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Abstract

CD11c+ T-bet+ B cells generated during ehrlichial infection require CD4+ T cell help and IL-21 

signaling for their development, but the exact T cell subset required had not been known. Here we 

show, in a mouse model of Ehrlichia muris, that TFH1 cells provide help to CD11c+ T-bet+ B cells 

via the dual secretion of IL-21 and IFN-γ in a CD40:CD40L-dependent manner. TFH1 cell help 

was delivered in two phases: IFN-γ signals were provided early in infection, whereas 

CD40:CD40L help was provided late in infection. In contrast to T-bet+ T cells, T-bet+ B cells, did 

not develop in the absence of B cell-intrinsic Bcl-6, but were generated in the absence of T-bet. T-

bet-deficient memory B cells were largely indistinguishable from their wild-type counterparts, 

although they no longer underwent switching to IgG2c. These data suggest that a primary function 

of T-bet in B cells during ehrlichial infection is to promote appropriate class switching, not lineage 

specification. Thus, CD11c+ memory B cells develop normally without T-bet, but require Bcl-6 

and specialized help from dual cytokine-producing TFH1 cells.

Introduction

T-bet+ B cells are now recognized as a distinct effector/memory B cells subset elicited by 

infection, aging, and autoimmunity (1–8). T-bet+ B cells have been identified during many 

infections, including malaria, HIV, and hepatitis C and B infections (9–12). Moreover, 

several studies have implicated T-bet+ B cells in autoimmune diseases, including SLE (13–

15), arthritis (16, 17), and Sjøgren’s disease (18). We first identified CD11c+ B cells during 

murine infection with the obligate intracellular bacterium Ehrlichia muris (19) and later 

showed that all of the CD11c+ B cells also expressed T-bet (20). CD11c+ T-bet+ B cells 

generated early following infection differentiate into antigen-specific IgM-secreting 

plasmablasts (21). By day 30 post-infection, however, CD11c+ T-bet+ B cells are found 

largely as IgM memory cells, although smaller subsets of switched and germinal center (GC) 
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B cells are also found within the population (22). The low numbers of switched and GC B 

cells are likely a consequence of the disruption of splenic architecture observed during E. 
muris infection, which is characterized by a lack of formal GCs and ablation of conventional 

splenic organization (21, 23). Other work from our laboratory demonstrated that long-term 

T-bet+ B cells elicited during ehrlichial infection function as memory cells (20); these 

memory cells also undergo self-renewal, which presumably functions to maintain the 

population during low-level chronic infection. Ablation of the T-bet+ B cells also abrogated 

the pathogen-specific switched antibody response following secondary challenge, 

demonstrating that T-bet+ memory B cells are important for humoral immunity (22).

The development of T-bet+ memory B cells is likely dependent on the inflammatory milieu 

associated with Type 1 responses encountered during both infection and autoimmunity. 

Within this inflammatory milieu, IFN-γ, IL-21, and TLR signaling have been shown to be 

crucial for the development of T-bet+ B cells (24, 25). Moreover, CD11c+ T-bet+ B cell 

development requires CD4+ T cell help, and it has been proposed that T-bet+ B cells receive 

this help from TFH cells (26, 27).

TFH cells are a population of CD4+ T cells that provide help to GC B cells via various 

ligands and cytokines, including CD40L, ICOS, IL-21, and IL-4 (28) and as such, TFH cells 

are critical for the formation of high affinity ASCs and memory B cells. It is now clear that 

multiple subsets of TFH cells exist, including populations of TFH13, TFH17, TFH2 and TFH1 

cells (29, 30). Each of these populations express surface markers, transcription factors, and 

cytokines characteristic of their non-TFH cell counterparts. For example, TFH1 cells express 

the TFH cell surface markers CXCR5, PD-1, and the transcription factor Bcl-6, but also the 

TH1-associated factors CXCR3 and T-bet (28, 29). These hybrid TFH cells are capable of 

secreting IFN-γ and IL-21, and similar to TH1 cells, arise in response to IL-12, IL-4, and 

IL-2 (31). TFH1 cells have now been shown to be elicited during type I responses to many 

different pathogens including, HIV, influenza, LCMV and malaria (27, 32–36). TFH1 cells 

generated during HIV contribute to host defense, as they were negatively correlated with 

viral load and positively correlated with anti-p24 IgG (34). TFH1 cells have also been shown 

to provide help to memory B cells during recall responses following influenza vaccination, 

where the T cells were positively correlated with anti-influenza antibody responses (32). In 

contrast, TFH1 cells elicited during recurrent malaria infection have been proposed to drive 

the generation of T-bet+ memory B cells, although these cells exhibited reduced memory 

function (27). These studies, and others, have demonstrated the requirement for both IL-21 

and IFN-γ in the generation of T-bet+ B cells, and have suggested that TFH1 cells play an 

important role in T-bet+ B cell development.

In this study, we demonstrate that TFH1 cells are critical for the generation of CD11c+ T-bet

+ B cells. We also show that while T cell-intrinsic T-bet expression is required for the 

generation of CD11c+ T-bet+ B cells, T-bet expression in B cells is dispensable for the 

development of CD11c+ B cells that are identical in phenotype to their wild type 

counterparts. This research demonstrates a central and perhaps obligatory role for TFH1 cells 

in the generation of CD11c+ T-bet+ B cells in infection and autoimmunity.
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Materials and Methods

Mice.

C57BL/6J, CD19Cre (B6.129P2(C)-Cd19tm1(cre)Cgn/J), Bcl6fl (B6.129S(FVB)-

Bcl6tm1.1Dent/J), CD4cre (B6.Cg-Tg(Cd4-cre)1Cwi/BfluJ), Tbx21fl (B6.129-Tbx21tm2Srnr/J), 

Mb1cre (B6.C(Cg)-Cd79atm1(cre)Reth/EhobJ), IFN-γ reporter (C.129S4(B6)-IFN-

γtm3.1Lky/J), IL-21 reporter (B6.Cg-Il21tm1.1Hm/DcrJ), CD40L-deficient (B6.129S2-

Cd40lgtm1Imx/J), and IFN-γ-deficient (B6.129S7-IFN-γtm1Ts/J) mice were obtained from 

The Jackson Laboratory (Bar Harbor, ME), and bred in the SUNY Upstate Medical 

University Animal Care Facility (Syracuse, NY), in accordance with institutional guidelines 

for animal welfare. All mice used for experiments were at least 6 weeks old, and both male 

and female mice were used unless otherwise stated.

Infections and antibody administration.

Mice were infected intraperitoneally (i.p.) with 5×104 E. muris bacterial copies, as 

determined by qPCR, and as previously described (37). Anti-CD40L monoclonal antibody 

(BE0017–1) and isotype control polyclonal Armenian hamster IgG (clone BE0091) were 

purchased from BioXcell (West Lebanon, NH) and were administered every other day from 

days 16 to 30 post-infection, or every other day from days 30 to 37 post-infection, as 

previously described (38). Anti-IFN-γ monoclonal antibody (clone R4–6A2) was purchased 

from BioXcell (West Lebanon, NH) and 500μg administered once every three days from 

days 16 to 30 post-infection.

Flow cytometry and antibodies.

Spleens were disaggregated using a 70μm cell strainer (BD Falcon), and erythrocytes 

removed by incubation with ACK lysis Buffer (Quality Biological Inc). Cells were treated 

with anti-CD16/32 (2.4G2) prior to incubation with the following antibodies: PerCpCy5.5-

conjugated anti-CD19 (6D5), Alexafluor 700-conjugated anti-CD19 (6D5), APC-eFluor 

780-conjugated anti-CD11c (N418), V500-conjugated anti-B220 (RA3–6B2), Alexafluor 

647-conjugated anti-T-bet (4B10), PerCpCy5.5-conjugated anti-T-bet (4B10), Alexafluor 

647-conjugated anti-Bcl-6 (K112–91), FITC-conjugated anti-PD-1 (29F.1A12), PE-

conjugated anti-CCR6 (29–2L17), PerCpCy5.5-conjugated anti-CD4 (RM4–4), PECy7-

conjugated anti-ICOS (C398.4A), Alexafluor 700-conjugated anti-CD3 (17A2), APCeFluor 

780-conjugated anti-CD44 (IM7), Brilliant Violet 421-conjugated anti-CXCR5 (L138D7), 

BV510-conjugated anti-CXCR3 (CXCR3–173), V500-conjugated anti-CD3 (500A2), PE-

conjugated anti-IFN-γ (XMG1.2), Alexafluor 647-conjugated anti-IL-21 (mhalx21).

The cells were stained at 4°C for 30 min, washed, and analyzed. For intracellular staining, 

surface stained cells were fixed/permeabilized for 40 minutes at 4°C using the Transcription 

Factor Buffer set Fixation/permeabilization buffer (BD Pharmingen), washed, stained at 4°C 

for 30 minutes, washed, and analyzed. For cytokine staining, splenocytes were cultured with 

BioLegend cell activation cocktail containing Phorbol 12-myristate 13-acetate (PMA), 

ionomycin, and Brefeldin A for 4 hours at 37°C. Surface stained cells were fixed/

permeabilized for 20 minutes at 4°C using BD Cytofix/Cytoperm, washed, stained at 4°C for 

30 minutes, washed, and analyzed. Unstained cells were used to establish the flow cytometer 
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voltage settings, and single-color positive controls were used to adjust compensation. Data 

were acquired on a BD Fortessa flow cytometer with Diva software (BD Bioscience), and 

were analyzed with FlowJo software (Tree Star, Inc.).

ELISAs.

Serum ELISAs were performed as previously described (22). Recombinant OMP-19 was 

coated on Flat-Bottom Immuno plates (Thermo Scientific) and antigen-specific IgM, pan 

IgG, IgG1, IgG2b, IgG2c, and IgG3 serum antibodies were detected with alkaline 

phosphatase-conjugated goat anti-mouse antibodies (Southern Biotechnology Associates, 

Birmingham, AL). Serum ELISAs for IFN-γ were performed using the Mouse IFN-γ 
ELISA Ready-SET-Go! kit (eBioscience) according to the manufacturer’s instructions.

Statistical analysis.

Statistical analysis was performed using Prism 8 (GraphPad). Statistical significance was 

represented as shown: ns: p > 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, and ****: p < 

0.0001. Statistical tests performed are indicated in the figure legend. The column in each 

plot indicates the arithmetic mean of the dataset and upper and lower bounds indicate 

standard deviation of the dataset.

Results

T-bet+ T cells, but not conventional TFH cells, were required for CD11c+ T-bet+ B cell 
development

We have previously demonstrated that CD11c-expressing T-bet+ memory B cells are not 

generated in the absence of CD4+ T cells or IL-21 signaling (22). Similarly, this B cell 

subset did not develop in the absence of the T cell co-stimulatory molecule CD40L (Figure 

1A, Supplementary Figure S1A). These requirements indicated that CD11c+ T-bet+ B cells 

likely receive CD4+ T cell help from a CD40L+ T cell population capable of secreting 

IL-21. As E. muris infection elicits a large population of CXCR5+ PD-1+ Bcl-6+ T cells 

(38); (see also Supplementary Figure S1B), we hypothesized that conventional TFH cells 

were the source of CD4+ T cell help for the CD11c+ T-bet+ B cells. To address this 

question, we infected CD4-cre x Bcl-6fl/fl mice, which lack conventional TFH cells (39), and 

monitored the T and B cell populations elicited by infection. CD11c+ T-bet+ memory B 

cells were detected on day 30 post-infection in mice lacking CXCR5+ PD-1+ TFH cells, 

indicating that CD11c+ T-bet+ B cells received T cell help from a CD4+ T cell population 

other than conventional TFH cells (Figure1B, Supplementary Figure S1C). Consistent with 

this hypothesis, E. muris infection also generated a large population of T-bet+ CXCR3+ T 

cells. These T-bet+ T cells expressed high levels of ICOS and CD44, and transcribed IFN-γ 
on day 16 post-infection (Figure 1C). Although IFN-γ drives the formation of T-bet+ B cells 

(25, 26), most B220+ cells, including CD11c+ T-bet+ B cells, were absent in IFN-γ-

deficient mice on day 18 post-infection, emphasizing the importance of IFN-γ for the 

immune response during ehrlichial infection (Figure 1D). To determine if the IFN-γ-

producing T-bet+ T cells were a source of CD4+ T cell help for the CD11c+ T-bet+ B cells, 

we next examined infected CD4-cre x T-bet-fl/fl mice, which lack T-bet+ T cells. CD11c+ T-

bet+ B cells were not generated in the absence of T-bet+ T cells, suggesting that the T-bet+ 
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T cells were the source of CD4+ T cell help to the CD11c+ T-bet+ B cells (Figure 1E). 

Consistent with published studies (40), we also identified a population of T-bethigh cells 

which expressed CD11c, and a population of T-betlow cells which did not express CD11c. 

These T-betlow cells were still present in the absence of T-bet+ T cells. Although the total 

number of CD11c+ and T-bet+ B cells was similar in the wild-type and T-bet+ T cell-

deficient mice, this was like a consequence of increased splenomegaly in the latter strain, 

which inflated negligible numbers of CD11c+ and T-bethigh B cells (Supplemental Figure 

S1D). TFH cells were still present in CD4-cre x Tbetfl/fl mice, albeit at significantly reduced 

levels, and likewise, T-bet+ T cells were present in CD4-cre x Bcl-6fl/fl mice at reduced 

levels (Supplemental Figure S1E and F).

IFN-γ IL-21 double-producing TFH1 cells provide help to CD11c+ T-bet+ B cells

Given that the generation of CD11c+ T-bet+ B cells required IL-21, but not conventional 

TFH cells, we next sought to determine the cellular source of IL-21. Analysis of IL-21 

reporter mice on day 16 post-infection, revealed that both CXCR3+ CXCR5+ and CXCR3+ 

CXCR5-negative T cells transcribed IL-21 (Figure 1F, Supplemental Figure S2A). Likewise, 

data from in vitro stimulation of T-bet+ T cells indicated that wild-type T-bet+ T cells were 

capable of producing IL-21 and IFN-γ simultaneously (Figure 1G). In addition to producing 

IL-21, a large portion of the CXCR3+ T cells expressed the TFH markers CXCR5 and PD-1, 

as well as Bcl-6 (Supplemental Figure S2B). However, CXCR5-negative CXCR3+ T cells 

produced more IFN-γ than their CXCR5+ CXCR3+ counterparts (Supplementary Figure 

S2C). These data are consistent with other studies that have described a similar subset of 

TFH cells (27, 32–36); the emerging consensus is that these T cells are Type 1 follicular 

helper (TFH1) cells, consistent with their role in driving type I B cells responses (28).

To further address whether the T-bet+ T cells generated in E. muris infection were TFH1 

cells, we performed RNA sequencing analysis, using CXCR3+ CD4+ T cells obtained from 

infected mice on day 16 post-infection. CXCR3 was used as a surrogate marker for T-bet, as 

all of the T-bet+ T cells expressed CXCR3 (Supplementary Figure S3A). The CXCR3+ T 

cells expressed genes associated with TFH cells including Cxcr5, Il21, and Il12rb, as well as 

those associated with TH1 cells, including Tbx21, Ccr5, Prdm1, and Ifng (Supplementary 

Figure S3B). These data provide additional support for the interpretation that T-bet+ T cells 

elicited in E. muris infection are TFH1 cells. Thus, we conclude that CD11c+ T-bet+ B cells 

generated during ehrlichial infection receive IL-21, IFN-γ and CD40L signals from IL-21 

and IFN-γ dual-producing TFH1 cells.

CD11c+ T-bet+ B cells have biphasic requirements for T cell help

Following 4-nitrophenol immunization, mature GCs appear by approximately day 7 post-

immunization (41, 42). In contrast, the humoral response to E. muris is delayed, such that 

splenic GL7+ B cells do not appear until approximately 21 days post-infection, and antigen-

specific IgG is largely undetectable until 28 days post-infection (21). Because of this 

delayed response, we next addressed when differentiating CD11c+ T-bet+ B cells received 

help from TFH1 cells during infection. In previous studies, treatment of mice with anti-

CD40L from days 2 to 16 post-infection, had only a modest effect on the generation of 

CD11c+ T-bet+ B cells detected on day 16 post-infection, which suggested that the B cells 
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acquired CD40-mediated help later following infection (23). To determine if CD11c+ T-bet+ 

B cells received CD40L help after day 16 post-infection, infected mice were treated with 

anti-CD40L antibody from days 16 to 30 post-infection, and were analyzed on day 30 post-

infection. CD11c+ T-bet+ B cells were substantially reduced on day 30 post-infection 

following anti-CD40L treatment from days 16 to 30 post-infection (Figure 2A). Moreover, 

anti-CD40L treatment after day 30 post-infection, when the CD11c+ T-bet+ B cell 

population is fully matured, only minimally affected CD11c+ T-bet+ B cell frequency 

(Figure 2B). These data indicate that CD11c+ T-bet+ B cells receive a substantial portion of 

CD40L help from T cells between days 16 and 30 post-infection, after infection has begun 

to resolve, much later than is typical for other infections or immunizations. In contrast, 

CD11c+ T-bet+ B cells required IFN-γ signaling early in infection, as the B cells developed 

normally following IFN-γ depletion on days 16–30 post-infection, but failed to develop in 

IFN-γ-deficient mice by day 18 post-infection (Figure 2C). Consistent with this early 

requirement for IFN-γ, serum IFN-γ was detected on day 8 post-infection but was largely 

absent after day 16 post-infection (Figure 2D). These data suggest that CD11c+ T-bet+ B 

cells have a biphasic requirement for help, requiring IFN-γ early during infection, and 

CD40:CD40L interactions late.

Bcl-6 is required for the development of CD11c+ T-bet+ B cells

The involvement of TFH1 cells, and our previous data showing that approximately 50% of 

CD11c+ B cells express GL7 on day 16 post-infection (23), suggested that CD11c+ T-bet+ 

B cells develop in GCs. Consistent with this hypothesis, 15–20% of T-bet+ B cells expressed 

the GC-associated transcription factor Bcl-6 on day 16 post-infection, although expression 

was largely absent by day 30 post-infection (Figure 3A). However, E. muris infection causes 

a disruption of splenic architecture and a loss of splenic GCs (21, 23), suggesting that 

CD11c+ T-bet+ memory B cells are generated in a GC-independent fashion. GC-

independent memory cells have been described previously, and can be generated in the 

absence of Bcl-6 in B cells (43, 44). To determine if CD11c+ T-bet+ B cells develop in the 

absence of Bcl-6, we monitored CD11c+ T-bet+ B cells in infected GC-deficient CD19-cre x 

Bcl-6fl/fl mice. Unlike GC-independent memory B cells that have been described, CD11c+ 

T-bet+ memory B cells, elicited by ehrlichial infection, were not present after day 30 post-

infection in the absence of Bcl-6 nor were T-bet+ B cells present on day 16 post-infection 

(Figure 3B). Commensurate with the loss of T-bet+ B cells, fewer switched antibodies, most 

notably IgG2c, were detected by serum ELISA on day 30 post-infection indicating that the 

T-bet+ B cells were critical for the switched-antibody response to E. muris (Figure 3C) (22). 

Thus, while developing T-bet+ B cells received T cell help apparently independent of GCs, 

as these structures are disrupted during ehrlichial infection (21, 23), development of the T-

bet+ B cells required at least transient expression of Bcl-6 early in their development. These 

data indicate that in the absence of formal GC structures, GC-like help from TFH1 cells is 

necessary to drive the development of T-bet+ B cells.

CD11c+ B cells develop in the absence of T-bet

Although we have shown that IL-21 signaling is crucial for the generation of CD11c+ T-bet+ 

B cells, other studies have demonstrated that IL-21 signaling can drive the formation of 

CD11c+ B cells in vitro, without inducing T-bet expression (25). In addition, studies in other 
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experimental models have shown that B cells with characteristics of T-bet+ B cells can be 

generated in the absence of T-bet (14, 45–47). Therefore, we next addressed whether T-bet 

was required for CD11c+ T-bet+ B cell development following ehrlichial infection using 

Mb1-cre x T-betfl/fl mice, where T-bet was eliminated in all B cells. The frequency of CD11c

+ B cells was increased in E. muris-infected, B cell-specific, T-bet-deficient mice, although 

the absolute number remained the same, and the B cells were largely identical in phenotype 

to T-bet-sufficient CD11c+ memory B cells (Figure 4A). No differences were observed in 

the expression of several characteristic T-bet+ B cell surface markers, including CD11c, 

CD73, CD38, PD-L2, and CD80 (Figure 4B). However, as has been shown in other 

experimental models, T-bet-deficient B cells produced little antigen-specific IgG2c, and 

instead generated IgG of other isotypes not normally found during ehrlichial infections 

(Figure 4C) (48). These results suggest that the primary role of T-bet expression among B 

cells during ehrlichial infection, is the regulation of antibody class switching, not lineage 

determination.

Discussion

Here we demonstrate that TFH1 cells provide both IFN-γ and IL-21 to developing CD11c+ 

T-bet+ B cells. These data suggest that CD11c+ T-bet+ B cells require multi-functional 

helper T cells, as classical TFH cells were insufficient to drive CD11c+ T-bet+ B cell 

generation. Although other studies have demonstrated TFH1 cells could drive expression of 

T-bet in naïve B cells in vitro (26, 27), our work shows that dual cytokine-producing TFH1 

cells are necessary for the generation of CD11c+ T-bet+ B cells in vivo. Given that TFH1 

cells and T-bet+ B cells arise in many of the same infections and diseases, TFH1 cells likely 

give rise to T-bet+ B cells in other contexts as well, implicating TFH1 cells as a key mediator 

of type I humoral immunity and antibody-mediated autoimmunity (26, 36, 45, 49). Thus, our 

studies have implications for understanding how protective and pathogenic T-bet+ B cells 

arise in many different immunological contexts.

We also demonstrate that while CD11c+ T-bethigh B cells were not present in the absence of 

TFH1 cells, CD11c-negative T-betlow B cells were still detected. These findings suggest that 

CD11c+ and CD11c-negative T-bet+ B cells have disparate requirements for T cell help. 

Alternatively, it is possible that T cells help to drive expression of CD11c and T-bet in B 

cells, and in the absence of T cell help, T-bet+ B cells remain CD11c-negative and T-betlow.

The dual production of both IFN-γ and IL-21 by TFH1 cells suggests that simultaneous 

secretion of both cytokines from the same helper T cell is crucial for the generation of 

CD11c+ T-bet+ B cells. This interpretation is supported by previous research which has 

demonstrated that T helper cytokines are released in a directed fashion from immune 

synapses, allowing for strict cell-to-cell signaling (28, 50, 51). This dual cytokine 

requirement likely explain why classical TFH cells were dispensable for the formation of 

CD11c+ T-bet+ B cells. However, as the temporal requirement for IL-21 was not addressed 

in this study, further work is required to validate this conclusion.

The TFH1 helper signals CD40:CD40L and IFN-γ were required at different times: IFN-γ 
was needed early following infection, within the first 16 days, while CD40:CD40L signaling 
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was critical after day 16 post-infection. The biphasic nature of this T cell help suggests that 

TFH1 cells undergo temporal changes, producing IFN-γ early and signaling via CD40L late 

in infection. Alternatively, it is possible that a second cell population, perhaps NKT cells 

(52), is responsible for providing early IFN-γ signals to developing T-bet+ B cells, and TFH1 

cells provide CD40L-mediated help later in infection. However, given the drastic effects on 

the total B cell population in IFN-γ-deficient mice during E. muris infection, further work is 

needed to confirm these hypotheses. The apparently delayed CD40:CD40L interactions 

between TFH1 cells and CD11c+ T-bet+ B cells may be a result of disruptions in splenic 

organization that occur during E. muris infection, as splenomegaly and increased splenic 

hematopoiesis begins to resolve after day 16 post-infection (21, 53). These delayed 

interactions may be relevant in other infections that generate T-bet+ B cells, where similar 

changes in splenic organization have been observed (54).

A portion of the relevant helper T cells in our studies expressed the TH1 marker CXCR3 and 

the transcription factor T-bet, but not the TFH marker CXCR5 or the transcription factor 

Bcl-6. The most likely explanation of this observation is that the CXCR3+ T cells form a 

single TFH1 population, although other interpretations are possible. In addition to TFH1 cells, 

E. muris infection may also elicit TH1 cells. These TH1 cells may be sufficient to provide 

help to developing T-bet+ B cells in the absence of TFH1 cells, and may compensate for the 

loss of TFH1 cells in CD4-cre x Bcl-6fl/fl mice. This interpretation is supported by the 

observation that Blimp-1 mRNA, a transcription factor known to antagonize Bcl-6 and to be 

highly expressed among non-TFH T cells (28, 55), was increased among CXCR3+ T cells 

during infection. Alternatively, it is possible that all of the responding T-bet+ T cells 

function as TFH1 cells, even in the absence of Bcl-6, as both CXCR5-positive and negative T 

cells were capable of producing IL-21 and IFN-γ. Consistent with this interpretation, it has 

been reported that TFH1 cells persist in the absence of Bcl-6 in malaria infection (33). In 

contrast, CXCR5+ T cells were not detected in the absence of Bcl-6 in our studies, 

suggesting that even though CXCR3+ T cells were present, they exhibited fewer 

characteristics of TFH cells. This interpretation suggests that TFH1 cells fall within a 

continuum, between canonical TFH-like cells and TH1-like cells. In this model, some 

CXCR3+ T cells exhibit characteristics more consistent with a canonical TFH phenotype i.e., 

they express CXCR5, whereas other CXCR3+ T cells exhibit characteristics more consistent 

with a TH1, phenotype i.e., they do not express CXCR5, and produce more IFN-γ. These 

data highlight the plasticity of follicular helper T cells, which has been discussed previously 

(28). Regardless of their surface marker phenotype, the T-bet-expressing CD4+ T cells 

formally function as TFH1 cells, by providing IL-21, IFN-γ, and CD40L help.

The paucity of GCs in E. muris-infected mice is likely a consequence of the highly 

inflammatory cytokine milieu generated during infection (23). TFH1 cells may contribute to 

this inflammatory response, as they produce and/or transcribe both IFN-γ and TNF-α, and 

we have shown that TNF-α contributes to splenic disorganization. The absence of formal 

GCs during ehrlichial infection had suggested that CD11c+ T-bet+ B cells develop 

independently of GCs. Indeed, similar to GC-independent memory B cells, CD11c+ T-bet+ 

B cells exhibit low numbers of BCR mutations (22, 56). However, unlike GC-independent 

memory B cells, T-bet+ B cells expressed Bcl-6 early in their development, and their 

generation required Bcl-6 expression. This requirement for Bcl-6 in B cells suggests that T-
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bet+ B cells are not formal GC-independent memory B cells. Rather, T-bet+ B cells elicited 

by ehrlichial infection, exhibit characteristics of GC B cells, and require Bcl-6, even in the 

absence of canonical GCs. Thus, while not found in formal GCs, developing CD11c+ T-bet+ 

B cells receive GC-like help from TFH1 cells. The absence of formal GCs likely explains 

why most CD11c+ T-bet+ B cells do not undergo extensive SHM and CSR. Furthermore, the 

lack of a highly selective GC environment may explain the uncharacteristically high 

frequency of T-bet+ B cells detected in spleens of ehrlichial-infected mice, and may also 

explain the lack of clonal selection among T-bet+ B cells (20).

Although T-bet+ B cells are now widely considered to play important roles in many disease 

contexts, we demonstrate that T-bet is not required for lineage determination in our model. 

CD11c+ B cells, which appear nearly identical to canonical T-bet+ B cells, still develop 

normally in the absence of T-bet, although T-bet was important for IgG2c switching, as 

previously reported (24, 45–47). Our data suggest that the primary function of T-bet 

expression in developing CD11c+ T-bet+ memory B cells during E. muris infection is not to 

determine lineage specification, but rather, to drive class switching to isotypes that provide 

protective immunity. In this regard, although depletion of T-bet in B cells has been shown to 

ameliorate symptoms of SLE in a mouse model of lupus, this outcome was likely due to 

changes in autoantibody isotype, as IgG2c is well-known to contribute to disease 

pathogenesis in SLE (57). Our findings also contrast with studies of T-bet+ B cells during 

malaria infection, where T-bet contributes to B cell affinity maturation in GCs. However, T-

bet is unlikely to have any effects on the affinity maturation of T-bet+ B cells during E. 
muris infection, as these B cells develop in the absence of GCs. Therefore, while T-bet 

expression may not contribute to the generation of CD11c+ memory B cells in ehrlichial 

infection, its expression still has important consequences for type I immunity and 

autoimmune disease pathogenesis, in particular, via its role in antibody isotype 

determination. Thus, T-bet may play a more important role in T cells, where it drives the 

formation of TFH1 cells, which are required for the generation of T-bet+ B cells.
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Key Points

1. Developing CD11c+ T-bet+ B cells require TFH1 cells that produce both IFN-

γ and IL-21

2. Obligate IFN-γ and CD40L signals are provided at distinct times following 

infection

3. CD11c+ B cells lacking T-bet undergo normal differentiation but improper 

switching
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Figure 1: IFN-γ IL-21 double-producing TFH1 cells provide help to CD11c+ T-bet+ B cells
(A) Splenocytes from E. muris-infected CD40L-deficient or wild-type mice were analyzed 

on day 30 post-infection. The dot plots show the percentages of CD11c+ CD19+ B cells 

among total B cells. Graphs represent aggregate data from two independent experiments. 

Statistical significance was determined using a two-tailed un-paired t test (p < 0.0001, df = 

9).

(B) Splenocytes from E. muris-infected CD4-cre x Bcl-6fl/fl or Bcl-6fl/fl control mice were 

analyzed on days 30 (top plots) and 16 (bottom plots) post-infection. Representative dot 

plots show the percentages of CD11c+ CD19+ B cells among total B cells and the 

percentages of PD-1+ CXCR5+ cells among CD3+ CD4+ T cells. Graphs represent 

aggregate data from three independent experiments. Statistical significance was determined 

using two-tailed un-paired t tests (top: p < 0.4559, df =13; bottom: p = 0.0001, df = 15).
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(C) CD3+ CD4+ CXCR3+ CCR6-negative T cells from E. muris-infected, female, IFN-γ-

reporter mice were analyzed for the expression of ICOS, CD44 and IFN-γ 16 days post-

infection. Plots are representative of 4 mice.

(D) Splenocytes from E. muris-infected, female, IFN-γ-deficient or wild-type mice were 

analyzed on day 18 post-infection. Representative dot plots show the percentages of CD11c+ 

B220+ B cells among total lymphocytes. Graphs represent aggregate data from two 

independent experiments. Statistical significance was determined using two-tailed un-paired 

t tests (left: p = 0.0023, df = 6; right: p = 0.0014, df = 6).

(E) Splenocytes from E. muris-infected CD4-cre x T-betfl/fl or T-betfl/fl control mice were 

analyzed on days 30 (left plot) and 16 (right plot) post-infection. Representative dot plots 

show the percentages of CD11c+ CD19+ B cells among total B cells (top left), the 

percentages of T-bethigh and T-betlow CD19+ B cells among total B cells (bottom left), and 

the percentages of T-bet+ CCR6-negative cells among CD3+ CD4+ T cells (right). Graphs 

represent aggregate data from three independent experiments. Statistical significance was 

determined using two-tailed un-paired t tests (top left: p < 0.0030, df =12; right: p = 0.0042, 

df = 7) and an ordinary one-way ANOVA (p < 0.0001, F = 28.36, df = 27) with Sidak’s 

multiple comparisons test (T-bethigh: p = 0.0015, df = 24; T-betlow: p = 0.7372, df = 24).

(F) CD3+ CD4+ CXCR3+ CCR6-negative PD-1+ CXCR5+ T cells from E. muris-infected, 

female, IL-21-reporter mice were analyzed for the expression of IL-21 and CD44 16 days 

post-infection. Plots are representative of 4 mice.

(G) Splenocytes from E. muris-infected, female, wild-type mice on day 16 post-infection 

were cultured with a cell activation cocktail containing Brefeldin A for 4 hours at 37°C. 

CD3+ CD4+ CXCR3+ CD44+ T cells were analyzed for IFN-γ, ICOS, and IL-21 

expression. Plots are representative of 5 mice. Not significant (n.s.) > 0.05, **p < 0.01, ***p 

< 0.001 ****p < 0.0001.
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Figure 2: CD11c+ T-bet+ B cells have biphasic requirements for T cell help
(A) E. muris-infected, female, wild-type mice were treated with either anti-CD40L antibody 

or an isotype-matched irrelevant antibody every other day from days 16 to 30 post-infection 

and splenocytes were analyzed on day 30 post-infection. Representative dot plots show the 

numbers and percentages of CD11c+ CD19+ B cells among total B cells. Graphs represent 

aggregate data from two independent experiments. Statistical significance was determined 

using two-tailed un-paired t tests (left: p < 0.0001, df = 18; right: p < 0.001, df = df = 18).

(B) E. muris-infected, female, wild-type mice were treated with either anti-CD40L antibody 

or an isotype-matched irrelevant antibody every other day from days 30 to 37 post-infection 

and splenocytes were analyzed on day 37 post-infection. Representative dot plots show the 

numbers and percentages of CD11c+ CD19+ B cells among total B cells. Aggregate data are 

shown in the plots on the right. Statistical significance was determined using two-tailed un-

paired t tests (left: p = 0.0346, df = 8; right: p = 0.4484, df = 7).
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(C) E. muris-infected, female, wild-type mice were treated with either anti-IFN-γ antibody 

or vehicle control once every three days from days 16 to 30 post-infection and splenocytes 

were analyzed on day 30 post-infection. Representative dot plots show the numbers and 

percentages of CD11c+ CD19+ B cells among total B cells. Graphs represent aggregate data 

from two independent experiments. Statistical significance was determined using two-tailed 

un-paired t tests (left: p = 0.4008, df = 7; right: p = 0.8405, df = 7).

(D) Sera from E. muris-infected, female, wild-type mice harvested on days 0, 8, 16, 21, and 

30 post-infection were analyzed by ELISA for IFN-γ. Dots represent the arithmetic mean of 

five mice and the upper and lower bounds represent the standard deviation. n.s.> 0.05, ****p 

< 0.0001.
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Figure 3: Bcl-6 is required for the development of CD11c+ T-bet+ B cells
(A) T-bet+ CD19+ B cells from E. muris-infected, female, wild-type (black circles) or 

Bcl-6fl/fl control (open circles) mice were analyzed for expression of Bcl-6 on days 16 and 

30 post-infection. Aggregate data are shown in the plots on the right. Statistical significance 

was determined using two-tailed un-paired t tests (left: p < 0.0001, df = 7; right: p < 0.0048, 

df = 7).

(B) Splenocytes from E. muris-infected CD19-cre x Bcl-6fl/fl or Bcl-6fl/fl control mice were 

analyzed on days 43 (top plot) and 16 (bottom plot) post-infection. Representative dot plots 

show the percentages of CD11c+ CD19+ B cells and the percentages of T-bet+ CD19+ B 

cells among total B cells. Aggregate data are shown in the plots on the right. Statistical 

significance was determined using two-tailed un-paired t tests (top left: p = 0.0010, df = 6; 

top right: p < 0.0001, df = 7; bottom left: p = 0.0334, df = 6; bottom right: p < 0.0001, df = 

7).
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(C) Sera from E. muris-infected CD19-cre x Bcl6fl/fl or wild-type mice on day 30 post-

infection was analyzed by ELISA for IgM, pan IgG, IgG2b, IgG2c, and IgG3. Sera was 

collected in two independent experiments. Statistical significance was determined using an 

ordinary one-way ANOVA (p < 0.0001, F = 18.21, df = 11) with Sidak’s multiple 

comparisons test (IgM: p < 0.0001, IgG: p = 0.0008, IgG2b: p = 0.0653, IgG2c: p < 0.0003, 

IgG3: p = 0.4925, df = 40). n.s.> 0.05, *p < 0.05, ***p < 0.001, ****p < 0.0001.
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Figure 4: CD11c+ B cells develop in the absence of T-bet
(A) Splenocytes from E. muris-infected Mb1-cre x T-betfl/fl (black circles), Mb1-cre x T-

betfl/+ control mice (black circles), or T-betfl/fl control mice (open circles) were analyzed on 

day 30 post-infection. Representative dot plots show the percentages of CD11c+ B220+ B 

cells among total B cells. The graphs represent aggregate data from two independent 

experiments. Statistical significance was determined using a two-tailed un-paired t test (left: 

p = 0.0081, df = 16; right: p = 0.1754, df = 16).

(B) CD11c+ B220+ B cells from E. muris-infected Mb1-cre x T-betfl/fl or T-betfl/fl mice 

were analyzed for expression of CD86, CD38, CD73, CD80, CD95, and PD-L2, thirty days 

post-infection.

(C) Sera from E. muris-infected Mb1-cre x T-betfl/fl or T-betfl/fl mice on day 30 post-

infection were analyzed by ELISA for IgM, pan IgG, IgG1, IgG2b, IgG2c, and IgG3. Sera 

were collected in two independent experiments. Statistical significance was determined 

using an ordinary one-way ANOVA (p < 0.0001, F = 18.21, df = 11) with Sidak’s multiple 

comparisons test (IgM: p > 0.9999, IgG: p = 0.5553, IgG1: p = 0.0380, IgG2b: p = 0.2164, 

IgG2c: p < 0.0001, IgG3: p = 0.9537, df = 78). n.s. > 0.05, *p < 0.05, ****p < 0.0001.
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