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Abstract

Clinical trials have identified a variety of predictor variables for use in precision treatment 

protocols, ranging from clinical biomarkers and symptom profiles to self-report measures of 

various sorts. Although such variables are informative collectively, none has proven sufficiently 

powerful to guide optimal treatment selection individually. This has prompted growing interest in 

the development of composite precision treatment rules (PTRs) that are constructed by combining 

information across a range of predictors. But this work has been hampered by the generally small 

samples in randomized clinical trials and the use of suboptimal analysis methods to analyze the 

resulting data. In this paper, we propose to address the sample size problem by: working with large 

observational electronic medical record databases rather than controlled clinical trials to develop 

preliminary PTRs; validating these preliminary PTRs in subsequent pragmatic trials; and using 

ensemble machine learning methods rather than individual algorithms to carry out statistical 

analyses to develop the PTRs. The major challenges in this proposed approach are that treatment 

are not randomly assigned in observational databases and that these databases often lack measures 

of key prescriptive predictors and mental disorder treatment outcomes. We proposed a tiered case-

*Corresponding author. Department of Health Care Policy, Harvard Medical School, 180 Longwood Avenue, Boston, MA, 02115, 
USA. Kessler@hcp.med.harvard.edu (R.C. Kessler). 

Declarations of interest
In the past 3 years, Dr. Kessler received support for his epidemiological studies from Sanofi-Aventis; was a consultant for Johnson & 
Johnson Wellness and Prevention, Sage, Shire, Takeda; and served on an advisory board for the Johnson & Johnson Services Inc. Lake 
Nona Life Project. Kessler is a co-owner of DataStat, Inc., a market research firm that carries out healthcare research. Zubizarreta was 
a consultant for Johnson & Johnson Real World Data Analytics and Research, New Brunswick, NJ. The remaining authors have no 
financial disclosures.

HHS Public Access
Author manuscript
Behav Res Ther. Author manuscript; available in PMC 2020 October 14.

Published in final edited form as:
Behav Res Ther. 2019 September ; 120: 103412. doi:10.1016/j.brat.2019.103412.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cohort design approach that uses innovative methods for measuring and balancing baseline 

covariates and estimating PTRs to address these challenges.
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Evidence-based treatments for mental disorders continue to grow in number and complexity. 

But none of these treatments is optimal for all patients. Furthermore, it remains unclear 

which treatments work best for which patients. As a result, clinicians need to rely on trial-

and-error in selecting treatments, and patients often need to suffer through multiple 

ineffective courses of treatment before achieving remission. A substantial proportion of 

patients give up before an effective treatment is found, sometimes with tragic results, even 

though treatments exist that would have led many of these patients to remit. The 

development of comprehensive precision treatment rules (PTRs) would be of enormous 

value in addressing these problems.

The goals of precision medicine are to understand how the effects of treatment are modified 

by patient characteristics and to develop PTRs based on this understanding to optimize 

treatment selection for each patient or fine-grained patient subgroups. PTRs are developed 

using information about prescriptive predictors of treatment response, by which we mean 

predictors of the relative effectiveness of different treatments. Numerous clinical features 

(e.g., illness persistence, severity, subtypes, and comorbidity), socio-demographic 

characteristics (e.g., patient age, sex, education), and biomarkers (e.g., genetic, 

neuroendocrine, electrophysiological, brain imaging) have been found to be reliable 

prescriptive predictors of some mental disorder treatments versus others (Kessler, 2018; 

Olbrich, van Dinteren, & Arns, 2015; Prendes-Alvarez & Nemeroff, 2018; Saltiel & 

Silvershein, 2015). However, the associations of the individual predictors with the outcomes 

in these studies have been too small to be of clinical value when considered one at a time, 

leading to an interest in developing composite prescriptive prediction scores containing 

information about a range of individually-significant predictors (DeRubeis et al., 2014; 

Fabbri, Crisafulli, Calabro, Spina, & Serretti, 2016; Trivedi et al., 2016).

We were asked by the issue editors to discuss the use of machine learning (ML) methods to 

develop PTRs. Several reviews have been written about these methods both in the general 

medical literature (Lipkovich, Dmitrienko, & D'Agostino, 2017; Ondra et al., 2016) and the 

literature on mental disorder treatment (Bzdok & Meyer-Lindenberg, 2018; Menke, 2018). 

However, much less has been written about the research designs needed to implement these 

methods or the statistical issues involved in using these designs (Kessler, 2018). We begin 

with a discussion of these issues, as they are of critical importance in developing PTRs for 

mental disorders. We then turn to a discussion of the ensemble ML approach we recommend 

for developing PTRs.
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1. Sample size requirements for developing precision treatment rules

We focus initially on research designs because the sample sizes needed to develop PTRs for 

mental disorders are larger than those that are realistic for controlled clinical trials of these 

disorders. We have to appreciate that new research designs are needed before we can 

consider optimal analysis methods. Most comparative effectiveness research on prescriptive 

predictors of treatment response is based on randomized clinical trials. Predictors in these 

studies are assessed either at baseline or early in the treatment process. The possibility that a 

variable is a prescriptive predictor (often referred to as a “moderator”) is evaluated by 

computing an interaction between the predictor and treatment type (VanderWeele, Luedtke, 

van der Laan, & Kessler, 2019). Significant interactions are interpreted as evidence that the 

variable is a prescriptive predictor; that is, that the comparative effectiveness of the 

alternative treatments differs depending on the predictor. When multiple interactions are 

statistically significant, a composite PTR is typically created by computing predicted 

outcome scores for each patient under each treatment regimen based on the coefficients in a 

multivariate interaction model and then comparing treatment-specific predicted outcome 

scores at the individual level to select the regimen with the best predicted outcome for each 

patient (Kovalchik, Varadhan, & Weiss, 2013). This logic is easily extended to more than 

two treatment options.

Although this simple interaction modeling approach is only one of a great many different 

statistical approaches that have been developed in recent years to generate individual-level 

composite prescriptive prediction scores for purposes of personalized treatment planning, all 

such approaches implicitly estimate interactions and are subject to the constraint that 

interaction tests have much lower statistical power than tests of main effects (Greenland, 

1983). An important implication of this fact is that relatively large samples, shown in a 

recent simulation to be at least 500 patients per treatment arm, are required if we want to 

have adequate statistical power to develop accurate PTRs of a strength that is realistic to 

expect in research on mental disorder treatments (Luedtke, Sadikova, & Kessler, 2019). 

Even larger samples are needed if the goal is to study the genetic architecture of differential 

treatment response (Wigmore et al., 2019).

Most mental disorder precision treatment trials are based on much smaller samples than 500 

patients per arm (e.g., Bousman, Arandjelovic, Mancuso, Eyre, & Dunlop, 2019; Cohen & 

DeRubeis, 2018; Trivedi et al., 2016). The researchers who carry out these trials are often 

aware of the power problem but argue that preliminary PTRs can be developed in these 

small studies and then tested in larger experimental samples (Petkova et al., 2017). That 

argument is flawed, as under-powered studies are likely to detect only the largest 

interactions and will be unable to create stable multivariate PTRs (Judd, Westfall, & Kenny, 

2017). Increasing the accepted Type 1 error rate is a strategy sometimes used to identify 

more interactions as significant in these underpowered studies (e.g., DeRubeis et al., 2014), 

but this is counter to the usual advice to tighten criteria in reaction to multiplicity of possible 

tests. The result is over-fitting and reduction in out-of-sample performance when model 

results are used to make future predictions (Durand, 2013). Internal pseudo-replication 

methods exist to evaluate the extent of out-of-sample prediction shrinkage of the PTRs 

(Smith, Seaman, Wood, Royston, & White, 2014). But these methods do not fix the 
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problem; they merely confirm its existence. The inevitable conclusion is that samples much 

larger than those in existing mental disorder randomized clinical trials are required to 

develop useful PTRs.

2. Using observational data to address the sample size problem

The problem of small sample size has been addressed in other areas of medicine either by 

using very large trials to develop composite PTRs (Dorresteijn et al., 2011) or by applying 

and validating external PTR scores in smaller trials after they were developed in large 

observational samples (Perel, Edwards, Wentz, & Roberts, 2006; Prieto-Merino & Pocock, 

2012). The latter would be the more practical approach for the development of mental 

disorder PTRs. Although estimates of treatment effects are biased in observational studies if 

treatment assignment is informatively nonrandom, statistical methods exist to adjust for this 

bias if the baseline (i.e., prior to initiating treatment) assessments include the important 

determinants of treatment assignment, as the differences in these baseline covariates can be 

“balanced” statistically to approximate the distributions found in experimental trials 

(Hirshberg & Zubizarreta, 2017; Zubizarreta, 2015). We discuss this approach here because 

we consider it a necessary approach to develop mental disorder PTRs.

It has been shown that analyses of balanced databases often yield aggregate results about 

comparative treatment effects very similar to those obtained in randomized clinical trials 

(Anglemyer, Horvath, & Bero, 2014; Dahabreh et al., 2012). Extensions exist to develop 

PTRs (Luedtke & van der Laan, 2017; Zhou, Mayer-Hamblett, Khan, & Kosorok, 2017; 

Zhu, Zhao, Chen, Ma, & Zhao, 2017). This approach is likely to be of enormous practical 

value in dealing with the small sample sizes of mental disorder randomized clinical trials, as 

large observational studies could be carried out at a fraction of the cost of randomized 

clinical trials. Pragmatic trials based on smaller samples could then be used inexpensively to 

evaluate the validity of the PTRs developed in the observational studies.

3. Methods to balance observed baseline covariates in observational 

studies

The large observational studies that are used for comparative effectiveness research in other 

areas of medicine typically are electronic medical record (EMR) databases (Berger et al., 

2017; Ning, Hong, Li, Huang, & Shen, 2017). Such studies are appealing because, unlike 

randomized clinical trials, the patients in these observational studies are those that exist in 

the population and the treatments studied are those that are delivered in the population. 

Matching and weighting are the preferred statistical approaches to balance on baseline 

differences in observed covariates across groups of patients exposed to different treatments 

in these studies. Although both matching and weighting have advantages, matching is the 

more intuitive of the two in that it maintains the unit of analysis intact in an attempt to 

approximate a randomized experiment hidden within an observational study. Matching also 

makes it much easier than weighting to carry out certain sensitivity analyses to hidden biases 

(Rosenbaum, 2017). Matching can be performed with one-to-one or one-to-many fixed or 

variable matching structures (Hansen, 2004). Matching is often done on a onedimensional 

summary of the covariates, as in matching based on estimated propensity scores 
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(Rosenbaum & Rubin, 1983). However, more recently-developed matching methods balance 

directly on individual covariates and joint distributions depending on the nature of the data at 

hand (e.g., Diamond & Sekhon, 2013; Zubizarreta, 2012). These methods are reviewed by 

Visconti and Zubizarreta (Visconti & Zubizarreta, 2018).

Weighting, in comparison, has advantages over matching in statistical efficiency and 

computational tractability. Weighting also uses a larger proportion of cases than matching. 

Two broad approaches exist to weighting (Hirshberg & Zubizarreta, 2017). The first 

estimates a prediction model for type of treatment and then inverts the individual-level 

predicted probabilities from this model to weight the data. This inverse probability weight 

(IPW) approach is used in conventional logistic regression analysis (Cole & Hernán, 2008) 

and in variants based on more flexible ML methods (e.g., Gruber, Logan, Jarrin, Monge, & 

Hernan, 2015). But this approach suffers from two practical problems: that balancing can be 

very difficult to achieve due to model misspecification, small samples, and/or sparse 

covariates, leading to biased estimates of treatment effects (Imai & Ratkovic, 2014); and that 

the weights can be highly variable, producing unstable estimates of treatment effects (Kang 

& Schafer, 2007).

The second approach to weighting uses one of a number of recently-developed methods that 

weight directly to reduce covariate imbalance and weight dispersion across treatment groups 

(Chan, Yam, & Zhang, 2016; Hainmueller, 2012; Zubizarreta, 2015). These methods can 

achieve exact balance across many covariates in large samples, but at the expense of creating 

high weight variance. Some of these methods can alternatively achieve approximate balance 

while minimizing weight variance (Zubizarreta, 2015). This has great appeal in allowing 

researchers to make principled decisions about the trade-off between bias and efficiency in 

estimation. Related methods are reviewed by Yiu and Su (Yiu & Su, 2018). Wang and 

Zubizarreta (Wang & Zubizarreta, 2019) study the formal properties of this balancing 

approach to weighting and explain its connection to the classical modeling approach.

It should be noted that conventional linear regression analysis in which baseline covariates 

are used as control variables can be conceptualized as a special form of weighting in which 

the implicit weight perfectly balances the means of the covariates included in the regression. 

However, these implicit weights can take negative values, resulting in extrapolation of 

estimated treatment effects outside the bounds of observed data. Because of this feature, 

matching or explicit weighting are preferred to control variable analysis in attempting to 

balance observed baseline covariates. This issue is discussed in more detail by Hirshberg et 

al. (Hirshberg, Maleki, & Zubizarreta, 2019).

4. Methods to balance unobserved baseline covariates in observational 

studies

Although the methods described in the last section can be very useful when the observed 

baseline covariates include the key determinants of treatment assignment, they do not deal 

with unmeasured confounders. The best way to do that, of course, is with a large randomized 

clinical trial. When this is impossible, though, it is sometimes possible to find natural 

variation in access to treatment in a large sample that mimics an experiment (Handley, Lyles, 
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McCulloch, & Cattamanchi, 2018). Many opportunities exist of this sort to study policy 

interventions using before-after ecological designs. For example, 30 different studies were 

reported over the past decade that examined the aggregate effects of interventions to reduce 

suicide by means of restrictions of various kinds, such as prohibiting firearms from being 

taken home by reservists in the Israeli Defense Force (Lubin et al., 2010) and restricting 

access to lethal pesticides in Taiwan (Lin & Lu, 2011). These studies are reviewed by 

Zalsman et al. (Zalsman et al., 2016). Other studies investigated the effects of interventions 

that changed exposure to financial stress in before-after surveys of populations in which 

financial stress was either increased for a segment of the sample (e.g., a plant closing in one 

of two towns, each of which had only one large employer; Penkower, Bromet, & Dew, 1988) 

or decreased for a segment of the sample (e.g., a casino opening on an Indian reservation 

leading to tribal members but not others in rural North Carolina receiving ongoing income 

supplements; Costello, Erkanli, Copeland, & Angold, 2010). Although only aggregate 

intervention effects were investigated in most of these studies, PTRs could have been 

developed from these datasets using the methods described below in the section Using 

machine learning methods to develop precision treatment rules.

In the absence of such natural experiments, it is sometimes possible to make principled 

causal inferences about aggregate treatment effects by attempting to find an instrumental 

variable (IV) (Baiocchi, Cheng, & Small, 2014; Swanson, 2017) or a situation in which a 

regression discontinuity design can be used (Moscoe, Bor, & Bärnighausen, 2015; 

Venkataramani, Bor, & Jena, 2016). In its simplest form, an instrumental variable is a 

random encouragement to receive treatment that affects the outcome only through the 

treatment and consequently tends to balance both observed and unobserved covariates across 

groups defined by the instrument and identifies the effect of treatment (specifically, the 

average causal effect on the compliers to treatment assignment; see Angrist et al. [Angrist, 

Imbens, & Rubin, 1996] for details). A classic example is the work of McClellan et al. 

(McClellan, McNeil, & Newhouse, 1994) on the association between intensity of acute 

myocardial infarction (AMI) treatment and long-term survival. In that study, the authors 

used information about comparative distances between patient homes and hospitals that 

differed in intensity of treating AMIs as an IV, leading to the important conclusion that long-

term survival was not strongly affected by greater use of catherization or revascularization 

among marginal cases.

Discontinuity designs are related in that they estimate the effects of treatments among 

patients in a close neighborhood of a cutoff of a variable that governs treatment assignment. 

When that threshold is inexact, the threshold can be considered an IV. A good example of an 

opportunity to use a discontinuity design is the US Veterans Health Administration (VHA) 

REACH VET suicide preventive intervention, which pinpoints and provides intensive case 

management to the 0.1% of VHA patients (about 35,000 patients each year) who are 

estimated by a previously-developed ML model to be at highest risk of sucide (VA Office of 

Public and Intergovernmental Affairs, 2017). The subsequent suicide rate among the 35,000 

patients predicted by the ML model to be in the top 0.1% of suicide risk, all of whom 

received the intervention, could be compared to the suicide rate of the 35,000 additional 

patients who were predicted by the ML model to be in the second tenth of the first percentile 

(i.e., > 0.1–0.2%), none of whom received the intervention. The implicit assumption in such 
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a comparison would be these two groups of patients are approximately balanced by design 

on both observed and unobserved covariates by virtue of being in the neighborhood of the 

treatment threshold. A preliminary PTR could be developed based on this assumption to 

evaluate the effect of the intervention among patients in this neighborhood of risk. More 

formal estimates of aggregate intervention effects near the margin in a regression 

discontinuity design can be obtained using a modeling approach unique to this design either 

at the cutoff (Hahn, Todd, & Van der Klaauw, 2001) or in the neighborhood of the cutoff 

(Cattaneo, Frandsen, & Titiunik, 2015).

Both IV and discontinuity analyses can be conducted with either matching or weighting 

methods (Keele, Titiunik, & Zubizarreta, 2015; Zubizarreta, Small, Goyal, Lorch, & 

Rosenbaum, 2013) and combined with additional regression adjustments using more 

complex estimators (Robins & Rotnitzky, 1995). However, these designs are used currently 

only to estimate aggregate treatment effects, as it is unclear how to estimate PTRs in these 

designs unless one is willing to treat cases in the neighborhood of the threshold in the 

discontinuity design as if they were experimentally assigned. We consequently focus the 

discussion of PTR development later in this paper on observational studies in which the 

important determinants of treatment assignment are observed at baseline and balanced using 

either matching or weighting.

5. Measuring the important baseline covariates

Before turning to the discussion of ML methods to develop PTRs, it is important to be clear 

about a fundamental challenge in using large EMR databases for this purpose: obtaining 

accurate measures of the baseline covariates that are hypothesized to be the most important 

prescriptive predictors of treatment response. Many of these covarates are absent from large 

administrative databases. Three general approaches exist to augment the data available in 

EMR databases to overcome this challenge: collecting additional information on 

hypothesized prescriptive predictors in the same way as in the baseline assessment of a 

randomized clinical trial; linking other administrative databases to the EMR database; and 

engaging in an iterative process that combines the first two approaches. We comment briefly 

on each of these three in the remainder of this section.

6. Direct assessment in the full baseline sample

Measuring baseline covariates in a large observational database in the same way as in the 

baseline of a randomized clinical trial increases costs, which partially undercuts the 

advantages of working with a large observational database. However, these costs are 

nonetheless almost always much lower than in a randomized clinical trial because the other 

costs of this design are so low. For example, we are carrying out a large observational study 

comparing the outcomes of patients in primary care treatment of major depressive disorder 

(MDD) in VHA clinics with and without a measurement-based collaborative care (MBCC) 

program (Lipschitz et al., 2017). MBCC is available in only about 400 of the roughly 1100 

VHA outpatient clinics in the country and is used to treat only about 30% of depressed PCP 

patients in those clinics due to limited availability of MBCC case managers. This makes it 

possible for us to select separate control samples of patients both in the same clinics and in 
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clinics where MBCC is not available to develop a PTR for the types of patients most likely 

to be helped by MBCC.

In order to do this, we are recruiting patients being treated with and without MBCC to fill 

out a web-based self-administered questionnaire and complete a series of performance-based 

neurocognitive tests at the beginning of treatment and then to complete a telephone 

interview three months later to assess short-term treatment outcome. The baseline 

assessments contain a wide range of patient-reported measures hypothesized to determine 

nonrandom assignment to MBCC as well as numerous patient-reported measures found to 

be significant prescriptive predictors of MDD treatment response in previous research 

(Kessler et al., 2017). This study is being carried out in a sample of 2000 patients (500 

receiving MBCC, 500 others being treated in the same clinics with treatment-as-usual, and 

1000 treated in clinics that do not have a MBCC program) at a cost only a fraction as high as 

the cost of a randomized clinical trial of the same size.

7. Linking other archival measures

A second way to augment the assessment of baseline covariates in large EMR studies is to 

link data at the patient level with other archival data sources that provide information about 

prescriptive predictors that are not assessed in structured EMR records. This approach is 

especially useful in situations where the required sample is so large that it is infeasible to 

carry out direct patient assessments. We faced a situation of this sort in designing a currently 

ongoing study to develop a PTR for hospitalizing VHA patients in the immediate aftermath 

of a nonfatal suicide attempt versus treat these individuals as outpatients. This is an 

important decision because even though hospitalization is the standard of care for patients 

after a suicide attempt (Hjorthoj, Madsen, Agerbo, & Nordentoft, 2014; U.S. Department of 

Veterans Affairs, 2013), the high suicide rate among recently-discharged psychiatric 

inpatients (Chung et al., 2017) is thought to be partly due to hospitalization causing trauma 

(Paksarian et al., 2014), humiliation (Svindseth, Dahl, & Hatling, 2007) and negative 

societal reactions (Kinard & Klerman, 1980). Based on these considerations, experts urge 

clinicians to weigh the potential risks and benefits of hospitalization carefully on a case-by-

case basis before deciding whether to hospitalize a patient after a nonfatal suicide attempt 

(Large & Kapur, 2018). Yet little empirical guidance exists on how this should be done. This 

is a situation ideally suited to the development of a PTR to provide clinical decision support.

The key practical problem we faced in designing this study was that the sample size needed 

for powerful analysis was too large for direct baseline patient assessment. About 14,000 

nonfatal suicide attempts occur in VHA each year (Hoffmire et al., 2016) and about 8% of 

these patients experience another suicide-related behavior (SRB; either suicide death or a 

repeat nonfatal suicide attempt) over the next 12 months. Power analyses based on 

simulation methods described elsewhere (Luedtke et al., 2019) show that the ability to 

develop a stable PTR that could lead to a 10% proportional improvement in treatment 

outcome compared to current practice (i.e., from 8% to 7.2% subsequent SRB) would 

require a sample of at least 5000 patients. It would be financially and logistically 

challenging to carry out a direct assessment in such a large sample of patients shortly after a 

nonfatal suicide attempt.
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We began addressing this problem by referring to the limited literature on prescriptive 

predictors of response to clinical interventions for suicidal patients (Barbui, Esposito, & 

Cipriani, 2009; Bryan, Peterson, & Rudd, 2018; Harned et al., 2008; Huh et al., 2018; 

McMain et al., 2018) and the larger literature on prescriptive predictors of response to 

treatments for mental disorders associated with high SRB risk (Cohen & DeRubeis, 2018; 

Kessler, 2018; Kessler et al., 2017). The significant prescriptive predictors in these studies 

include various patient socio-demographics, psychiatric disorder and symptom profiles (e.g., 

persistence and severity of specific disorders, comorbidity), exposure to stress and adversity, 

and patient personality-temperament. We then found that a substantial proportion of these 

measures were not available in the structured EMR data. Based on this fact, we linked our 

EMR database with data from several other administrative data systems to increase our 

ability to assess the missing prescriptive predictors:

i. We extracted information from clinical notes in the Suicide Behavior Report for 

the initial suicide attempt using natural language processing (NLP) ML methods 

(a topic not covered in this paper, but see McCoy, Castro, Roberson, Snapper, & 

Perils, 2016; Rumshisky et al., 2016; Zhang et al., 2018) about the clinician's 

evaluation of the likely course of any triggering events for the suicide attempt, 

severity of the attempt, and perceived likelihood that the patient would make a 

repeat attempt if not hospitalized. All of these are likely to influence treatment 

decisions (i.e., lead to imbalance in baseline covariates that we can correct using 

matching or weighting once these variables are extracted based on the NLP 

analysis) as well as treatment outcome. More recent research suggests that NLP 

methods can also be used to estimate Research Domain Criteria (RDoC) scores 

from clinical notes and that these scores predict subsequent suicide deaths 

(McCoy, Pellegrini, & Perils, 2019).

ii. We linked the sample with several small-area geocode datasets that were 

developed and made available by researchers for all small areas (e.g., zip codes, 

Census Tracts) in the country. These datasets were created by aggregating 

information obtained from various kinds of administrative data or data from the 

US Census Bureau American Community Survey for all small areas in the 

country (American Community Survey, 2019). The goal was to create measures 

of neighborhood-level risk factors for SRB that might also predict non-random 

treatment assignment or prescriptive treatment response. Patient addresses were 

used for this purpose. We used measures of such potentially important 

prescriptive predictors as neighborhood disadvantage (Kind & Buckingham, 

2018), neighborhood social capital (Rupasingha, Goetz, & Freshwater, 2006), 

local unemployment rate (Nordt, Warnke, Seifritz, & Kawohl, 2015), the local 

violent crime rate (Rosellini et al., 2017), and local firearms ownership rate 

(Anestis & Houtsma, 2018).

iii. We also linked the sample to patient-level data in the LexisNexis Social 

Determinants of Health (SDOH) database. LexisNexis is an electronic database 

company that maintains the world's largest repository of public records and 

credit information (LexisNexis, 2019). Their SDOH database contains more than 

450 variables on various aspects of employment, finances, marital status, 
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parenting status, and involvement with the criminal justice system for close to 

300 million Americans. The SDOH database was linked to patient records using 

basic demographic-geographic variables (e.g., date of birth and address).

In addition to these three types of patient-level data, we created measures of structural 

characteristics of the clinics and treatment centers in which patients were seen that might 

influence patient treatment assignment as well as treatment outcomes. Included here were 

measures of such things as number of available inpatient psychiatric beds in the nearest 

VHA inpatient facility, distance between the patient's home and the nearest VHA inpatient 

facility, and availability of a MBCC program in the nearest VHA outpatient clinic, all of 

which might influence the likelihood of the VHA Suicide Prevention Coordinator (SPC) 

deciding on outpatient treatment rather than hospitalization of a patient in the immediate 

aftermath of a suicide attempt. We also created a profile of the SPC's history of using 

outpatient treatment to manage past patients after suicide attempts. Finally, we created 

measures of VHA inpatient unit characteristics found in previous research to predict SRB 

after hospital discharge, such as staffing levels, staff turnover, and average length of stay 

(Kapur et al., 2016; While et al., 2012).

8. Combined use of archival data and direct assessment

What can be done when the researcher has a primary interest in prescriptive predictors that 

are expensive to collect, such as biomarkers or in-depth clinical assessments, and the study 

requires a very large sample size for powerful analysis? Projects like the UK Biobank (U.K. 

Biobank, 2018) and the Precision Medicine Initiative's All of Us Research Program 

(National Institutes of Health, 2019) provide one answer. Each of these is an omnibus 

research initiative that recruits very large panels of individuals (between 500,000 and 1 

million) who agree to be followed over time to provide ongoing self-reports, biospecimens, 

and access to EMR data for purposes of monitoring their health and well-being. The data 

collected in these initiatives will be made available to many different researchers working on 

many different projects to improve prevention, diagnosis, and treatment of many different 

disorders. A much more limited, but nonetheless noteworthy, initiative is the UK Genetic 

Links to Anxiety and Depression (GLAD) Study (Genetic Links to Anxiety and Depression, 

2019), which is trying to recruit 40,000 people with a history of anxiety or depression to 

create a pool of patients for a range of future studies that would combine genetic data with 

administrative claims data and self-report data collected via web surveys. These initiatives 

hold considerable promise for advancing research on precision treatment of mental disorders 

(McIntosh et al., 2016). It will doubtlessly be possible to develop PTRs for biomarker 

prescriptive predictors from these databases using balanced observational subsamples 

constructed with the methods described earlier in this paper.

However, even these massive omnibus research initiatives have limits and will not meet the 

needs of all researchers seeking to use novel measures of hypothesized prescriptive 

predictors to develop PTRs. A practical way of addressing these gaps when expensive 

measures are needed in very large samples might be to develop an iterative process of 

beginning with inexpensive archival data that are analyzed with the goal of targeting a 

smaller subsample of patients for direct assessment with the expensive measures. A multi-
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tiered approach might be used instead. A good example of such an approach can be found in 

research designed to screen psychiatric inpatients and outpatients thought to be at elevated 

suicide risk to predict future SRB. Clinical practice guidelines call for such patients to 

receive in-depth clinical evaluations of suicide risk (Bernert, Horn, & Roberts, 2014; 

Silverman et al., 2015). However, these evaluations are very time-consuming (Rudd, 2014) 

and are likely to be useful for only a small proportion of patients. Perhaps because of this 

fact, in-depth clinical evaluations are carried out with only about half the patients even in 

settings where practice guidelines call for this always to be done (Cooper et al., 2013). It is 

unclear how clinicians decide which patients should or should not receive these in-depth 

evaluations, but a principled way to make this decision and to help improve treatment 

planning based on the evaluations would be to use a three-tiered approach of the following 

sort based on a series of ML models:

i. In the first tier, passively-collected EMR data, including data extracted from text 

analyses of clinical notes using NLP, could be used to develop a first-stage ML 

prediction model to determine which patients have such low predicted suicide 

risk that they could be excluded from further assessments. There is reason to 

believe based on the results of previous studies reviewed elsewhere (Kessler et 

al., 2019) that such models would find a substantial proportion of patients with 

such low SRB risk that they could reasonably be spared the burden of being 

subjected to more active suicide risk assessments;

ii. In a second tier, structured self-report suicide risk scales could be administered to 

the remaining patients for purposes of developing a second-tier ML prediction 

model designed to determine which of the remaining patients have a sufficiently 

high SRB risk to be considered for one of the special intensive types of 

psychotherapy (Jobes et al., 2017; Linehan et al., 2015; Rudd, 2012; Tighe, 

Nicholas, Shand, & Christensen, 2018) or combination therapies (Chesin et al., 

2018; Forkmann, Brakemeier, Teismann, Schramm, & Michalak, 2016) known to 

have significant aggregate effects in reducing SRB. Numerous scales of this sort 

exist (Greist, Mundt, Gwaltney, Jefferson, & Posner, 2014; Quinlivan et al., 

2016; Runeson et al., 2017). In addition, several self-report assessment tools 

have recently been developed that predict future SRB even among patients who 

deny suicidality. Included here are performance-based neurocognitive tests 

(Nock et al., 2010) and assessments based on linguistic and acoustic features 

extracted using natural language processing methods from digitally-recorded 

verbal responses to open-ended questions (Pestian et al., 2017).

It is plausible to think that a battery of such measures, when combined with first-tier 

predictors, could help clinicians distinguish between patients with a comparatively high 

predicted SRB risk and patients with lower predicted risk. The former patients could then 

receive an in-depth clinical evaluation. It is noteworthy that a composite risk prediction score 

could be used in developing this score based on coefficients generated in the first-tier 

analysis. This would allow the added strength of prediction from the larger first-tier sample 

to be imported into the second-tier analysis. This general approach of using information 

from prior tiers with much larger samples to reduce costs and improve the accuracy of 
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estimation in later tiers is known as case-cohort analysis. Case-cohort designs are reviewed 

by Noma and Tanaka (Noma & Tanaka, 2017).

It should be noted that critics have argued against using structured self-report suicide 

prediction scales as a basis for making clinical decisions about treating suicidal patients 

because of the low positive predictive values of these scales (Carter et al., 2017; Large, 

Ryan, Carter, & Kapur, 2017; Mulder, Newton-Howes, & Coid, 2016). However, it is 

important to recognize that this criticism does not speak to the likely value of ML models 

based on such scales helping to determine which patients should receive in-depth evaluations 

given that many patients currently do not receive such evaluations.

(iii) In the third tier assessment, in-depth clinical suicide risk evaluations could be 

carried out with patients predicted to be at high SRB risk to determine which of 

these patients would profit from special treatments designed to reduce SRB. As 

noted above, practice guidelines currently call for clinicians to make such 

decisions based on clinical judgment. However, previous research suggests that 

such judgments are often suboptimal (Nock et al., 2010; Woodford et al., 2017). 

It is very likely that data-driven PTRs could lead to improvements in these 

decisions. This should be done ideally using a case-cohort analysis approach to 

improve the precision of third-tier estimates.

9. Using machine learning methods to develop precision treatment rules

In order to develop a PTR, a prescriptive prediction model needs to be built using baseline 

variables that are either available for all patients or available in a tiered form of the sort 

described above. Once developed, such a model can be used to generate individual-level 

predicted treatment outcome scores for each patient separately for each treatment option 

under consideration. These scores can then be analyzed using external information about the 

relative costs of the different treatments to arrive at PTRs. The first part of this section 

describes our preferred approach to estimating prescriptive prediction models. The second 

part describes the way in which external information can be used to determine PTRs based 

on individual-level predictions produced by prescriptive prediction models.

10. Estimating prescriptive prediction models

We noted above in the Sample size requirement section that the conventional approach to 

estimating a prescriptive prediction model is to include hypothesized prescriptive predictors, 

dummy variables for treatment types, and interactions between the two classes of variables 

as predictors of treatment outcomes in a multiple regression analysis. When multiple 

interactions are statistically significant, predicted outcome scores for each patient are 

estimated under each treatment regimen based on model coefficients, and these treatment-

specific predicted outcome scores are compared at the individual level to select the regimen 

with the best predicted outcome (VanderWeele, Luedtke, van der Laan, & Kessler, 2019). 

Cross-validation (CV) is needed to avoid the problem of over-fitting (Abadie, Chingos, & 

West, 2018). The accuracy of this approach requires correct specification of both the 

(possibly nonlinear) main effects and the (possibly complex nonlinear and higher-order) 

interactions.
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Other modeling approaches exist that estimate interactions directly and do not require 

correct specification of the main effects although they do require correct specification of the 

interaction terms (Murphy, 2003; Robins, 2004). The approach we prefer is one of the latter 

approaches but has an important advantage over others that focus directly on interactions in 

that it improves on the ability to specify interactions correctly. It does this by using an 

ensemble ML approach rather than relying on a single algorithm to estimate the interactions. 

That is, our preferred approach estimates the interactions a number of different times, each 

time using a different modeling approach (e.g., conventional logistic regression, penalized 

regression, random forests, support vector machines, neural networks, etc.), and then uses a 

weighting procedure to arrive at a final estimate that averages individual-level estimates 

across the different approaches. This is done as a special case of the super learner (SL) 

algorithm (van der Laan, Polley, & Hubbard, 2007), an ensemble ML approach that uses CV 

to select a weighted combination of predicted outcome scores across a collection of 

candidate algorithms that yields an optimal weighted combination guaranteed to perform as 

least as well as the best component algorithm according to a pre-specified criterion.

It is important to recognize that the use of an ensemble of both parametric algorithms (which 

could include, but would not need to be limited to, the conventional linear interaction model 

described earlier in the paper) and flexible ML algorithms to estimate these interactions 

makes SL less prone than approaches based on a single algorithm to misspecification of the 

interactions (van der Laan & Luedtke, 2015). Furthermore, the guarantee that SL performs at 

least as well as the best candidate algorithm in expectation allows a rich library of 

parametric and flexible candidate algorithms to be included, with typical ensembles 

including such algorithms as conventional regression, various types of penalized regression, 

spline regression, adaptive polynomial splines, decision trees, Bayesian additive regression 

trees, support vector machines, and neural networks (LeDell, van der Laan, & Petersen, 

2016).

Although it is beyond the scope of this paper to present a formal description of SL, an 

intuitive understanding is easy to grasp:

i. The approach begins by estimating a SL model to predict the treatment outcome 

separately among patients in each treatment arm under the assumption of 

randomization of patients to treatments, where this assumption could be based 

either on actual randomization in a randomized clinical trial, one of the balancing 

methods described above in an observational sample, or on balancing applied to 

a randomized clinical trial to adjust for imperfect randomization.

ii. The coefficients in the resulting treatment-specific ensemble models are then 

used to generate a predicted treatment outcome score under each treatment 

alternative for each patient in the study regardless of the type of treatment 

received.

iii. These predicted outcome scores are then used to create individual-level predicted 

difference scores for each logically possible pair of treatment alternatives, for 

each alternative compared to an average outcome across all treatment 

alternatives, or, in an observational study, for each alternative compared to a 
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weighted average outcome across the observed distribution of treatment 

alternatives.

iv. Although these difference scores could be examined directly and interpreted as 

interactions, a better approach is to estimate a second set of SL models to predict 

a weighted version of these difference scores (for a discussion of the rationale for 

the weighting, see Luedtke & van der Laan, 2017) as a way of directly estimates 

the predictors of interactions (i.e., individual differences in treatment effects) in a 

way that avoids the need to estimate main effects. This is important step because 

the main effects might be more difficult to estimate due to the complexity of the 

underlying biological and psychosocial factors influencing overall treatment 

response, in which case individual-level difference scores would be estimated 

more accurately using an approach that does not require main effects to be 

estimated.

Selection of the predicted optimal treatment for a specific patient boils down to selecting the 

treatment with the best predicted difference score (either a higher probability of remission or 

a more desirable continuous outcome score) across the range of alternatives in this second 

set of SL models. The relative importance of specific predictors in determining these 

individual-level predicted differences can be examined by using the individual-level 

predicted differences scores from these models as outcomes in exploratory ML analyses 

where either penalized regression or regression trees are used to estimate which prescriptive 

predictors in the models contributed most to the predicted difference scores. Some ML 

algorithms (e.g. random forests) generate a graph of the relative importance of all such 

predictors.

It is noteworthy that absolute predicted values (i.e., main effects, including intercepts) are 

irrelevant to the decision about optimal treatments so long as all the treatment options under 

consideration are included in the analysis. This is true because individual-level differences in 

expected outcomes across this complete set of options provide sufficient information for 

choosing an optimal treatment for each patient. However, main effects become relevant 

when the option of receiving no treatment is also includes as an alternative, in which case SL 

PTR models can be expanded to estimate an absolute outcome score (i.e., an individual-level 

predicted probability of remission or a predicted continuous outcome score), either under 

one particular type of treatment or averaged across a range of treatment alternatives. As 

noted above, though, it is important to recognize that these absolute value estimates are 

likely to be more biased than the estimates of difference scores.

It is also noteworthy that SL is not unique in being able to estimate a PTR that is always 

approximately optimal for a given set of prescriptive predictors within the (possibly mis-

specified) class of functional forms considered. This same property holds for some specific 

candidate algorithms (Rubin & van der Laan, 2012; Zhang, Tsiatis, Davidian, Zhang, & 

Laber, 2012; Zhao, Zeng, Rush, & Kosorok, 2012). However, as noted above, chances of 

estimating the optimal treatment strategy correctly is higher in SL because of the wider 

range of functional forms it allows to be considered. In cases where the conditional average 

treatment effects for each treatment condition can be correctly specified with a single 

algorithm, an approach that begins by using only that algorithm can have better finite-
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sample performance than SL (Luedtke & Chambaz, 2017) even though SL will, in 

expectation, find the same solution so long as the correct algorithm is included in the SL 

library. But this disadvantage of SL is more theoretical than real because there can never be 

a guarantee that the conditional average treatment effects for each treatment condition are 

correctly specified with a particular algorithm and misspecification would lead to biased 

estimation of the PTR with no advantage other than an increased efficiency that could be 

addressed by increasing sample size.

11. Estimating the aggregate impact of using a precision treatment rule

As noted in the previous section, the expected individual-level effect of optimal treatment for 

a specific patient can be conveyed to clinicians by reporting the extent to which the outcome 

for that patient would be expected to improve under optimal treatment compared to some 

alternative specified by the researcher. The aggregate effect of optimal treatment, in 

comparison, can be conveyed to policy-makers by using a cross-validated targeted minimum 

loss-based estimator (CV-TMLE) (van der Laan & Luedtke, 2015) of the attained 

improvement in the outcome based on optimized treatment compared to the same alternative 

as in the individual-level analysis. Depending on the policy purposes of the researcher and 

treatment system considering the PTR, the analysis might focus on a PTR that selected the 

treatment option with the better predicted outcome for each patient or, in the case of 

constrained treatment resources, for some proportion of patients compared to the aggregate 

outcome under some other treatment allocation scheme. The latter could be balanced 

randomization (i.e., when 50% of patients are randomly assigned to each of two treatment 

conditions) or, in the case of an observational study, observed allocation across treatment 

conditions. These CV-TMLEs yield estimators of the attained improvement with minimal 

bias because they use CV to separate the estimation of the optimal treatment strategy from 

the assessment of the estimated strategy's performance and allow also for the incorporation 

of flexible estimation approaches for the regressions and conditional probabilities needed to 

define the attained improvement.

If, as is sometimes the case, one treatment option is preferable for some patients and another 

treatment option for other patients, aggregate effects of optimization can be evaluated by 

comparing predicted outcomes based on optimal assignment vs. random assignment. 

However, when treatment options are incremental and the more intensive treatment is the 

preferred one for all patients, it is sometimes useful to evaluate aggregate treatment 

outcomes under optimization constraints. For example, we could estimate whether 

significantly more than 25% of the aggregate increase in remission achieved by providing a 

globally optimal but expensive treatment to all patients could be achieved by providing that 

treatment only to the 25% of patients predicted to benefit most from that treatment. The 

distribution of CV predicted individual-level difference scores could be inspected in such a 

case to determine if a substantial difference existed across patients in the relative benefit of 

an optimal treatment. A series of incremental decision margins of this sort can be evaluated 

to determine the extent to which aggregate estimates of predicted benefits deviate from the 

values expected in the absence of individual-differences in the value of the optimal 

treatment.
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As suggested above, extensions can easily be made to situations where more than two 

treatment options exist. An interesting area of investigation in such situations is the separate 

evaluation of the proportional distribution of optimality across treatment types and the 

calculation of the extent to which aggregate optimal treatment effects are due to treatments 

that might or might not be those that are most often optimal. For example, in ongoing 

collaborative work we are carrying out to evaluate the comparative effectiveness of first-line 

medications for schizophrenia in a large registry sample with an observational design, we 

are comparing 15 different medications. Results suggest that a substantial improvement in 

successful 12-month outcomes (defined by absence of hospitalization) could be achieved 

over current practice by using optimal treatment allocation across these medications. A 

small number of medications are optimal for most patients. We decomposed the aggregate 

expected improvement in outcome due to treatment optimization by type of optimal 

treatment by summing the product of the proportion of patients for which a given treatment 

is optimal by the mean expected improvement in outcome associated with that treatment. As 

it happens, some large contributors to aggregate expected improvement were treatments that 

were optimal for only small proportions of patients but made large differences to the 

outcomes of these patients compared to second-best treatments.

When treatment options are not all equivalent in terms of costs and secondary benefits, 

creation of PTRs for each patient requires the additional step of considering the comparative 

costs and secondary benefits of each treatment option (Steyerberg et al., 2010). A treatment 

that would be considered optimal for a specific patient based only on considerations of 

comparative treatment effectiveness might not be optimal when taking into consideration the 

small expected improvement in clinical outcome and high cost compared to those of next-

best treatments. In a situation of this sort, the clinician needs to use such additional 

information to decide on the comparative net benefits of treatments in making treatment 

decisions. A discussion of statistical issues in the evaluation of net benefit in deciding on 

clinical decision thresholds is presented by Vickers and colleagues (Vickers, Van Calster, & 

Steyerberg, 2016).

12. Discussion

By allowing the researcher to use all algorithms under consideration when developing PTRs 

rather than relying on a single algorithm, a SL ensemble can resolve uncertainties about the 

form of the optimal PTR. Importantly, if it turns out that a simple interaction model (or any 

other single algorithm) is best, the SL optimality guarantee means that the PTR based on SL 

will be at least as good as the PTR based on that single algorithm in expectation. 

Furthermore, SL diagnostics will allow the researcher to detect a situation in which a single 

algorithm dominates the others in the ensemble, in which case efficiency can be improved 

by repeating the analysis using only that single algorithm. Given these desirable features of 

SL, the main challenge in estimating PTRs is that much larger samples are needed than those 

available in existing randomized clinical trials for mental disorders. The most feasible way 

of dealing with this problem is to work with large observational databases. As we discussed 

above, the key challenge in doing this is that observational databases often lack measures of 

the key prescriptive predictors of interest to the researchers and of the key baseline 

covariates that are needed to balance samples prior to carrying out causal analyses. We 
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illustrated the ways we are addressing this challenge in ongoing studies designed to develop 

PTRs for mental disorders from observational data.

As the adoption of measurement-based treatment protocols for common mental disorders 

becomes more and more common, availability of both prescriptive predictors and mental 

disorder treatment outcome measures will increase (Peterson, Anderson, & Bourne, 2018; 

Waldrop & McGuinness, 2017). This will make it much easier than it is currently to analyze 

large observational databases to develop PTRs for mental disorders. We suspect that patient 

report and administrative variables are likely to be the key components of these models 

unless either breakthroughs occur in biomarker assessment methods or, more realistically, 

new biological treatments come into existence for which useful PTRs can be developed 

using existing measures. It is likely that biomarkers, which have been a central focus of 

research on precision treatment of mental disorders up to now (Menke, 2018), will continue 

to be expensive to collect, although costs for many biomarkers are dropping rapidly, but 

tiered analyses of observational datasets along the lines described above will increase the 

efficiency of biomarker studies even if costs remain high by focusing biomarker collection 

on the segments of the patient population where this information is most likely to be of 

value. Only time will tell the extent to which the development and use of PTRs based on 

these developments will be able to improve patient outcomes, but it is almost certainly the 

case that such improvements will be substantial.
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