and hub genes filtering
The PPI network around proteins encoded by 283 overlapping DEGs was constructed
using STRING (Fig. S2A, Table S7). We found that 165 of the 283 overlapping DEGs were
related to each other and were visualized using Cytoscape –165 nodes and 1,861 edges were
included in PPI network and six hub genes (RRM2, CDC20, CCNB2, BUB1B, CDK1, and
CCNA2) based on MCC, MNC and Degree methods were identified (Fig. S2B). Notably,
these hub genes were all up-regulated in overlapping DEGs (Tables S1–S6) and might play
important roles in the pathogenesis of breast cancer.

Verification of hub genes
Based on the large-scale breast cancer-related data in the Oncomine database, we confirmed
that hub genes were significantly up-regulated in multiple cancer types, including Breast
Cancer, Brain and CNS Cancer, Lymphoma, Lung Cancer, and so on (Fig. 3A). Also,
immunohistochemistry staining data obtained from the HPA database demonstrated
the up-regulated expression of proteins encoded by RRM2, CDC20, CCNB2, CDK1 and
CCNA2 (Figs. 3B–3K). However, we did not find the association between BUB1B and
breast cancer in HPA database. According to the current analysis, we predicted that BUB1B
might also be associated with breast cancer, but experimental data were needed to confirm
this specific connection. Meanwhile, CDK1, CCNA2, CCNB2, BUB1B and CDC20 were
classified as cancer-related genes, and RRM2 was an FDA approved drug target. The data
of BC-GenExMiner and GEPIA2 both confirmed a powerful correlation among hub genes
(Fig. S3), suggesting that these genes might be the functional partners in breast cancer.

GO function enrichment and KEGG pathway analysis
The GO function annotations of overlapping DEGs were mainly classified into biological
processes (BP), cell component (CC) andmolecular function (MF). As for BP, up-regulated
overlapping DEGs were significantly related to mitotic nuclear division, organelle fission,
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and regulation of chromosome segregation, which was consistent with the biological
characteristics of the abnormally rapid proliferation of breast cancer cells. And the
down-regulated genes were closely related to regulation of cellular response to growth
factor stimulus, temperature homeostasis, retinoid metabolic process and regulation of
vasculature development. Within CC, the up-regulated genes were remarkably correlated
to spindle, chromosome, centromeric region, condensed chromosome kinetochore,
and midbody, whereas the down-regulated genes were related to collagen-containing
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extracellular matrix and sarcolemma. MF analysis displayed the up-regulated genes were
involved inmicrotubule binding,microtubulemotor activity, and cyclin-dependent protein
serine/threonine kinase regulator activity, whereas the down-regulated genes were mainly
enriched in glycosaminoglycan binding, heparin binding, extracellular matrix structural
constituent and growth factor binding (Figs. 4A and 4B; Tables S8 and S9).

KEGG pathway analysis showed the up- and down-regulated overlapping DEGs were all
significantly attached to Cell cycle, Oocyte meiosis, Tyrosine metabolism, ECM-receptor
interaction, Progesterone-mediated oocyte maturation, p53 signaling pathway, PPAR
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signaling pathway and Phenylalanine metabolism (Fig. 4C). Furthermore, the related
pathways of hub genes included Cell cycle, Oocyte meiosis, Progesterone-mediated oocyte
maturation, and p53 signaling pathway (Fig. 4C). Table S10 presented the detailed results
of KEGG enrichment analysis.

Genetic alterations of hub genes
As a result, there were nearly 2.1% (CDC20, CDK1), 1.2% (RRM2), 0.9% (BUB1B), 0.8%
(CCNA2), 0.7% (CCNB2) of breast cancer samples included in cBioPortal had genetic
changes. Amplificationwas themost common genetic alterations among six hub genes. And
deep deletion was another major genetic change among five hub genes (RRM2, CCNB2,
BUB1B, CDK1, CCNA2). While genetic alterations in RRM2, CDC20, BUB1B, CDK1 and
CCNA2 were related to missense mutation (Fig. S4A). In the query results of COSMIC
database, we found that all hub genes had missense mutations. RRM2, CCNB2, CDK1,
BUB1B and CDC20 experienced synonymous substitutions. CCNA2 and BUB1B also had
frameshift deletions. Specifically, these hub genes had mutations such as A > G, A > T, C
> T, C > G, G > A, G > T at nucleotide level (Fig. S4B).

Clinicopathological characteristics and immune infiltration
We investigated the relevance of six hub genes and clinicopathological features using
BC-GenExMiner (Figs. S5–S7). Data analysis showed that higher expression of hub genes
was found in higher NPI and SBR grade (p < 0.001). And the expression of these hub genes
was significantly higher in ER-, PR-, HER2+, Nodal+, P53-mutated, Basal-like and TNBC
clinical subtypes of breast cancer. Surprisingly, significantly increased expression of hub
genes was found in patients not more than 51 years old (p < 0.001). Moreover, our current
results demonstrated that hub genes were correlated with 6 types of immune cell infiltrates
(B Cell, CD8+ T Cell, CD4+ T Cell, Macrophage, Neutrophil and Dendritic Cell) with
various degrees based on the TIMER database (Fig. S8).

Prediction of TF-hub genes and miRNAs-hub genes interaction
We screened the potential regulatory relationships between TFs and hub genes via TRRUST
database to further study the functional roles of hub genes. A total of 19 associations between
17 TFs and six hub genes were shown (Fig. 5A). E2F1 could activate the transcriptional
process of RRM2 and CDK1. In contrast, TP53 inhibited the expression of CDK1 and
CCNB2. Noticeably, PTTG1 gene, the transcriptional promoter of CDK1, was up-regulated
in breast cancer; ZBTB16 gene was the transcriptional suppressor of CCNA2, and its
expression was down-regulated in overlapping DEGs. Additionally, we obtained 273
targeted miRNAs with regulatory effects on hub genes using ENCORI online tool, and
identified 103 DEmiRNAs (58 up- and 45 down-regulated; Table S11) from GSE97811
dataset with |log2FC|>1 and adj.P.Val < 0.05. As a result, 41 associations between 30
miRNAs and 4 hub genes (RRM2, CDK1, CCNA2, and BUB1B) were found from targeted
miRNAs analysis and DEmiRNAs data (Fig. 5B). The top 2 hub genes with the most
miRNAs targets were RRM2 and CCNA2. In addition, hsa-miR-340-5p, hsa-miR-130a-3p,
hsa-miR-200b-3p, hsa-miR-200c-3p, hsa-miR-204-5p, hsa-miR-219a-5p, hsa-miR-27a-3p,
hsa-miR-27b-3p, hsa-miR-301a-3p and hsa-miR-429 were the top 10 miRNAs with the
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most target genes. Unfortunately, we only used TRRUST and ENCORI databases, as well
as limited samples of GSE97811 dataset to analyze TFs and miRNAs targeting hub genes,
which may potentially limit the completeness of this study.

Survival analysis of hub genes
We then analyzed the prognostic information of six hub genes using Kaplan–Meier Plotter.
The result demonstrated that breast cancer patients with higher hub genes expression had
worse overall survival (OS), relapse-free survival (RFS) and distant metastasis-free survival
(DMFS) (Figs. 6A–6R).

Furthermore, we performed prognostic analysis on the important reporter regulatory
molecules and found that higher E2F1 and PTTG1 expression predicted worse OS.
In contrast, higher expression of ZBTB16, hsa-miR-130a-3p and hsa-miR-204-5p was
significantly associated with better OS in breast cancer (Fig. S9A). The remaining reporter
regulatory molecules (e.g., TP53, hsa-miR-340-5p, hsa-miR-200b-3p, hsa-miR-200c-3p,
hsa-miR-219a-5p, hsa-miR-27a-3p, hsa-miR-27b-3p, hsa-miR-301a-3p, hsa-miR-429)
had no statistically significant correlation with OS (P >0.05; Fig. S9B).

Small molecule drugs analysis
Regarding six hub genes as potential therapeutic targets for breast cancer, we identified
several antineoplastic drugs based on the DGIdb database. At present, only RRM2, CDK1
and CCNA2 were identified as tumor therapeutic targets. Therefore, we speculated the
other three genes (CCNB2, BUB1B, CDC20) might be the novel targets in the future.
Statistical analysis revealed that 21 candidate drugs such as Cladribine, Gallium nitrate,
Dinaciclib, Alvocidib and Suramin targeted RRM2, CDK1 and CCNA2 (Table 2). More
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Figure 6 OS (A–F), RFS (G–L), and DMFS (M–R) analysis of RRM2, CDC20, CCNB2, BUB1B/SSK1, CDK1/CDC2, and CCNA2/CCNA in breast
cancer based on KaplanMeier-Plotter. The patients were split into high and low expression groups according to the median expression of hub
genes. OS, overall survival; RFS, relapse-free survival; DMFS, distant metastasis-free survival.

Full-size DOI: 10.7717/peerj.9946/fig-6

experimental data are needed to further confirm the potential of these drug candidates in
the treatment of breast cancer.

In addition, we identified 8 TCM ingredients (1β-hydroxyalantolactone, Andro-
grapholide, Berberine hydrochloride, Britanin, Hyodeoxycholic acid, Japonicone A,
Nitidine chloride and Tanshinone IIA) that reversed breast cancer-induced gene expression
from GSE85871 dataset. Japonicone A reversed the expression of 87 overlapping DEGs,
including six hub genes, and its potential therapeutic effects on breast cancer were
related to Cell cycle, Oocyte meiosis, p53 signaling pathway, Progesterone-mediated
oocyte maturation, Viral carcinogenesis, HTLV-I infection, Pathways in cancer and
TGF-beta signaling pathway (Fig. 7A). Also, Nitidine chloride, Berberine hydrochloride,
1β-hydroxyalantolactone, Britanin and Tanshinone IIA reversed the expression of 37,
35, 31, 30 and 19 overlapping DEGs, respectively, and the potential therapeutic effects of
these ingredients on breast cancer were related to biological pathways such as Cell cycle,
Oocyte meiosis, p53 signaling pathway and Progesterone-mediated oocyte maturation
(Figs. 7B–7F). Details of TCM ingredients were shown in Table S12.
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Table 2 Antineoplastic drugs targeting hub genes based on the DGIdb database.

Target Drug Type Sources PMIDs Score

CLADRIBINE inhibitor DrugBank 17852710
16316309
19576186
9923554
19715446

6

GALLIUM NITRATE inhibitor ChemblInteractions DrugBank 12776257
1335254
15651176

5

MOTEXAFIN GADOLINIUM inhibitor TdgClinicalTrial DrugBank TTD – 3
HYDROXYUREA inhibitor GuideToPharmacologyInteractions

ChemblInteractions
– 2

CLOFARABINE inhibitor GuideToPharmacologyInteractions
ChemblInteractions

– 2

GEMCITABINE inhibitor ClearityFoundationClinicalTrial
GuideToPharmacologyInteractions

– 2

FLUDARABINE PHOSPHATE inhibitor ChemblInteractions – 1
TRIAPINE – TdgClinicalTrial – 1

RRM2

FLUDARABINE inhibitor GuideToPharmacologyInteractions – 1
DINACICLIB inhibitor MyCancerGenome

ClearityFoundationClinicalTrial
GuideToPharmacologyInteractions
ChemblInteractions CancerCommons
MyCancerGenomeClinicalTrial

– 6

ALVOCIDIB inhibitor MyCancerGenome TdgClinicalTrial
ChemblInteractions DrugBank

11752352 5

Roniciclib inhibitor GuideToPharmacologyInteractions
ChemblInteractions CancerCommons

– 3

AT-7519 inhibitor GuideToPharmacologyInteractions
ChemblInteractions DrugBank

– 3

AZD-5438 inhibitor GuideToPharmacologyInteractions
ChemblInteractions

– 2

TG-02 inhibitor GuideToPharmacologyInteractions
ChemblInteractions

– 2

CHEMBL1236539 inhibitor GuideToPharmacologyInteractions – 1
RG-547 inhibitor ChemblInteractions – 1

CDK1

SELICICLIB inhibitor ChemblInteractions – 1
SURAMIN – NCI 10208280 2
CORDYCEPIN – NCI 11566717 2CCNA2

GENISTEIN – NCI 9664138 2

DISCUSSION
Although the detection and treatment of breast cancer have improved, it is still one of the
most prevalent malignant tumors with the highest increase in prevalence among women
(Ghoncheh, Pournamdar & Salehiniya, 2016). The diagnosis, treatment and prognosis of
breast cancer have always been concerned with the world. Gene expression profiles are
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widely used to explore the molecular mechanisms related to tumorigenesis, which have
provided valuable reference and information for clinical applications (Mohr et al., 2002).

In this study, we identified 283 overlapping DEGs (105 up- and 178 down-regulated)
and six hub genes (RRM2, CDC20, CCNB2, BUB1B, CDK1, CCNA2) associated with
breast cancer tumorigenesis and progression based on multiple datasets. By integrating
the Oncomine, HPA, GEPIA2 and BC-GenExMiner databases, we confirmed that hub
genes were over-expressed at mRNA and protein levels in breast cancer tissues compared
with normal and non-cancerous tissues, and there was a powerful correlation between
these genes, suggesting that hub genes were potential functional partners closely related
to breast cancer. Furthermore, higher expression of hub genes was found in ER-, PR-,
HER2+, Nodal+, Basal-like, P53-mutated and TNBC clinical subtypes of breast cancer,
and there was a higher hub genes expression in patients not more than 51 years old. We
also discovered that the over-expression of each hub gene was associated with poor OS,
RFS and DMFS among patients with breast cancer, suggesting that these genes might be
potential prognostic biomarkers and promote the progression of breast cancer. Further, we
found the expression of hub genes was significantly correlated with immune cell infiltrates
and purity, implicating that these hub genes played important roles in manipulating breast
cancer immune microenvironment.

KEGG enrichment analysis showed that overlapping DEGs including 6 hub genes
were significantly associated with Cell cycle and Oocyte meiosis biological pathways,
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and overlapping DEGs were also involved in Tyrosine metabolism, ECM-receptor
interaction, Progesterone-mediated oocyte maturation and PPAR signaling pathways.
To our knowledge, abnormal regulations of cell cycle and cell growth were the major
causes of tumorigenesis (Zhuang et al., 2015). In the current study, we found that two
important pathways related to cell growth and apoptosis—Cell cycle and Oocyte meiosis—
were dysregulated in breast cancer. In addition, ECM-receptor interaction pathway played
important roles in tumor shedding, adhesion, degradation, movement and hyperplasia. So
far, some studies have shown that ECM receptor interaction pathway was closely related
to breast cancer, colorectal cancer, head and neck cancer and other human tumors (Bao et
al., 2019; Islam et al., 2018; Rahman et al., 2019). Gasco, Shami & Crook (2002) concluded
that molecular pathological analysis of specific components of p53 signaling pathway
may be helpful for the diagnosis and prognosis of breast cancer. In addition, it has been
found that signal transduction pathways such as Tyrosine metabolism, Progesterone-
mediated oocyte maturation and PPAR signaling pathway may also be associated with the
occurrence of human cancers (Chen et al., 2012; Liu & Ye, 2017; Pietras et al., 1995). These
pathways provided insights into the molecular mechanisms of breast cancer initiation and
development.

Accumulating studies have demonstrated that CDK1, CCNB2, CCNA2, CDC20 and
BUB1B, as genes related to cell cycle, are involved in the occurrence and development of
tumors. CDK1, also known as CDC2, plays an important role in the precise cell division
(Kang et al., 2014). Inhibiting the expression of CDK1 can suppress tumor cells growth
and induce apoptosis in TNBC clinical subtype of breast cancer (Liu et al., 2014). In
addition, high expression of CDK1 led to worse 5-year RFS in breast cancer patients (Kim
et al., 2008), similar to the experimental results (Fig. 6K). As an important component
in cell cycle regulation, CCNB2 seems to functions as the oncogene and independent
prognostic factor for survival in patients with breast cancer (Shubbar et al. 2013). Tang et
al. (2018) proved that there was a significant correlation between CCNB2 and molecular
subtypes of breast cancer (Fig. S6A). CCNA2, a key regulator of cell cycle, could promote
the transformation and progression of cancer (He et al., 2017). Gao et al. (2014) found
the over-expression of CCNA2 in breast cancer was related to the unfavorable prognosis ,
similar to our current findings (Fig. 6).We understand that there have been previous reports
that have associated CDC20 over-expression with tumor progression and poor prognosis
of breast cancer, indicating that CDC20 may be a useful marker for monitoring breast
cancer progression (Sewart & Hauf, 2017). Similarly, BUB1B played a pivotal role in the
proliferation and progression of many tumors (Takagi et al., 2013). RRM2, a breast cancer
hub gene participated in phenylalanine metabolic pathway in our study, was closely linked
to tumor growth, invasion, angiogenesis, tumor metastasis and other cellular functions, as
well as the prognosis of breast cancer patients (Bell, Barraclough & Vasieva, 2017; Chen et
al., 2019). It has been previously reported that RRM2 expression was associated with the
resistance of tumorigenic breast cancer cells to chemotherapy (Shah et al., 2015). Taken
together, our findings were consistent with other previous studies that six hub genes may
serve as predictive biomarkers for diagnosis and prognosis of patients with breast cancer.
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We also found that several reporter regulatory molecules (e.g., E2F1, TP53, PTTG1,
ZBTB16, hsa-miR-340-5p, hsa-miR-130a-3p, hsa-miR-200b-3p, hsa-miR-204-5p)
regulated the transcription or post-transcription of hub genes associated with major
biological processes and pathways in breast cancer, and they were also related to the OS of
breast cancer patients. E2F1 and ZBTB16 have been proved to belong to tumor-suppressive
genes (Wasim et al., 2010; Worku et al., 2008). In contrast, PTTG1 and mutated TP53
promoted the proliferation of tumor cells (Fu, Zhang & Cui, 2018; Gasco, Shami & Crook,
2002).

Breast cancer also shows changes in the expressions of noncoding RNAs (e.g., miRNAs,
additional elements). Several studies have previously proven that miRNAs played vital roles
in many biological processes, including cell growth, differentiation, metabolism, apoptosis
and signal transduction. For instance, (Ma (2019) demonstrated that miR-219-5p inhibited
the cell proliferation and cell cycle distribution of ESCC cells by inhibiting the expression of
CCNA2, highlighting the role of miR-219-5p and CCNA2 in cell cycle and tumor growth.
Liang et al. (2019) confirmed the over-expression of miR-204-5p not only inhibited the
high expression of RRM2 in breast cancer cells but also inhibited cellmigration and invasion
of breast cancer. The above conclusions further demonstrated the miRNAs identified in
this study were promising biomarkers for breast cancer. Recent publications described that
additional elements including REP522, D20S16, HERVKC4-INT and HERV1_LTRc were
also abnormally expressed in ER+/HER2- breast cancer, showing that it is necessary to
further strengthen the study of these additional elements related to cancer (Karakülah et
al., 2019; Yandım & Karakülah, 2019).

Next, we further identified 21 anti-tumor drugs (e.g., Cladribine, Gallium nitrate,
Dinaciclib, Alvocidib, Suramin) targeting RRM2, CDK1 and CCNA2 (Table 2).
Nevertheless, whether these drugs could exert therapeutic effects on breast cancer by
inhibiting the over-expression of RRM2, CDK1 and CCNA2, or whether CCNB2, BUB1B
and CDC20 are promising therapeutic targets still need to be supported by further research.
In addition, we identified 8 TCM ingredients (1β-hydroxyalantolactone, Andrographolide,
Berberine hydrochloride, Britanin, Hyodeoxycholic acid, Japonicone A, Nitidine chloride
and Tanshinone IIA) that reversed breast cancer-induced overlapping DEGs expression.
Previous limited studies have reported that some of TCM ingredients mentioned above
affected the cell cycle of tumor cells (Du et al., 2015; Li et al., 2020a; Lu, 2009; Pan et al.,
2011;Wang et al., 2016; Zou et al., 2017), similar to our current study that these ingredients
inhibited proliferation as well as promoted apoptosis of breast cancer cells through more
than one biological pathway (Fig. 7).

CONCLUSIONS
In the current study, we obtained 283 overlapping DEGs and six hub genes (RRM2,
CDC20, CCNB2, BUB1B, CDK1, and CCNA2) related to the occurrence and development
of breast cancer via comprehensive bioinformatics analysis. Furthermore, we considered
the associations between hub genes expression and clinicopathological factors (e.g., age,
subtypes) of patients with breast cancer. The study also established TFs-hub genes and
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miRNAs-hub genes networks, and found several reporter regulatory molecules (e.g., E2F1,
PTTG1, TP53, ZBTB16, hsa-miR-130a-3p, hsa-miR-204-5p) significantly related to the
progression and prognosis of breast cancer. Meanwhile, 29 small molecule drugs with
potential therapeutic effects for breast cancer were identified from the DGIdb database
and GSE85871 dataset. In summary, our research provided further clues for breast cancer
therapeutic drugs and biomarkers.
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TCM traditional Chinese medicine
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