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Abstract

Data-driven automatic approaches have demonstrated their great potential in resolving various 

clinical diagnostic dilemmas for patients with malignant gliomas in neuro-oncology with the help 

of conventional and advanced molecular MR images. However, the lack of sufficient annotated 

MRI data has vastly impeded the development of such automatic methods. Conventional data 

augmentation approaches, including flipping, scaling, rotation, and distortion are not capable of 

generating data with diverse image content. In this paper, we propose a method, called synthesis of 

anatomic and molecular MR images network (SAMR), which can simultaneously synthesize data 

from arbitrary manipulated lesion information on multiple anatomic and molecular MRI 

sequences, including T1-weighted (T1w), gadolinium enhanced T1w (Gd-T1w), T2-weighted 

(T2w), fluid-attenuated inversion recovery (FLAIR), and amide proton transfer-weighted (APTw). 

The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a 

segmentation consistency module, and multi-scale label-wise discriminators. Extensive 

experiments on real clinical data demonstrate that the proposed model can perform significantly 

better than the state-of-the-art synthesis methods.
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1 Introduction

Malignant gliomas, such as glioblastoma (GBM), remain one of the most aggressive forms 

of primary brain tumor in adults. The median survival of patients with glioblastomas is only 

12 to 15months with aggressive treatment [15]. For the clinical management in patients who 

finish surgery and chemoradiation, the treatment responsiveness assessment is relied on the 

pathological evaluations [16]. In recent years, deep convolutional neural network (CNN) 
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based medical image analysis methods have shown to produce significant improvements 

over the conventional methods [2,6]. However, a large amount of data with rich diversity is 

required for training effective CNNs models, which is usually unavailable for medical image 

analysis. Furthermore, lesion annotations and image prepossessing (e.g. co-registration) are 

labor-intensive, time-consuming and expensive, since expert radiologists are required to 

label and verify the data. While deploying conventional data augmentations, such as 

rotation, flipping, random cropping, and distortion, during training partly mitigates such 

issues, the performance of CNN models still suffer from the limited diversity of the dataset 

[18]. In this paper, we propose a generative network which can simultaneously synthesize 

meaningful high quality T1w, Gd-T1w, T2w, FLAIR, and APTw MRI sequences from input 

lesion mask. In particular, APTw is a novel molecular MRI technique, which yields a 

reliable marker for treatment responsiveness assessment for patients with post-treatment 

malignant gliomas [8,17].

Recently Goodfellow et al. [5] proposed generative adversarial network (GAN) which has 

been shown to synthesize photo-realistic images. Isola et al. [7] and Wang et al. [14] applied 

GAN under the conditional settings and achieved impressive results on image-to-image 

translation tasks. When considering the generative models for MRI synthesis alone, several 

methods have been proposed in the literature. Nguyen et al. [13] and Chartsias et al. [3] 

proposed CNN-based architectures integrating intensity features from images to synthesize 

cross-modality MR images. However, their inputs are existing MRI modalities and the 

diversity of the synthesized images is limited by the training images. Cordier et al. [4] used a 

generative model for multi-modal MR images with brain tumors from a single label map. 

However, the input label map contains detailed brain anatomy and the method is not capable 

of producing manipulated outputs. Shin et al. [11] adopted pix2pix [7] to transfer brain 

anatomy and lesion segmentation maps to multi-modal MR images with brain tumors. 

However, it requires to train an extra segmentation network that provides white matter, gray 

matter, and cerebrospinal fluid (CSF) masks as partial input of synthesis network. Moreover, 

it is only demonstrated to synthesize anatomical MRI sequences. In this paper, a novel 

generative model is proposed that can take arbitrarily manipulated lesion mask as input 

facilitated by brain atlas generated from training data to simultaneously synthesize a diverse 

set of anatomical and molecular MR images.

To summarize, the following are our key contributions: 1. A novel conditional GAN-based 

model is proposed to synthesize meaningful high quality multimodal anatomic and 

molecular MR images with controllable lesion information. 2. Multi-scale label-wise 

discriminators are developed to provide specific supervision on the region of interest (ROI). 

3. Extensive experiments are conducted and comparisons are performed against several 

recent state-of-the-art image synthesis approaches. Furthermore, an ablation study is 

conducted to demonstrate the improvements obtained by various components of the 

proposed method.

2 Methodology

Figure 1 gives an overview of the proposed framework. Incorporating multi-scale label-wise 

discriminators and shape consistency-based optimization, the generator aims to produce 
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meaningful high-quality anatomical and molecular MR images with diverse and controllable 

lesion information. In what follows, we describe different parts of the network in detail.

Multi-modal MRI Sequence Generation.

Our generator architecture is inspired by the models proposed by Johnson et al. [9] and 

Wang et al. [14]. The generator network, consists of four components (see Fig. 1(a): a down-

sampling module, an atlas encoder, a set of residual blocks, and a stretch-out up-sampling 

module. A lesion segmentation map of size 256 × 256 × 5, containing 5 labels: background, 

normal brain, edema, cavity caused by surgery, and tumor, is passed through the down-

sampling module to get a latent feature map. The corresponding multi-model atlas of size 

256 × 256 × 15 (details of atlas generation are provided in Sect. 3) is passed through an atlas 

encoder to get another latent feature map. Then, the two latent feature maps are 

concatenated and are passed through residual blocks and stretch-out up-sampling module to 

synthesize multi-model MRI slices of size 256 × 256 × 5.

The down-sampling module consists of a fully-convolutional module with 6 layers. We set 

the kernel size and stride equal to 7 and 1, respectively for the first layer. For down-

sampling, instead of using maximum-pooling, the stride of other 5 layers is set equal to 2. 

Rectified Linear Unit (ReLu) activation and batch normalization are sequentially added after 

each layer. The atlas encoder has the same network architecture but the number of channels 

in the first convolutional layer is modified to match the input size of the multi-model atlas 

input. The depth of the network is increased by a set of residual blocks, which is proposed to 

learn better transformation functions and representations through a deeper perception [18]. 

The stretch-out up-sampling module contains 5 similar sub-modules designed to utilize the 

same latent representations from residual blocks and perform customized synthesis for each 

sequence. Each sub-module contains one residual learning block and a symmetric 

architecture with a down-sampling module. All convolutional layers are replaced by 

transposed convolutional layers for up-sampling. The synthesized multi-model MR images 

are produced from each sub-model.

Multi-scale Label-wise Discriminators.

In order to efficiently achieve large receptive field in discriminators, we adopt multi-scale 

PatchGAN discriminators [7], which have identical network architectures but take multi-

scale inputs [14]. Conventional discriminators operate on the combination of images and 

conditional information to distinguish between real and synthesized images. However, 

optimizing generator to produce realistic images in each ROI cannot be guaranteed by 

discriminating on holistic images. To address this issue, we propose label-wise 

discriminators. Based on the radiographic features, original lesion segmentation masks are 

reorganized into 3 ROIs, including background, normal brain, and lesion. Specifically, the 

input of each discriminator is the ROI-masked combination of lesion segmentation maps and 

images. Since proposed discriminators are in a multi-scale setting, for each ROI there are 2 

discriminators that operate on original and a down-sampled scales (factor of 2). Thus, there 

are in total 6 discriminators for 3 ROIs and we refer to these set of discriminators as 

D = D1, D2, D3, D4, D5, D6 . In particular, {D1, D2},{D3, D4}, and {D5, D6} operate on 

original and down-sampled versions of background, normal brain, and lesion, respectively. 
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An overview of the proposed discriminators is shown in Fig. 1(b). The objective function for 

a specific discriminator ℒGAN G, Dk  is as follows:

ℒGAN G, Dk = E(x, y) log Dk(x, y) + Ex log 1 − Dk(x, G(x)) , (1)

where x and y are paired original lesion segmentation masks and real multi-model MR 

images, respectively. Here, x ≜ ck ⊙ x, y ≜ ck ⊙ y, and G(x) ≜ ck ⊙ G(x), where ⊙ denotes 

element-wise multiplication and ck corresponds to the ROI mask. For simplicity, we omit the 

down-sampling operation in this equation.

Multi-task Optimization.

A multi-task loss is designed to train the generator and discriminators in an adversarial 

setting. Instead of only using the conventional adversarial loss ℒGAN, we also adopt a 

feature matching loss ℒFM [14] to stabilize training, which optimizes generator to match 

these intermediate representations from the real and the synthesized images in multiple 

layers of the discriminators. For a specific discriminator, ℒFM G, Dk  is defined as follows:

ℒFM G, Dk = ∑
i

T 1
Ni

‖Dk
(i)(x, y) − Dk

(i)(x, G(x)‖2
2 , (2)

where Dk
(i) denotes the ith layer of the discriminator Dk, T is the total number of layers in Dk 

and Ni is the number of elements in the ith layer. If we perform lesion segmentation on 

images, it is worth to note that there is a consistent relation between the prediction and the 

real one serving as input for the generator. Lesion labels are usually occluded with each 

other and brain anatomic structure, which causes ambiguity for synthesizing realistic MR 

images. To tackle this problem, we propose a lesion shape consistency loss ℒC by adding a 

U-net [10] segmentation module (Fig. 1(c)), which regularizes the generator to obey this 

consistency relation. We adopt Generalized Dice Loss (GDL) [12] to measure the difference 

between predicted and real segmentation maps and is defined as follows:

GDL(R, S) = 1 −
2∑i

N risi

∑i
N ri + ∑i

N si
, (3)

where R denotes the ground truth and S is the segmentation result. ri and si represent the 

ground truth and predicted probabilistic maps at each pixel i, respectively. N is the total 

number of pixels. The lesion shape consistency loss ℒC is then defined as follows:

ℒC(x, U(G(x)), U(y)) = GDL(x, U(y)) + GDL(x, U(G(x))), (4)

where U(y) and U(G(x)) represent the predicted probabilistic maps by taking y and G(x) as 

inputs in the segmentation module, respectively. The proposed final multi-task loss function 

for the generator is defined as:
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ℒ = ∑
k = 1

6
ℒGAN G, Dk + λ1 ∑

k = 1

6
ℒFM G, Dk + λ2ℒC(x, U(G(x)), U(y)), (5)

where λ1 and λ2 two parameters that control the importance of each loss.

3 Experiments and Evaluations

Data Acquisition and Implementation Details.

90 postsurgical patients were involved in this study. MRI scans were acquired by a 3T 

human MRI scanner (Achieva; Philips Medical Systems). Anatomic sequences of size 512 × 

512 × 150 voxels and Molecular APTw sequence of size 256 × 256 × 15 voxels were 

collected. Detailed imaging parameters and preprocessing pipeline can be found in 

supplementary material. After preprocessing, the final volume size of each sequence is 256 

× 256 × 15. Expert neuroradiologist manually annotated five labels (i.e. background, normal 

brain, edema, cavity and tumor) for each patient. Then, a multivariate template construction 

tool [1] was used to create the group average for each sequence (atlas). 1350 instances with 

the size of 256 × 256 × 5 were extracted from the volumetric data, where the 5 corresponds 

to five MR sequences. For every instance, the one corresponding atlas slice and two adjacent 

(in axial direction) atlas slices were extracted to provide human brain anatomy prior. We 

split these instances randomly into 1080 (80%) for training and 270 (20%) for testing on the 

patient level. Data collection and processing are approved by the Institutional Review Board.

The synthesis model was trained based on the final objective function Eq. (5) using the 

Adam optimizer [1]. λ1 and λ2 in Eq. (5) were set equal to 5 and 1, respectively. 

Hyperparameters are set as follows: constant learning rate of 2 × 10−4 for the first 250 

epochs then linearly decaying to 0; 500 maximum epochs; batch size of 8. For evaluating the 

effectiveness of the synthesized MRI sequences on data augmentation, we leveraged U-net 

[10] to train lesion segmentation models. U-net [10] was trained by the Adam optimizer [1]. 

Hyperparameters are set as follows: constant learning rate of 2 × 10−4 for the first 100 

epochs then linearly decaying to 0; 200 maximum epochs; batch size of 16. In the 

segmentation training, all the synthesized data was produced by randomly manipulated 

lesion masks. For evaluation, we always keep 20% of data unseen for both of the synthesis 

and segmentation models.

MRI Synthesis Results.

We evaluate the performance of different synthesis methods by qualitative comparison and 

human perceptual study. We compare the performance of our method with the following 

recent state-of-the-art synthesis methods: pix2pix [7], pix2pixHD [14], and Shin et al. [11]. 

Figure 2 presents the qualitative comparison of the synthesized multi-model MRI sequences 

from four different methods. It can be observed that pix2pix [7] and pix2pixHD [14] fail to 

synthesize realistic looking human brain MR images. There is either an unreasonable brain 

ventricle (see the last row of Fig. 2) or wrong radiographic features in the lesion region (see 

the fourth row of Fig. 2). With the help of probability maps of white matter, gray matter and 

CSF, Shin et al. [11] can produce realistic brain anatomic structures for anatomic MRI 
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sequences. However, there is an obvious disparity between the synthesized and real APTw 

sequence in both normal brain and lesion region. The boundary of the synthezied lesion is 

also blurred and uncertain (see red boxes in the third row of Fig. 2). The proposed method 

produces more accurate radiographic features of lesions and more diverse anatomic structure 

based on the human anatomy prior provided by atlas.

Human Perceptual Study.

To verify the pathological information of the synthesized images, we conduct the human 

perceptual study by an expert neuroradiologist and the corresponding preference rates are 

reported in Table 1. It is clear that the images generated by our method are more preferred 

by an expert neuroradiologist than others showing the practicality of our synthesis method.

Data Augmentation Results.

To further evaluate the quality of the synthezied images, we perform data augmentation by 

using the synthesized images in training and then perform lesion segmentation. Evaluation 

metrics in BraTS [2] challenge (i.e. Dice score, Hausdorff distance (95%), Sensitivity, and 

Specificity) are used to measure the performance of different methods. The data 

augmentation by synthesis is evaluated by the improvement for lesion segmentation models. 

We arbitrarily control lesion information to synthesize different number of data for 

augmentation. The detail of mechanism for manipulating lesion mask can be found in 

supplementary material. To simulate the piratical usage of data augmentation, we conduct 

experiments in the manner of utilizing all real data. In each experiment, we vary the 

percentage of synthezied data to observe the contribution for data augmentation. Table 2 

shows the calculated segmentation performance. Comparing with the baseline experiment 

that only uses real data, the synthesized data from pix2pix [7] and pix2pixHD [14] degrade 

the segmentation performance. The performance of Shin et al. [11] improves when 

synthesized data is used for segmentation, but the proposed method outperforms other 

methods by a large margin. Figure 3 demonstrates the robustness of the proposed model 

under different lesion mask manipulations (e.g. changing the size of tumor, moving lesion 

location, and even reassembling lesion information between patients). As can be seen from 

this figure, our method is robust to various lesion mask manipulations.

Ablation Study.

We conduct extensive ablation study to separately evaluate the effectiveness of using stretch-

out up-sampling module, label-wise discriminators, atlas, and lesion shape consistency loss 

ℒC in our method using the same experimental setting as exp.1 in Table 2. The contribution 

of modules for data augmentation by synthesis is reported in Table 2 exp. 4. We find that 

when atlas is not used in our method, it significantly affects the synthesis quality due to the 

lack of human brain anatomy prior. Losing the customized reconstruction for each sequence 

(stretch-out up-sampling module) can also degrade the synthesis quality. Moreover, dropping 

either ℒC or label-wise discriminators in the training reduces the performance, since the 

shape consistency loss and the specific supervision on ROIs are not used to optimize the 

generator to produce more realistic images.
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4 Conclusion

We proposed an effective generation model for multi-model anatomic and molecular APTw 

MRI sequences. It was shown that the proposed multi-task optimization under adversarial 

training further improves the synthesis quality in each ROI. The synthesized data can be 

used for data augmentation, particularly for those images with pathological information of 

malignant gliomas, to improve the performance of segmentation. Moreover, the proposed 

approach is an automatic, low-cost solution to produce high quality data with diverse content 

that can be used for training of data-driven methods.

In our future work, we will generalize data augmentation by synthesis to other tasks, such as 

classification. Furthermore, the proposed method will be extended to 3D synthesis once 

better quality molecular MRI data is available for training the models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An overview of the proposed network. (a) Generator network. (b) Multi-scale Label-wise 

discriminators. Global averaging pooling is used to create the factor of 2 down-sampling 

input. (c) U-net based lesion segmentation module. We denote lesion shape consistency loss 

as ℒC.
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Fig. 2. 
Qualitative comparison of different methods. The same lesion mask is used to synthesize 

images from different methods. Red boxes indicate the lesion region. (Color figure online)
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Fig. 3. 
Examples of lesion mask manipulations. (a) Real images. (b) Synthesized images from the 

original mask. (c) Synthesized images by mirroring lesion. (d) Synthesized images by 

increasing tumor size to 100%. (e) Synthesized images by replacing lesion from another 

patient. (f) Synthesized images by shrinking tumor size to 50%. In lesion masks, gray, green, 

yellow, and blue represent normal brain, edema, tumor, and cavity caused by surgery, 

respectively.

Guo et al. Page 11

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Guo et al. Page 12

Table 1.

Preference rates corresponding to the human perceptual study.

Real Our Shin et al. [11] pix2pixHD [14] pix2pix [7]

100% 72.1% 65.6% 39.3% 16.4%
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Table 2.

Quantitative results corresponding to image segmentation when the synthesized data is used for data 

augmentation. For each experiments, the first row reports the percentage of synthesized/real data for training 

and the number of instances of synthesized/real data in parentheses. Exp. 4 reports the results of ablation 

study.

Dice score Hausdorff95 distance Sensitivity Specificity

Edema Cavity Tumor Edema Cavity Tumor Edema Cavity Tumor Edema Cavity Tumor

Exp.1: 50% Synthesized + 50% Real (1080 + 1080)

pix2pix [7] 0.589 0.459 0.562 13.180 21.003 10.139 0.626 0.419 0.567 0.995 0.998 0.999

pix2pix HD 
[14] 0.599 0.527 0.571 17.406 8.606 10.369 0.630 0.494 0.570 0.996 0.998 0.999

Shin et al. 
[11] 0.731 0.688 0.772 7.306 6.290 6.294 0.701 0.662 0.785 0.997 0.999 0.999

Our 0.794 0.813 0.821 6.049 1.568 2.293 0.789 0.807 0.841 0.997 0.999 0.999

Exp.2: 25% Synthesized + 75% Real (540 + 1080)

pix2pix [7] 0.602 0.502 0.569 10.706 9.431 10.147 0.640 0.463 0.579 0.995 0.999 0.998

pix2pix HD 
[14] 0.634 0.514 0.663 17.754 9.512 9.061 0.670 0.472 0.671 0.996 0.999 0.999

Shin et al. 
[11] 0.673 0.643 0.708 14.835 7.798 6.688 0.664 0.602 0.733 0.997 0.999 0.998

Our 0.745 0.780 0.772 8.779 6.757 4.735 0.760 0.788 0.805 0.997 0.999 0.999

Exp.3: 0% Synthesized + 100% Real (0 + 1080)

Baseline 0.646 0.613 0.673 8.816 7.856 7.078 0.661 0.576 0.687 0.996 0.999 0.998

Exp.4: Ablation study

w/o Stretch-
out 0.684 0.713 0.705 6.592 5.059 4.002 0.708 0.699 0.719 0.997 0.999 0.999

w/o Label-
wise D 0.753 0.797 0.785 7.844 2.570 2.719 0.735 0.780 0.783 0.998 0.999 0.999

w/o Atlas 0.677 0.697 0.679 13.909 11.481 7.123 0.691 0.689 0.723 0.997 0.999 0.998

w/o ℒC 0.728 0.795 0771 8.604 3.024 3.233 0.738 0.777 0.777 0.997 0.999 0.999

Our 0.794 0.813 0.821 6.049 1.568 2.293 0.789 0.807 0.841 0.998 0.999 0.999
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