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Abstract
At the onset of the COVID-19 pandemic a large number of countries introduced a range of
non-pharmaceutical interventions. Whereas the policies are similar across countries, coun-
try characteristics vary substantially. We examine the effectiveness of such policies using
a cross-country variation in socio-economic, environmental and geographic, and health
system dimensions. The effectiveness of policies that prescribe closures of schools and
workplaces is declining with population density, country surface area, employment rate and
proportion of elderly in the population; and increasing with GDP per capita and health
expenditure. Cross-country human mobility data reinforce some of these results. We argue
that the findings can be explained by behavioural response to risk perceptions and resource
constraints. Voluntary practice of social distancing might be less prevalent in communities
with lower perceived risk, associated with better access to health care and smaller propor-
tion of elderly population. Higher population density, larger geographical area, and higher
employment rate may require more resources to ensure compliance with lockdown policies.

Keywords COVID-19 · Non-pharmaceutical interventions · Cross-country analysis

Introduction

The outbreak of COVID-19 has caused major public health concerns around the world.
Since the first cases in late 2019 in China, COVID-19 has spread exponentially around the
world, indicating an endemic person-to-person transmission.
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In an attempt to flatten the transmission of the virus, governments in many countries
implemented a range of non-pharmaceutical interventions (NPIs), including closures of
schools, workplaces, public transport, cancellations of public events, restrictions of inter-
nal movement, tracing infected persons contacts, enhanced testing, and more. Timelines of
these policies vary across countries, but by mid-April 2020, due to the virus crisis around
70% of countries have enacted one or more of these measures.1 The effectiveness of each
NPI may vary with a range of other actions taken by the government and communities at
the time of the crisis. To assess these differences, we examine how the effectiveness of NPIs
varies with country characteristics.

Using a dynamic version of the Susceptible-Infected-Recovered (SIR) model, we exam-
ine how the impact of NPIs on transmission rate of COVID-19 varies with a range of country
characteristics along economic, public health and environment dimensions. These charac-
teristics are associated with differences in behavioral response and differences in resources
available to governments that might be required to enforce these policies. Our findings sug-
gests that these factors play important roles in slowing down the spread of the virus during
NPIs; the results also suggest that the economic and social systems as well as incentives and
attitudes may lead to different outcomes of NPIs.

At the environmental dimension, we account for population density, pollution, and
surface area factors. Higher population density may increase the frequency of human inter-
actions and affect the compliance with the social distancing rules; therefore, the spread of
the virus might be higher in such communities and lockdown policies less effective. It has
also been previously established that an epidemic of a respiratory disease, such as influenza,
initially affects the more densely populated urban areas (see for example, Zachreson et al.
(2018), using Australian data). Higher concentrations of air pollutants are associated with
higher likelihood of chronic respiratory conditions and therefore present an additional risk
factor. For example, Conticini et al. (2020), using Italian data, conclude that pollution is an
additional factor of increased lethality from COVID-19; Wu and McGoogan (2020b) reach
similar conclusions using US data. Additionally, Setti et al. (2020) show that the airborne
transmission of COVID-19 might be more prevalent in areas with higher air pollution.

At the socio-economic dimension, we account for GDP per capita and employment rate.
Higher employment rates may increase the risk of exposure to viruses and therefore increase
the spread. For example, Markowitz et al. (2019), using the US data, show that increases in
employment are associated with increased incidence of influenza; Adda (2016) uses French
data and shows that viruses spread faster during economic booms. Access to leave and
sick benefits may increase the incentives to work for those who display symptoms of sick-
ness and increase the spread of the virus, see for example, Barmby and Larguem (2009)
(using UK data) and Pichler and Ziebarth (2017) (using US and German data). Better eco-
nomic conditions at the onset of the pandemic may also provide better access to funds for
governments, providing resources for better benefits and enforcement practices.

At the health system dimension, we account for health expenditure as % GDP, propor-
tion of physicians in population, and proportion of elderly population. Research shows that
elderly face higher COVID-19 associated risks.2 A response to the higher risk might be in
form of higher prevalence in voluntary social distancing. On the other hand, for the general

1Authors calculations, using the Oxford COVID-19 Government Response Tracker dataset.
2Medical research shows that deaths from COVID-19-related illness are heavily concentrated among the
elderly and those with underlying health conditions. See for example, Wu and McGoogan (2020b) and Verity
et al. (2020), CDC COVID-19 Response Centers for Disease Control and Prevention COVID-19 Response
Team (2020).
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population, taking into account the proportion of elderly, access to a more advanced health
system might be correlated with a lower perceived risk of becoming severely ill; therefore,
lower incentives to exercise voluntary social distancing before NPIs are enacted.

The dataset is constructed using four data sources. The Oxford COVID-19 Government
Response Tracker provides measures of government responses to COVID-19 spread. For
more details about the dataset, see Hale et al. (2020). We obtain data on the number of
recorded COVID-19 cases from the Center for Systems Science and Engineering at Johns
Hopkins University. Google Mobility Reports provide daily country level information on
human mobility across a range of location categories. Country-level characteristics are from
the World Bank data.

We show that NPIs which impose strict social distancing rules, such as school and work-
place closures, are more effective in countries with lower population density, lower surface
area, lower air pollution, higher GDP per capita, lower employment rate, higher health
expenditure, and lower proportion of elderly population. We attribute the differences in
effectiveness of NPIs to incentives driven behaviors and public resource constraints. Com-
pliance with closures and lockdowns may demand more resources in places with higher
population density, larger geographical area, and higher employment rate, impairing the
effectiveness of these policies. Communities with access to a better health care, measured by
health expenditure as % of GDP, may have less incentives to voluntary reduce social interac-
tions; therefore, social distancing measures in such communities could be more effective. A
cross-country analysis of Google mobility data reinforces these results and interpretations.
Individuals in countries with higher proportion of physicians per 1000 persons and higher
health expenditure as % of GDP are less likely to increase their time spent at home prior
to schools and workplace closures.3 On the other hand, after the implementation of work-
places and/or school closures, the proportional increase in time spent at home is higher in
countries with better access to health system and lower in countries with higher proportion
of elderly.

Extensive testing is more effective in countries with higher GDP per capita, larger surface
area, higher air pollution, lower health expenditure, and higher proportion of elderly in pop-
ulation. Variation in testing intensity and its potential correlation with the GDP per capita
could explain some of these results. Recent studies point out the existence of complemen-
tarities between social distancing behaviors and testing: enhanced testing policy can lead
to more social activity and less social distancing, (see for example, Acemoglu et al. 2020).
Such complementarities appear to be more likely in countries with better health systems,
proxied by health expenditure as a proportion of GDP, and lower proportions of elderly
population.

There are now a number of studies evaluating the effectiveness of NPIs. Askitas et al.
(2020) show that some NPIs are more effective than others; Chen and Qiu (2020) detail these
differences in terms of costs and benefits. Jinjarak et al. (2020) document that more stringent
policies are associated with lower mortality growth rates and report cross-country differ-
ences. Kucharski et al. (2020) estimate that in China, the basic reproduction rate declines
from 2.35 one week before travel restrictions to 1.05 one week after travel restrictions.
Friedson et al. (2020), using daily COVID-19 data in California, find that the lockdown
reduced the number of cases by 125.5 to 219.7 (per 100,000 population) and led to 1,661
fewer deaths during the first month following its implementation. Fang et al. (2020) study

3Using mobility measures between 10 to 6 days before work or school closures, compared to mobility
measures before the onset of the first wave of COVID-19 pandemic.
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the impact of lockdown in Wuhan, China enacted on January 23, 2020; they show that the
COVID-19 cases would be 64.8% higher in the 347 Chinese cities outside Hubei province,
and 52.64% higher in the 16 non-Wuhan cities inside Hubei, in the counterfactual world in
which the city of Wuhan were not locked down. Cho (2020) shows that lockdown policies
are effective in lowering excess mortality. Ullah and Ajala (2020) find that lockdown sig-
nificantly affects the number of confirmed cases after 7 days of its implementation; Hartl
et al. (2020) show a trend break in the transmission rate on the 9th day in Germany.

A number of studies examine the socio-economic inequalities associated with the
COVID crisis along several dimensions. Ahmed et al. (2020) show that addressing inequal-
ity could be important in mitigating the spread of the virus. Borjas (2020) shows that more
disadvantaged populations are less likely to be tested but more likely to be infected condi-
tional on testing. Brzezinski et al. (2020) show that the more disadvantaged communities
tend to have lower uptake of voluntary physical distancing in response to the outbreak of
the crisis. Earlier epidemiology literature shows that there is considerable variation in indi-
vidual infectiousness, model predictions that control for individual variation differ sharply
from average-based approaches, with disease extinction more likely and outbreaks more rare
but more explosive; suggesting that targeted control policies are more effective than general
policies (see for example, Lloyd-Smith et al. 2005). Our results complement this literature
showing that there is a substantial heterogeneity in the effectiveness of government response
policies. This heterogeneity can be attributed to endogenous social distancing behavior; and
differences in resources devoted to the policy.

Data

The dataset combines daily government response data, daily reported COVID-19 cases data,
and country-level aggregate characteristics.

Cross-country government response policies data are from the Oxford COVID-19 Gov-
ernment Response Tracker (OxCGRT).4 Hale et al. (2020) provide an extensive description
of the data and its collection. There are 201 countries and territories, 178 of which have
reported at least one case of COVID-19 by April 15 2020, 139 have implemented at least
one NPI. Appendix Table 6 summarizes the policies and average dates.

The OxCGRT also reports the COVID-19 Government Response Stringency Index, cal-
culated using selected NPIs excluding contact tracing and extended testing). The value of
the index on any given day is the average of the indicators for each policy. Each NPI receives
a score between 0 and 3 (or 0 and 2), where zero implies no policy or missing information,
1 implies targeted policy and 2 or 3 implies more general policy. The index is rescaled to
create a score between 0 and 100.

The number of COVID-19 cases for 22 January - 11 May 2020 is provided by Center for
Systems Science and Engineering (CSSE) at Johns Hopkins University.5 Since the account-
ing of positive cases may vary substantially across countries due to different testing and
reporting practices, most estimations control for country fixed effects.

A significant amount of effort has been put into creating the OxCGRT and CSSE datasets.
However, there are differences in how COVID-19 cases are tested and reported across

4The data are available at https://covidtracker.bsg.ox.ac.uk.
5The data are available at: https://github.com/CSSEGISandData/COVID-19/tree/master/csse covid 19 data/
csse covid 19 time series.

138 Economics of Disasters and Climate Change (2021) 5:135–159

https://covidtracker.bsg.ox.ac.uk
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series.
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series.


countries. For a number of countries response policies such as schools and workplace clo-
sures are reported as initiated on the same day as the first reported case. We assume that
these reportings are due to measurement errors and include only those countries which had
at least 20 reported cases on the day of the school closures policy implementation. This
restriction leaves us with 55 countries.

The third data source are daily Google Mobility Reports released by Google in May
2020.6 These aggregated data are from mobile device location history reported for six
location categories: retail and recreation, grocery and pharmacy, parks, public transit, work-
places and residential areas. The reports show how visits to these locations and length of
stay in a given location change over time. A baseline day represents a normal value for that
day of the week. The baseline day is the median value for the 5 week period between Jan 3
to Feb 6, 2020.

The fourth data source is the World Bank Databank, which provides a range of aggregate
measures on health, geography and the state of economy.7 We use the most recent available
measures. The measures include health expenditure %GDP (2017), number of physicians
per 1000 population (2008-2017), proportion of population above 65 years old (2017), GDP
per capita (2017, in constant $US), employment rate (2017), surface area in km2 (2013-
2017), population density (2017), and air pollution (PM2.5) (2017). Appendix Table 7
provides summary statistics for the selected 55 countries. All estimations use normalized
standardized measures of country specific characteristics.

Estimation

To assess the effectiveness of NPIs we use the Susceptible-Infected-Recovered (SIR) model
with time-varying parameters. We utilize the dynamic version of the SIR model, as in Chen
and Qiu (2020), who augment this model to test for the effectiveness of various NPIs across
nine countries. We apply their methodology in our analysis.

The time-varying SIR model is described by a system of differential equations,

∂Sj

∂t
= −βj (t)Sj (t)

Nj

Ij (t)

∂Ij

∂t
= βj (t)Sj (t)

Nj

I (t) − γj (t)Ij (t) (1)

∂Rj

∂t
= γj (t)Ij (t)

The model assumes that the population, Nj , in country j is divided into three groups:
susceptible, Sj (t); infected, Ij (t), and recovered, Rj (t). Population size is assumed to be
constant since we focus on a relatively short time period. The country-specific time vary-
ing parameter βj (t) represents the transmission rate of the virus in country j , the value β

reflects the rate at which contacts occur in the population and the probability of transmission
occurring when a susceptible and infected meet. Each of the Ij (t) infected individuals can

transmit the disease with probability βj (t)
Sj (t)

Nj
. Infected individuals recover at rate γj (t).

6The data are available at https://www.google.com/covid19/mobility/; last accessed 18 May 2020
7The data are available at https://data.worldbank.org
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Without behavioral changes or interventions βj (t) does not vary over time; however, βj (t)

may change with NPIs or due to changing behavior.
In the classical SIR model, assuming that for a large N early in the outbreak, S(t)/N ≈

1, the reproduction rate, R0j = βj (t)/γj (t), which determines the number of additional
infections by an infected person before he/she recovers. If R0j > 1, the disease will spread
exponentially and will infect a large fraction of the total population. In the dynamic SIR
model, R0j can change with βj (t). Assuming constant γ , we estimate the change in βj (t)

as a function of country-specific characteristics to examine the effectiveness of NPIs.
The change in the number of infected in country j is given as:

Ij (t + 1) − Ij (t) = βj (t)Sj (t)

Nj

I (t) − γj (t)Ij (t) (2)

Solving for βj (t), leads to the following equation,

βj (t) = Ij (t + 1) − Ij (t)

Ij (t)

Nj

Sj (t)
+ γj (t)

Nj

Sj (t)
(3)

We assume that the recovery rate, γj (t), is constant across time and countries, we set
γ = 1/18 (following findings in Atkeson (2020) and consistent with the fraction of infected
that recovered or died according to the WHO as compiled in JHU CCSE).

Following Chen and Qiu (2020), the impacts of k NPIs in country j are measured as
follows,

βj (t) = exp

(
αj +

K∑
k=1

δjkNPIjtk

)
. (4)

where αj is a country fixed effect and

NPIj,t,k =
{
1 if t < t∗k
exp(− (t−t∗k )

τ
) if|t ≥ t∗k

(5)

where t∗k represents the time when the NPIk was enacted. The parameter τ controls for the
time-lag effect of interventions. We assume τ = 8, which reflects findings on COVID-19
incubation period.8

The differences in the impacts of NPIs across countries, summarized by the δjk , can
reflect a variety of factors. First, there can be differences in compliance rates due to country-
specific characteristics or due to differences in enforcement. For example, higher population
density may interfere with the effectiveness of NPIs that impose social distancing and mak-
ing them less effective. Second, some populations may practice voluntary social distancing
more extensively than others prior to the interventions (for example, due to a higher propor-
tion of high risk population). This mechanism implies that in such communities the effect
of NPIs that impose social distancing on transmission rate should be less pronounced.

Allowing the impacts of NPIs to vary with country-specific characteristics, the empirical
specification of equation (4) takes the following form,

logβjt = α0j +
K∑

k=1

α1kNPIjtk +
K∑

k=1

α2kZjNPIjtk + εjt , (6)

8For example, Lauer et al. (2020) and Linton et al. (2020) that find that incubation period of COVID-19 is 5.2
days on average; Li at al. (2020) reports 4.1 to 7.0 days; and Wu et al. (2020a) find this period to be 6.1 days.
Combining the length of the incubation period with feeling symptoms, being tested and results reported, we
set the time-lag effect of interventions at 8 days.
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where vector Zj includes a range of country specific characteristics, including aggregate
health variables: health spending as a % of GDP, number of physicians per 1000 people, and
the proportion of population above 65; economic indicators: log GDP per capita and ratio of
employed in population; environmental indicators: log of surface area, population density
(people per km2), and air pollution measured (concentration of PM2.5). Measurement error
in the data is denoted by εjt .

To estimate (6), we focus on a selected set of NPIs. Including all NPIs presents an iden-
tification challenge since there are high correlations between implementations and timings
of different policies. Appendix Table 6 shows that policies follow very tightly; for example,
the policies of workplace closures, “stay-at-home” orders, restrictions of public gatherings
and public transport closures are all implemented within five days, on average. Therefore,
we focus on major policies that enforce social distancing, schools and workplaces closures
while controlling for the “stay-at-home” policy, and extensive testing policy. The period for
the estimation is between 7 days before the first “major” NPI until country j begins to relax
its policies, where “major” NPIs include schools or/end workplace closures.

Table 1 reports fixed effects estimation results of Eq. 6. Extensive testing (ET) is more
effective in countries with higher GDP per capita, larger surface area, higher air pollution,
lower health expenditure (as % of GDP), and higher proportion of older population (65
plus). On the other hand, the schools and workplace closures policies are more effective in
countries with higher GDP per capita, lower population density, smaller surface area, lower
pollution, lower employment rate, higher health expenditure and lower proportion of older
population.

Appendix Table 8 reports estimation results of Eq. 6 using observations for all available
countries and shows similar results. In Appendix Table 9 we report fixed effects estimation
results of Eq. 6 using the alternative measure of COVID-19 cases, which we construct using
the death toll.9 The estimations show similar relationships between the impacts of schools
and workplace closures policies and country-level characteristics on transmission rates.

We test for robustness of the findings using an alternative measure of government
response, the The OxCGRT Stringency Index (SI ). We estimate how the relationship
between SI and transmission rate varies with country-specific characteristics using the
following specification,

logβjt = γ0 + γ1SIjt + Zj γ2SIjt + εjt , (7)

9As an alternative measure to COVID-19 records, we derive an estimate based on fatalities record. First, we
calculate the average fatality duration, i.e., the number of days between the case being reported and death.
To calculate this duration we use the main subsample, and calculate the number of days between the peak
reported new cases and peak reported new deaths. This calculation excludes countries where peak new daily
cases was after peak new daily deaths (26 countries). We also exclude countries with very high calculated
duration of above 60 days (one country). The former restriction is based on the assumption that the peak
of daily death toll should not occur before the peak of daily cases occurs. Given that mortality outcome is
systematic, we should observe that more cases lead to higher death toll. Therefore, we assume that reaching
a daily mortality peak before daily cases peak is likely to be explained by undercounting of daily cases. We
find the average duration to be 14 days from the day the case was reported. We construct the alternative count
of COVID-19 cases using 1% mortality rate from COVID-19 and 14 days fatality duration. The mortality
rate of 1% is an average which is reported in a number of studies, see for example Fernandez-Villaverde and
Jones (2020).
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the measure of SIj t accounts for the lag between the policy and its effect on the trans-
mission rate by using the average SI of prior 12 to 5 days. The estimation is limited to the
periods where the SI is increasing.10

Table 2 reports the results. Negative coefficients imply higher impact of the policies.
Column (1) shows that there is a negative correlation between SI and transmission rate.
Columns (2)-(6) gradually introduce aggregate country-specific controls. The patterns are
similar to those reported in Table 1. The effectiveness of policies is declining with popu-
lation density and surface area; and increasing with health expenditure and proportion of
physicians in population.

Internal mobility

To further investigate the cross-country differences in transmission rates, we analyze the
variation in internal mobility (from Google Mobility Reports data). First, using the sample
of all countries, we estimate how internal mobility varies before NPIs are enacted, focusing
on five location categories: residential areas, retail and restaurants, public transit stations,
parks and beaches, and workplaces. We use the following specification,

MIijt = λi0 + λi1(t − t∗) + Zij λi2 + uijt , (8)

where MIijt is a mobility index for category i.
Table 3 reports the results of Eq. 8, where the “before” period is defined as 10 to 6 days

before school/workplaces closures.11 Mobility changes vary across countries; in the period
immediately before the implementation of major social distancing NPIs, people spend rel-
atively less time in residential areas (i.e., at home) in countries with higher proportion of
physicians, higher health spendings, higher employment and lower GDP per capita.

The empirical model of response of internal mobility to the major NPIs is specified as
follows,

MIijt = μi0 +
K∑

k=1

μi1kIj tk +
K∑

k=1

μi2kZj Ij tk + εij t , (9)

where Ij tk is a binary indicator of policy k.12 We estimate (9) using information between
7 days before and 7 days after the school or workplace closures. We focus on this short
time period because of the relationship between mobility and transmission rates. Individuals

10The theory shows that the introduction of NPIs reduces the transmission rate. We assume that NPIs are
introduced when the transmission is out of control and when untraced community transmission is present.
Eliminating some NPIs (for example, opening schools when country borders are still closed) does not
necessarily increase the transmission rate provided that cases are under control and known.
11Due to measurement errors considerations, we exclude the few days just before the policies were enacted.
The before period may cover days on which government information campaigns, contact tracing of infected,
and some restrictions on international travel were in place. See Appendix Table 6 for average timings of
various NPIs.
12In Eq. 9 we include a binary policy indicator and not “gradual” indicators as in Eqs. 6 and 7. This is because
government restrictions should have an immediate effect on human mobility; however, when estimating
the change in transmission rate, we allow for a delay in effect because the detection of cases following an
incubation and showing symptoms period takes 8 days on average.
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Table 3 Change in daily Google mobility indexes before selected NPIs and aggregate measures, OLS, N=235

places of shopping & transit parks and

residence restaurants stations beaches workplaces

(1) (2) (3) (4) (5)

# days to major closure NPI 0.0914 −0.3207** −0.4645* −0.1723 −0.1019

(0.0774) (0.1551) (0.2771) (0.4195) (0.3946)

ln GDP pc 1.1099*** −0.1742 −1.16 1.4256 −3.8609***

(0.2997) (0.8476) (1.1784) (1.8511) (1.3516)

Pop density 0.2723 0.5787 3.8465 −3.8104 1.3329

(1.4921) (3.9787) (5.4378) (8.0098) (7.0940)

ln surface area −0.2236 1.6819** 1.8664 2.0209 1.9851

(0.3072) (0.6836) (1.2862) (1.3936) (1.5807)

PM2.5 −0.2612 0.7722 0.5222 2.7549** 0.7442

(0.2847) (0.6046) (1.1507) (1.1089) (1.2185)

Employment rate −0.4626* −0.2225 −0.3846 −0.2511 1.8284

(0.2327) (0.5887) (0.8753) (0.9967) (1.1259)

Health expend, % GDP −0.4264** −0.8635 −0.5758 −0.6645 0.9588

(0.2133) (0.6525) (0.9658) (1.4881) (1.1111)

Physicians −0.7330** 0.3229 1.8919 −1.304 2.4154

(0.3247) (1.0149) (1.5030) (2.3236) (1.6649)

% 65 yo + 0.1165 0.9046 0.0773 3.4031 −1.2199

(0.3344) (0.9230) (1.4559) (2.3996) (1.7227)

const 1.1428 −2.1179 −3.0578 0.0028 2.4873

(0.8653) (1.4903) (2.8041) (3.9462) (4.0568)

R2 adj. 0.118 0.116 0.088 0.074 0.107

Note: Google mobility data shows how visitors to (or time spent in) categorized places change compared to
the baseline days. A baseline day represents a normal value for that day of the week. The baseline day is the
median value from the 5-week period Jan 3 – Feb 6, 2020. The estimations use observations for 10 to 6 days
before work or school closures. Variable “# days to major closure NPI” measures the number of days before
schools or workplaces closures. Coefficients presented, standard errors clustered at the country level are in
parenthesis. Statistical significance is denoted as ∗10%, ∗∗5%, and ∗∗∗1% levels

make mobility decisions based on the threat of infection, we assume that this threat is rel-
atively stable in the selected short period because of the delayed effect of social distancing
NPIs on transmission rates (due to incubation and detection periods).13

First, we estimate (9) excluding country-specific controls. Results in Table 4 show a
strong relationship between the NPIs and internal mobility. In the period immediately
after the implementation of major social distancing NPIs, time spent in residential areas is

13See, for example, Glaeser et al. (2020) who report that the total COVID-19 cases per capita decrease by
around 20%-27% for every ten percentage point fall in mobility and also discuss how infection rate affects
mobility.
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Table 4 Post-NPIs changes in Google mobility indexes, selected countries, FE

All countries, N=1582

places of shopping & transit parks and

residence restaurants stations beaches workplaces

(1) (2) (3) (4) (5)

SH {0, 1} 1.6215** −2.7545 −4.1518** −7.8930*** −1.8717
(0.6368) (1.8019) (1.6695) (2.1789) (1.6668)

ET {0, 1} 7.5391*** −21.2071*** −21.7219*** −9.9481*** −17.6000***
(0.3070) (0.8675) (0.8038) (1.0491) (0.8025)

SWC {0, 1} 6.6051*** −21.2127*** −20.4430*** −13.1386*** −15.3323***
(0.5233) (1.4803) (1.3716) (1.7900) (1.3694)

const 0.3677 0.8283 0.1848 4.1406*** 3.2229***
(0.2327) (0.6592) (0.6108) (0.7971) (0.6098)

R2 adj. 0.631 0.614 0.673 0.51 0.564

Selected countries, N=931
SH {0, 1} 0.5864 −1.9945 −2.1676 −7.3590** −0.3677

(0.8072) (2.2634) (2.0371) (3.0097) (2.1125)
ET {0, 1} 7.6327*** −22.0680*** −22.3571*** −7.0286*** −17.1323***

(0.4191) (1.1751) (1.0576) (1.5625) (1.0967)
SWC {0, 1} 4.7763*** −18.2815*** −18.8988*** −9.8070*** −13.0276***

(0.7506) (2.1047) (1.8943) (2.7987) (1.9644)
const 0.9485*** 0.046 −0.7575 4.5952*** 1.6519**

(0.3016) (0.8456) (0.7611) (1.1244) (0.7892)
R2 adj. 0.618 0.590 0.653 0.432 0.535

Note: The subset of “all countries” includes 88 countries. The subset of selected countries includes those
with number of infected>19 when school or workplace closures are enacted, N=48. Google mobility data
shows how visitors to (or time spent in) categorized places change compared to the baseline days. A baseline
day represents a normal value for that day of the week. The baseline day is the median value from the 5-
week period Jan 3 – Feb 6, 2020. ET denotes extensive testing NPI; SWC denotes schools and/or workplaces
closures; SH denotes “stay-at-home” NPI. Coefficients presented, standard errors in parenthesis. Statistical
significance is denoted as ∗10%, ∗∗5%, and ∗∗∗1% levels

increasing when social distancing policies are enacted; whereas time spent on retail shop-
ping, recreation, travel and work is declining. Table 5 reports estimation results of Eq. 9. The
decline in time spent on activities in non-residential areas reflects the effectiveness of NPIs;
it is higher in countries with lower proportion of older population, higher proportion of
physicians, lower expenditure on health, lower employment rate, and smaller surface area.
These findings are consistent with results in Table 1, where we estimate the relationship
between social distancing NPIs and transmission rate.14

Discussion and Conclusion

Governments around the world have responded to the COVID-19 crisis with a range of
NPIs aiming to flatten the spread of the virus. Recent studies show that such policies are
effective in reducing the spread of the virus. However, it is not determined whether the same

14Table 5 reports results for all available countries. Appendix Table 10 reports estimation results of Eq. 9 for
a subset of selected countries used to produce Table 1; the results are similar.
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combination of NPIs is optimal for each country, or whether country specific characteristics
should dictate which policies should be implemented or how they should be implemented.
This paper aims to fill this gap by studying the interactions between the effectiveness of
NPIs at a country-level and country-specific characteristics.

Table 5 Post-NPIs changes in daily Google mobility indexes, with country characteristics interactions, FE,
all countries, N=1582

places of shopping & transit parks and

residence restaurants stations beaches workplaces

(1) (2) (3) (4) (5)

SH {0, 1} 6.5930*** −21.4214***−19.8816***−15.5681***−15.4178***

(0.5290) (1.4970) (1.3895) (1.8600) (1.4005)

ET {0, 1} 2.2441** −5.8202* −4.6262 −5.3257 −3.6612

(1.1211) (3.1722) (2.9444) (3.9414) (2.9677)

SWC {0, 1} 8.6343*** −23.2667***−23.4267***−12.7039***−20.1859***

(0.3171) (0.8954) (0.8311) (1.1126) (0.8377)

ET {0, 1} * ln GDP pc −1.5158 4.1972 −0.7336 −4.6578 2.6772

(1.4852) (4.2025) (3.9007) (5.2215) (3.9315)

SWC {0, 1}* ln GDP pc 0.7065 0.858 −1.5153 4.7728*** −1.5192

(0.5142) (1.4550) (1.3505) (1.8078) (1.3612)

ET {0, 1} * Pop density −4.5089 13.1933 18.1349 −1.3452 6.5612

(5.2793) (14.9403) (13.8677) (18.5631) (13.9771)

SWC {0, 1} * Pop density 1.133 1.0448 3.6166* −1.0372 −2.1305

(0.7348) (2.0769) (1.9278) (2.5806) (1.9430)

ET {0, 1} * ln surface area −1.4672 0.3524 1.9539 −1.4346 3.3944

(1.3305) (3.7653) (3.4949) (4.6783) (3.5225)

SWC {0, 1} * ln surface area −2.3717***8.1015*** 7.3160*** 5.0127*** 6.0197***

(0.3706) (1.0430) (0.9681) (1.2959) (0.9757)

ET {0, 1} * PM2.5 −1.9791* 2.3528 4.772 10.6139*** 4.104

(1.1413) (3.2297) (2.9978) (4.0128) (3.0215)

SWC {0, 1} * PM2.5 −2.6580***4.6792*** 4.5335*** 3.6869*** 6.1490***

(0.3192) (0.9033) (0.8385) (1.1224) (0.8451)

ET {0, 1}* Empl. rate −0.1424 −5.193 −2.9941 0.4974 1.4675

(1.2421) (3.5151) (3.2627) (4.3675) (3.2885)

SWC {0, 1}* Empl. rate −0.9886***3.9615*** 3.2151*** 2.5259** 4.1719***

(0.3638) (1.0282) (0.9544) (1.2776) (0.9619)

ET {0, 1}* Health expend. %GDP −0.2805 2.6961 4.1755 −0.1222 0.9763

(1.1750) (3.3253) (3.0865) (4.1316) (3.1109)

SWC {0, 1}* Health expend. %GDP −0.7943** 2.0899** 0.3806 4.8882*** 1.1686

(0.3567) (1.0095) (0.9370) (1.2542) (0.9444)

ET {0, 1} * Physicians/1000 4.4913** −8.9163 −10.0033* −16.7206** −10.9613**

(1.9555) (5.5339) (5.1366) (6.8758) (5.1772)

SWC {0, 1}* Physicians/1000 0.8598 −7.2728*** −4.2720*** −8.1505*** −2.1567

(0.5406) (1.5294) (1.4196) (1.9002) (1.4308)
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Table 5 (continued)

places of shopping & transit parks and

residence restaurants stations beaches workplaces

(1) (2) (3) (4) (5)

ET {0, 1} * % 65 yo + −2.6676 0.9514 6.6116 20.9118*** 4.6088

(2.1159) (5.9879) (5.5580) (7.4399) (5.6019)

SWC {0, 1} * % 65 yo + −2.6986*** 4.6789*** 4.7986*** 6.5452*** 6.0396***

(0.5132) (1.4518) (1.3476) (1.8039) (1.3582)

R2 adj. 0.671 0.656 0.707 0.539 0.602

Note: The subset of “all countries” includes 88 countries. Google mobility data shows how time spent in
different location categories changed compared to the baseline days (a normal value for that day of the week
in the 5-week period Jan 3 – Feb 6, 2020). ET denotes extensive testing NPI; SWC denotes schools and/or
workplaces closures; SH denotes “stay-at-home” NPI. Coefficients presented, standard errors in parenthesis.
Statistical significance is denoted as ∗10%, ∗∗5%, and ∗∗∗1% levels

We embed NPIs in a dynamic epidemiological SIR model and show empirically how
the effectiveness of NPIs varies with country-specific characteristics. The effectiveness of
social distancing policies on transmission rates is declining with population density, sur-
face area, pollution, employment rate and proportion of population over 65 years old; and
increasing with GDP per capita and health expenditure. The effectiveness of the enhanced
testing policy is increasing with GDP per capita, surface area, air pollution, proportion of
older population; and declining with health expenditure.

Estimations that use the Google mobility data suggest that the behavioral response might
be important in explaining the results, but it cannot explain all the differences in the effec-
tiveness of NPIs across countries. Access to a better health system and higher employment
rate are negatively correlated with staying at home before the social distancing policies
are enacted. After the policies are enacted, we observe larger increases in staying at home
in countries with lower proportion of elderly population and higher proportion of physi-
cians. This result is consistent with the cross-country differences in transmission rates. This
heterogeneity in the effectiveness of NPIs can be explained by differences in voluntary
social distancing which varies with country-specific characteristics. Access to a better pub-
lic health system may reduce voluntary social distancing due to decreased risks and NPIs
designed to enforce social distancing are more effective in such communities. On the other
hand, in communities with higher proportions of elderly, who are in a higher risk group to
become severely ill, voluntary social distancing might be more prevalent before intervention
policies are enacted.

Our behavioral interpretation of the variation in mobility and transmission rates across
age and health system related dimensions is consistent with findings in other recent studies.
For example, Andersen et al. (2020) compare consumption response to shutdowns using
data from Sweden and Denmark. They show that there is a considerable heterogeneity across
groups with different levels of infection risk. The effect of shutdowns on spending exhibits a
significant age gradient: the effect is negative for young adults (18-29 years) and positive for
the oldest group (70+ years). Andersen et al. (2020) conclude that shutdowns decrease the
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total spending of individuals with low health risk. Moreover, they show that the effects are
particularly pronounced for categories involving high social proximity such as personal care
and social spending. On the other hand, shutdowns increase the total spending of individuals
with high health risk. Our findings suggest similar behavioral patterns in a cross-country
comparison.

Differences in internal mobility and suggested differences in infection risk perceptions
cannot explain the variation in transmission rates with respect to GDP per capita, size of
geographical area, and population density. Higher population density, larger geographical
area, higher employment rate, and lower GDP per capita are associated with less effective
social distancing polices. Previous studies show that the spread of viral diseases is more
pronounced in more densely populated areas (see for example, Zachreson et al. 2018) and
when economic activity is higher (see for example, Markowitz et al. 2019 and Adda 2016),
combining this existing evidence with our new findings suggests that the lower effective-
ness might be related to resource requirements and the ability to enforce social distancing
policies.15

Recent studies propose models of complementarities between social distancing and test-
ing policies. For example, Acemoglu et al. (2020) develop a theoretical model showing that
enhanced testing policy can lead to more social activity and less social distancing (since
people feel more confident), which may lead to an increase in infections. In Table 1 we
show that testing is less effective in countries with higher health expenditure and more effec-
tive in countries with higher proportion of elderly population. Within the Acemoglu et al.
(2020) model this result suggests that the increase in social activity due to the enhanced test-
ing NPI is more likely to occur in places with more advanced health systems and in places
with lower proportions of elderly.16 It should also be considered that testing intensity varies
across countries. Our results show that testing NPI is more effective in countries with higher
GDP per capita, which is in line with the testing intensity assumption. We also find that the
effectiveness of testing is increasing with surface area, which suggests that this policy is
relatively more efficient in such geographic conditions.

Our results complement earlier epidemiological research and the expanding literature on
interactions between behavioral response, economic incentives and epidemiological dynam-
ics during the COVID-19 pandemic. Our analysis also complements recent literature on
socio-economic inequalities associated with the COVID-19 crisis. The findings emphasize

15The relationships between air pollution and the effectiveness of NPIs is subject to a number of factors.
On one hand, the positive association between long term exposure to pollutants and reduced lung function
suggests that individuals in affected areas should practice social distancing more rigorously, which would
imply less efficient social distancing policies. On the other hand, the positive association between airborne
transmission of the virus and presence of pollutants suggests that social distancing policies should be more
effective in more polluted areas.
16We do not find support for these implications in the Google mobility data; there are no consistent statis-
tically significant relationships between country specific characteristics and mobility after testing NPIs are
enacted. However, we are using a very short time period around the policy implementation, which should
capture the period before the number of new cases reflects the changes in transmission rates (due to incuba-
tion period and reporting delays). Thus, the gain in confidence and its effect of number of contacts might be
too early to observe.
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that the effectiveness of a given NPI policy varies with the socio-economic and geographic
characteristics of a given community and highlight that targeted policies may improve the
outcomes of government response policies.

Appendix

Table 6 Timing of NPIs

Number of countries
with given NPI

Average starting date

Gov information campaign 132 24-Feb-20

Movement restrictions 133 26-Feb-20

Contact tracing 59 4-Mar-20

International travel restrictions 132 5-Mar-20

Public events cancellations 134 11-Mar-20

School closures 135 13-Mar-20

Extensive testing 68 14-Mar-20

Workplace closures 121 18-Mar-20

“Stay-at-home” 50 18-Mar-20

Restrictions of public gatherings 132 19-Mar-20

Public transport closures 97 22-Mar-20

Note: Source: OxCGRT data. The sample includes 201 countries and territories. The measures include gen-
eral, targeted and recommended policies. Workplace closures may vary across countries and may include
closures of cafes and restaurants, retail, beauty and personal care services, entertainment venues, leisure
and recreation, residential facilities, outdoor recreation, non-residential institutions (such as libraries and
museums and places of worship)

Table 7 Summary Statistics, selected countries

Summary
Statistics,
selected
countries

ln
GDP
per
capita
($US)

Pop
density,
(people
per sq.
km of
land)

ln sur-
face area
(sq. km)

PM2.5
air pollu-
tion (mg
per m3)

Empl.
to pop.
ratio

Health
expend.,
% GDP

Physicians
per
1000 people

% 65 yo
+ in pop.

Algeria 2160 8.47 0.18 14.68 38.88 36.91 6.65 1.52 6.10
Argentina 2443 9.21 0.16 14.84 13.31 54.10 7.55 3.69 10.92

Australia 6440 10.95 0.03 15.86 8.55 62.15 9.25 3.41 15.26

Austria 14336 10.82 1.07 11.34 12.48 58.39 10.44 4.94 18.93

Bahrain 1671 9.97 20.17 6.65 70.82 70.93 4.87 0.95 2.37

Belgium 33573 10.76 3.77 10.33 12.89 50.96 10.04 3.01 18.47

Brazil 28320 9.31 0.25 15.96 12.71 54.57 11.77 1.96 8.46

Canada 28208 10.85 0.04 16.12 6.43 61.60 10.53 2.44 16.65

Chile 8273 9.62 0.25 13.54 21.04 55.51 8.53 1.08 11.05

China 83356 8.96 1.48 16.07 52.66 67.66 4.98 1.60 10.10
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Table 7 (continued)

Summary
Statistics,
selected
countries

ln
GDP
per
capita
($US)

Pop
density,
(people
per sq.
km of
land)

ln sur-
face area
(sq. km)

PM2.5
air pollu-
tion (mg
per m3)

Empl.
to pop.
ratio

Health
expend.,
% GDP

Physicians
per
1000 people

% 65 yo
+ in pop.

Colombia 3105 8.95 0.45 13.95 16.53 62.16 5.91 1.83 8.08

Costa Rica 626 9.20 0.98 10.84 15.73 54.43 7.56 1.15 9.11

Croatia 1741 9.67 0.73 10.94 17.90 46.87 7.18 2.97 19.83

Czech. Rep. 6216 10.06 1.38 11.28 16.07 59.20 7.15 3.76 18.73

Denmark 6681 11.06 1.38 10.67 10.03 59.38 10.35 3.75 19.49

Egypt 2505 7.97 0.99 13.82 87.00 39.73 4.64 1.21 5.17

Estonia 1400 9.90 0.30 10.72 6.73 60.38 6.68 3.33 19.20

Finland 3237 10.79 0.18 12.73 5.86 55.07 9.49 3.20 21.01

France 133470 10.68 1.22 13.22 11.81 50.74 11.54 3.20 19.47

Germany 134753 10.77 2.37 12.79 12.03 59.21 11.14 3.99 21.34

Greece 2192 10.07 0.83 11.79 16.22 41.88 8.45 5.83 21.25

Iceland 1727 10.86 0.04 11.54 6.48 79.63 8.29 3.67 14.25

Indonesia 5136 8.36 1.48 14.46 16.50 64.66 3.12 0.28 5.61

Iran 76389 8.85 0.50 14.37 38.98 39.14 8.10 1.17 5.99

Ireland 12547 11.25 0.70 11.16 8.21 58.60 7.38 2.79 13.33

Israel 12501 10.46 4.11 10.00 21.38 61.37 7.31 3.30 11.60

Italy 165155 10.48 2.05 12.62 16.75 44.62 8.94 3.97 22.36

Japan 8100 10.80 3.47 12.84 11.70 60.03 10.93 2.32 26.82

Kuwait 1405 10.41 2.32 9.79 60.75 72.24 3.90 2.49 2.32

Luxembourg 3373 11.61 2.50 7.86 10.36 56.54 6.16 2.85 14.08

Malaysia 5072 9.40 0.96 12.71 16.04 66.37 3.80 1.32 6.32
Mexico 5399 9.25 0.65 14.49 20.92 57.60 5.47 2.14 6.97
Morocco 2024 8.12 0.81 13.01 32.59 42.22 5.84 0.65 6.67
Netherlands 28153 10.92 5.11 10.63 12.03 61.82 10.36 3.29 18.57
New Zealand 1386 10.55 0.19 12.50 5.96 67.69 9.22 2.79 15.16
Norway 6740 11.43 0.15 13.21 6.96 61.68 10.50 4.35 16.70
Oman 910 9.67 0.16 12.64 41.12 66.59 4.29 2.04 2.33

Philippines 5453 8.01 3.58 12.61 18.07 57.60 4.39 1.28 4.86

Poland 7582 9.72 1.24 12.65 20.88 54.17 6.52 2.26 16.63
Portugal 18091 10.09 1.12 11.43 8.16 54.98 9.08 3.97 21.36
Qatar 3711 11.06 2.40 9.36 91.19 87.95 3.08 2.12 1.18
Romania 7216 9.35 0.85 12.38 14.61 52.68 4.98 2.50 17.65
Russia 24490 9.37 0.09 16.65 16.16 59.82 5.27 3.83 14.09
Serbia 4873 8.84 0.80 11.39 24.73 47.55 9.14 2.59 17.66
Singapore 3699 10.97 79.53 6.58 19.08 65.08 4.47 1.93 10.21
Slovenia 1248 10.19 1.03 9.93 16.02 55.81 8.47 2.66 18.78
South Africa 2506 8.91 0.48 14.01 25.10 40.32 8.11 0.77 5.17
Spain 177644 10.40 0.94 13.13 9.70 49.08 8.97 3.84 19.02
Switzerland 26336 11.28 2.16 10.63 10.30 65.26 12.25 4.01 18.32
Thailand 2643 8.76 1.36 13.15 26.26 67.28 3.71 0.53 11.24
UAE 5365 10.62 1.36 11.33 40.92 79.20 3.52 1.84 1.01
UK 98476 10.68 2.75 12.40 10.47 60.56 9.76 2.75 18.20
USA 636350 10.91 0.36 16.10 7.41 60.42 17.07 2.53 15.23
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Table 10 Selected NPIs and change in daily Google mobility indexes, with country characteristics interac-
tions, FE, selected countries, N=931

places of shopping & transit parks and
residence restaurants stations beaches workplaces

(1) (2) (3) (4) (5)

SH {0, 1} 4.7500*** −18.5376***−17.6945***−14.8404***−12.2028***

(0.7853) (2.1970) (1.9856) (3.0371) (2.0726)

ET {0, 1} 3.4747 −7.2428 −6.9846 −12.9569 −6.9969

(2.5306) (7.0795) (6.3983) (9.7868) (6.6789)

SWC {0, 1} 8.5231*** −22.6599***−22.8909***−8.3333*** −19.2642***

(0.4517) (1.2638) (1.1422) (1.7471) (1.1923)

ET {0, 1} * ln GDP pc −0.1754 0.8619 −2.5448 −4.262 0.793

(1.3352) (3.7354) (3.3760) (5.1639) (3.5241)

SWC {0, 1} * ln GDP pc 1.7049** −0.4116 −4.4664** 6.7863** −4.1433*

(0.8394) (2.3484) (2.1224) (3.2464) (2.2155)

ET {0, 1} * Pop density −5.7416 27.5447 24.1445 −10.3581 8.9891

(8.8919) (24.8756) (22.4822) (34.3883) (23.4681)

SWC {0, 1} * Pop density 1.2112 4.7433 6.4500** −5.5536 −1.3419

(1.2343) (3.4531) (3.1208) (4.7736) (3.2577)

ET {0, 1} * ln surface area −0.425 −0.3478 −0.0273 −4.9618 2.6434

(1.8496) (5.1745) (4.6766) (7.1533) (4.8817)

SWC {0, 1} * ln surface area −2.2713***10.1710*** 5.8878*** 2.6459 5.4783***

(0.6972) (1.9506) (1.7629) (2.6965) (1.8402)

ET {0, 1} * PM2.5 0.9997 −4.307 0.7838 3.4286 0.7272

(2.5832) (7.2266) (6.5313) (9.9901) (6.8177)

SWC {0, 1} * PM2.5 −3.6524***7.8357*** 7.5327*** 4.6032** 9.3784***

(0.4734) (1.3243) (1.1969) (1.8308) (1.2494)

ET {0, 1} * Empl. rate −4.4193 6.9895 4.1192 11.1292 8.7684

(3.1182) (8.7234) (7.8840) (12.0593) (8.2298)

SWC {0, 1} * Empl. rate −2.5362***6.6738*** 6.1872*** 2.9846 7.1370***

(0.6443) (1.8024) (1.6289) (2.4916) (1.7004)

ET {0, 1} * Health expend. %GDP −0.9834 2.5495 5.6588 −0.5059 1.6302

(1.5591) (4.3616) (3.9419) (6.0295) (4.1148)

SWC {0, 1} * Health expend. %GDP −1.6749** 3.5900* 3.7627** 5.6748** 3.9480**

(0.6850) (1.9164) (1.7320) (2.6492) (1.8079)

ET {0, 1} * Physicians/1000 2.9961 −6.1762 −4.9329 −16.7703** −5.8405

(2.0387) (5.7034) (5.1546) (7.8844) (5.3807)

SWC {0, 1} * Physicians/1000 0.1757 −4.1994** −2.2918 −8.1691*** −0.0946

(0.6137) (1.7168) (1.5516) (2.3733) (1.6196)

ET {0, 1} * % 65 yo + −0.5897 0.3089 3.2573 20.4750* 1.7687

(2.9061) (8.1300) (7.3478) (11.2391) (7.6700)
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Table 10 (continued)

places of shopping & transit parks and
residence restaurants stations beaches workplaces

(1) (2) (3) (4) (5)

SWC {0, 1} * % 65 yo + −2.7104*** 5.2031*** 4.7482*** 6.8678** 5.8205***

(0.6909) (1.9330) (1.7470) (2.6721) (1.8236)

R2 adj. 0.661 0.638 0.691 0.458 0.579

Note: The subset of selected countries Google mobility data shows how time spent in different location
categories changed compared to the baseline days (a normal value for that day of the week in the 5-week
period Jan 3 – Feb 6, 2020). ET denotes extensive testing NPI; SWC denotes schools and/or workplaces
closures; SH denotes “stay-at-home” NPI. Coefficients presented, standard errors in parenthesis. Statistical
significance is denoted as *10%, **5%, and ***1% levels
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