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Abstract

The unconventional N-methyl-D-aspartate (NMDA) receptor subunits GluN3A/B can generate 

excitatory conductances purely activated by glycine, when associated with the other glycine-

binding subunit GluN1. However, functional GluN1/GluN3 receptors have not been identified in 

native adult tissues. We discovered that GluN1/GluN3A receptors are operational in neurons of the 

mouse adult medial habenula (MHb), an epithalamic area controlling aversive physiological states. 
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In the absence of glycinergic neuronal specializations in the MHb, glial cells tuned neuronal 

activity via GluN1/GluN3A receptors. Reducing GluN1/GluN3A receptor levels in the MHb 

prevented place aversion conditioning. Our study extends the physiological and behavioral 

implications of glycine by demonstrating its control of negatively-valued emotional associations 

via excitatory glycinergic NMDA receptors.

ONE SENTENCE SUMMARY

Physiology of glycine NMDA receptors

Glycine is a major inhibitory neurotransmitter of the central nervous system, acting via 

anion-permeable receptors. It is also a well-characterized co-agonist of excitatory N-methyl-

D-aspartate receptors (NMDARs) via GluN1 subunits (1).

In addition, glycine binds the unconventional NMDAR subunits GluN3A/B, which generate 

atypical glutamate-activated triheteromeric NMDARs with GluN1 and GluN2 subunits (2), 

and glycine-gated diheteromeric excitatory complexes with GluN1 (3). GluN3B is 

significantly expressed only in caudal areas (4). GluN3A expression is broader, but assumed 

to be limited to early development (2). Mainly examined in recombinant systems (4, 5), 

native GluN1/GluN3ARs have been identified in the juvenile hippocampus (8), but never in 

adult neurons.

We found strong immunohistochemical expression of GluN3A subunits in the ventral 

subdivision of the medial habenula (MHb) of adult mice (Fig.1A; (9)), an area mediating 

aversive behaviors (10–14).

We investigated GluN3A-immunostained sections with electron microscopy to identify its 

ultrastructural localization. Frequently in juxtaposition with glial structures, all the 3,3-

diaminobenzidine (DAB)-labelled profiles were identified as postsynaptic dendrites and 

somata (n=92; Fig.1B). Supported by further confocal microscopy results (Fig.S1), these 

data demonstrated that GluN3A subunits were abundantly expressed in adult MHb neurons.

We examined whether GluN3A subunits formed operational GluN1/GluN2/GluN3ARs. 

These receptors show reduced rectification compared to GluN1/GluN2 NMDARs (1). We 

thus examined the current-voltage (I-V) curves of synaptic (17), and puff-evoked NMDAR 

currents in MHb neurons from wild type (WT) and GluN3AKO (15) mice, in which 

excitatory transmission to the MHb is not modified (Fig.S2). No significant differences were 

found (Fig.1Ca&Cb), suggesting absence of functional receptors.

To investigate whether glycine-activated GluN1/GluN3ARs were operational, glycine (1–

10mM) was pressure-ejected while recording spontaneous firing activity (17) in the loose 

cell-attached configuration (LCA). In all tested WT neurons, glycine puffs (300–500ms) 

potently increased firing in the presence of D-2-amino-5-phosphonovalerate (D-APV) and 

strychnine (Fig.1D). This excitatory effect was not due to conventional NMDARs, because it 

was present in GluN2AKO mice (Fig.1D), where GluN1/GluN2 NMDARs are nearly 

undetectable (17). The effect on firing activity was absent in GluN3AKO mice (Fig.1D), 

supporting the presence of GluN1/GluN3ARs in the MHb.
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Glycine puffs induced rapidly rising and inactivating inward currents in voltage clamp 

recordings of both WT and GluN2AKO ex-vivo MHb neurons performed in the presence of 

D-APV and strychnine. The currents could not be elicited in GluN3AKO mice (Fig.1E). 

Similarly to recombinant systems (5, 6), the glycine-evoked currents showed slight outward 

rectification (Fig.1G).

We investigated the pharmacology of the glycine-induced currents. In recombinant systems 

occupation of the higher affinity GluN3A site activates the receptor, whereas glycine binding 

to GluN1 entrains rapid desensitization (5, 6). We recently discovered that the GluN1 

antagonist (1S)-1-[[(7-Bromo-1,2,3,4-tetrahydro-2,3-dioxo-5-

quinoxalinyl)methyl]amino]ethyl]phosphonic acid (CGP78608) enhanced receptor 

responses by reducing densitization (8). We found that CGP78608 (1µM) potentiated and 

prolonged the responses in WT but not GluN3AKO mice (Fig.2A). 6-Cyano-7-

nitroquinoxaline-2,3-dione (CNQX), 5,7-Dichlorokinurenic acid (5,7-DCKA) and D-serine 

inhibit the currents produced by GluN1/GluN3Rs (3, 5, 6, 8). These drugs potently inhibited 

the responses to glycine also in MHb neurons (Fig.2B). Direct applications of D-serine 

increased neuronal excitability (Fig.S4) and elicited currents (Fig. 2C) to smaller extents 

than glycine (3). With the exception of zinc, which had no effects ((7); Fig.S5), the 

pharmacological profile of the native currents thus mirrored that of recombinant GluN1/

GluN3Rs.

We injected the MHb with a short hairpin ribonucleic acid (shRNA)-expressing adeno-

associated virus targeting the GluN3A subunit (AAV5-shRNA-GluN3A; (18)). The virus 

efficiently reduced both the messenger RNA levels of GluN3A in the MHb (Fig.2D), and the 

amplitude of the glycine-induced currents compared to scrambled RNA-expressing mice 

(Fig.2D).

The permeability of GluN1/GluN3ARs to calcium (Ca2+) remains uncertain (3, 19). We 

examined this question by first analyzing in human embryonic kidney (HEK) cells a GluN1/

GluN3AR variant with potentiated glycine responses (GluN1-F484A/GluN3A; (4, 7)). 

Increasing the extracellular Ca2+ concentration led to a shift of the reversal potential of the 

responses to glycine (Fig.2Ea), which demonstrated significant Ca2+ permeability, although 

smaller than for WT GluN1/GluN2A receptors (Fig.S6).

Using two photon microscopy in the presence of synaptic and Ca2+ channel blockers, we 

could detect glycine-evoked Ca2+ transients originating from GluN1/GluN3ARs in ex-vivo 
MHb cells (Fig.2Eb). We concluded that also native GluN1/GluN3A receptors were 

permeable to Ca2+.

We then searched for physiological sources of glycine. We previously found that the MHb 

was completely devoid of glycinergic neuronal specializations (Fig.S1; (20)). We thus tested 

whether glial cells could control extracellular glycine levels in mice expressing the 

excitatory Designer Receptor Exclusively Activated by Designer Drugs (DREADD) hM3Dq 

under the control of the promoter of the glial fibrillary protein (GFAP). In these mice 

hM3DqR activation triggers Ca2+ elevations specifically in glial cells (21). We confirmed 

that hM3DqR expression was exclusively glial (Fig.3A&S7).
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To determine whether GluN1/GluN3ARs mediated glia-neuron interactions in the MHb, we 

recorded ex-vivo spontaneous firing activity in GFAP-hM3Dq mice (Fig.3). Application of 

the hM3DqR agonist clozapine-N-oxide (CNO; 10µM), produced rapid firing rate increases.

Pre-incubation with 5,7-DCKA and CNQX strongly reduced the effect of CNO, suggesting a 

substantial contribution from GluN1/GluN3ARs (Fig.3). Interestingly, CGP78608 

application significantly augmented basal firing rates (Fig.S3), indicating that ambient 

glycine may suffice to bind GluN3A. The potentiation of the firing rate triggered by CNO 

was instead reduced by CGP78608 pre-incubations.

Furthermore, the effect of CNO was significantly smaller in GFAP-hM3D mice injected 

with the AAV5-shRNA-GluN3A-GFP than with AAV5-scrRNA-GluN3A-GFP virus (Fig.3). 

In contrast to GlyT2 (Fig.S1), we found expression of the membrane glycine transporter 

GlyT1 in MHb glia (Fig.S8), which can contribute to glial glycine accumulation (22). In the 

presence of the GlyT1-specific blocker N-[(3R)-3-([1,1’-Biphenyl]-4-yloxy)-3-(4-

fluorophenyl)propyl]-N-methylglycine (ALX5407), CNO applications increased firing rates 

to greater values than in control (Fig.3C&D), likely because of greater build-up of 

extracellular glycine levels. Together these experiments suggested that glial cells potentiated 

neuronal activity via activation of GluN1/GluN3ARs.

We finally examined whether GluN1/GluN3ARs in the adult MHb were behaviorally 

relevant, in mice injected with either the AAV5-shRNA-GluN3A-GFP, or the AAV5-

scrRNA-GluN3A-GFP virus (Fig.S9). First, no differences were detected in locomotor and 

exploratory activity in an open field arena (Fig.4A). In contrast the test mice spent 

significantly less time in the open arms of an elevated place maze, suggesting that reduced 

GluN1/GluN3AR levels in the MHb were mildly anxiogenic (Fig.4A&B).

GluN1/GluN3ARs in the MHb did not modulate learning and memory capabilities because 

test and control mice scored similarly in a novel object recognition test (Fig.4C).

The MHb can contribute to the development of negatively-valued emotional states. We thus 

examined the behavioral outcomes of a fear conditioning protocol (Fig.4D). We found no 

difference between AAV5-shRNA- and AAV5-scrRNA-injected mice in the freezing time 

elicited either by the cued, or the contextual stimulus (Fig.4D).

Finally, we examined lithium-induced conditioned place aversion (CPA), because this 

paradigm relies on intact MHb function (23, 24). In contrast to AAV5-scrRNA animals, 

lithium-treated AAV5-shRNA mice did not develop aversion for the conditioned 

compartment (Fig.4E). Overall, these results indicate that impaired GluN3A signaling in the 

MHb can alter the capability of associating negatively-valued external conditions with 

internal aversive states.

In addition to its ubiquitous role as inhibitory neurotransmitter, glycine can thus exert 

excitatory actions via unconventional GluN1/GluN3A NMDARs. Our study unveils a 

functional role of this aspect of glycine physiology by demonstrating that full expression of 

GluN1/GluN3ARs in the MHb is mandatory for modifying the internal emotional landscape 

in response to specific environmental challenges.
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Fig.1. Functional GluN1/GluN3ARs in the adult MHb.
Both confocal (A) and EM (B) demonstrated that GluN3A subunits are expressed in the 

ventral MHb. DAB EM staining (B, black deposits) was detected in dendrites (yellow 

compartments, d), close to glial extensions (red), rarely in somas (black arrows, s), but never 

in axons (blue, arrowheads highlighting presynaptic specializations). (C)GluN1/GluN2/

GluN3ARs are not functional in the MHb. No difference was found in the rectification of 

NMDAR currents in WT (black) and GluN3AKO (red) mice, elicited by extracellular 

stimulation (a) or pressure-ejected NMDA (b). (D)Glycine puffs increased firing rates in 

MHb cells from control and GluN2AKO mice, but not GluN3AKO animals. (E, F)Similarly 

to heterologous GluN1/GluN3R currents, glycine induced outwardly rectifying, rapidly 

rising and inactivating currents in control and GluN2AKO, but not GluN3AKO neurons. 

Data are illustrated as averages±s.e.m.
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Fig.2. Properties of GluN1/GluN3Rs in the MHb.
(A)GluN1 subunit block with CGP78608 potentiated glycine-elicited currents. (B)Bath 

applications of CNQX (blue), 5,7-DCKA (green) and D-serine (purple) antagonized control 

and potentiated GluN1/GluN3AR currents. (C) Pressure-ejected D-serine had only partial 

agonist effects on GluN1/GluN3ARs. (D)Viral expression in the MHb of a GluN3A-

targeting shRNA led to reduction of GluN3A mRNA levels, and of glycine-induced currents 

with respect to scrambled RNA-expressing mice. Percentage values and absolute amplitudes 

are illustrated in the lower graphs. (E)GluN1/GluN3ARs are Ca2+ permeable. Changing 

extracellular Ca2+ concentrations led to a significant reversal potential shift (a, highlighted 

on the right) in heterologous systems expressing GluN3A and point-mutated, glycine-

insensitive GluN1 subunits. In the presence of synaptic receptor antagonists and Ca2+ 

channel blockers, two-photon imaging revealed glycine-elicited Ca2+ transients in ex-vivo 
MHb neurons (b). Data are illustrated as averages±s.e.m.
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Fig.3. Glial activation in GFAP-hM3Dq mice increases neuronal excitability via GluN1/
GluN3ARs.
(A)The specific expression of hM3Dq receptors in MHb glia was demonstrated by the 

colocalization of GFAP and GFP in aldehyde dehydrogenase-1 family member L1-green 

fluorescent protein (Aldh1l1-GFP) mice, and of hM3DqRs and GFP in GFAP-

hM3Dq::Aldh1l1-GFP and GFAP-hM3Dq::S100β-GFP mice. (B)CNO applications 

increased spontaneous firing rates of MHb neurons. Representative traces preceding and 

following CNO are shown for specified experiments. The average time courses (C) and 

quantifications (D) of the CNO effects are depicted for all the experiments. The smaller 

increase of the firing rate in CGP78608 than in control likely derives from reduced affinity 

for glycine in the drug presence ((8)). Data are illustrated as averages±s.e.m.
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Fig.4. MHb GluN1/GluN3ARs control place aversion conditioning.
(A)No difference was detected between AAV-shRNA-GluN3A- and AAV-scrRNA-GluN3A-

injected mice in the distance traveled in an open field and in the time spent in its center. 

(B)Knocking-down MHb GluN3A expression was mildly anxiogenic as indicated by the 

shorter time spent by GluN3A-deficient mice in the open arms of an elevated plus maze. 

Object exploration times and cue- and context-induced freezing were similar in novel object 

recognition (C) and fear conditioning tests (D), respectively. Following lithium conditioning, 

AAV-shRNA-GluN3A-injected mice developed no aversion for the malaise-associated 

compartment in contrast to scrRNA-expressing animals (E). Data are illustrated as averages

±s.e.m.
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