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A B S T R A C T

The COVID-19 virus outbreak has affected most of the world in 2020. This paper deals with artificial
intelligence (AI) methods that can address the problem of predicting scale, dynamics and sensitivity of the
outbreak to preventive actions undertaken with a view to combatting the epidemic. In our study, we developed
a cellular automata (CA) model for simulating the COVID-19 disease spreading. The enhanced infectious disease
dynamics 𝑆𝐸𝐼𝑅 (Susceptible, Exposed, Infectious, and Recovered) model was applied to estimate the epidemic
trends in Poland, France, and Spain. We introduced new parameters into the simulation framework which
reflect the statistically confirmed dependencies such as age-dependent death probability, a different definition
of the contact rate and enhanced parameters reflecting population mobility. To estimate key epidemiological
measures and to predict possible dynamics of the disease, we juxtaposed crucial CA framework parameters to
the reported COVID-19 values, e.g. length of infection, mortality rates and the reproduction number. Moreover,
we used real population density and age structures of the studied epidemic populations. The model presented
allows for the examination of the effectiveness of preventive actions and their impact on the spreading rate
and the duration of the disease. It also shows the influence of structure and behavior of the populations studied
on key epidemic parameters, such as mortality and infection rates.

Although our results are critically dependent on the assumptions underpinning our model and there is
considerable uncertainty associated with the outbreaks at such an early epidemic stage, the obtained simulation
results seem to be in general agreement with the observed behavior of the real COVID-19 disease, and our
numerical framework can be effectively used to analyze the dynamics and efficacy of epidemic containment
methods.
1. Introduction

In December 2019 coronavirus disease (COVID-19) emerged in
China. Within a few weeks, the disease spread far beyond China,
reaching countries in all parts of the globe. At the beginning of March
2020, the governments in most countries, including Europe, closed the
borders for international movement. Also, the freedom to travel within
the countries has been significantly curbed. This is associated with the
decision to take immediate actions to limit the spread of the COVID-19
virus (Wu, Leung, & Leung, 2020). Actions taken include stopping the
inflow of people from abroad, and limiting or eliminating the possibility
of gathering people in larger clusters and social groups (Lloyd-Smith,
Schreiber, Kopp, & Getz, 2005). All persons coming to these countries
are subject to quarantine for at least 14 days, while citizens are asked
to minimize their stay away from home, and are encouraged to stay
at home to decrease virus transmission (similar processes have been

✩ This article is dedicated to John Horton Conway (1937–2020), a professor at Princeton University who died of coronavirus infection. Prof. Conway developed
the theory of cellular automata (by Stanisław Ulam and John von Neumann), and one of the best-known examples of cellular automata is Conway’s ‘‘Game of
Life’’.
∗ Corresponding author.

previously described in relation to the SARS epidemic (Chowell & Lee,
2015; Kucharski, 2015; Riley, C., & Donnelly, 2005). At the same
time, a few European governments adopted a strategy of maximum
hygiene, self-control, and elimination of social activities of these groups
of citizens who are particularly exposed to the risk of infection. The
main attention was directed to the elderly people whose stay at home
was highly recommended (Alwan et al., 2020).

Despite the weakening of the epidemic dynamics spread in most
regions, forecasting the development of the COVID-19 remains an issue
that plays an important role, helping to quantify possible control and
manageable levels of the disease. Due to the global nature of the
phenomenon, though the incomplete clinical COVID-19 description, the
scale of availability and amount of collected epidemic data (World
Health Organization, 2020) is unique and allows extensive use of
data mining and modeling methods, which become essential parts of
vailable online 15 October 2020
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assessing the impacts of mitigation strategies (Anderson, Heesterbeek,
Klinkenberg, & Deirdre Hollingsworth, 2020). In this context, mathe-
matical models of infectious disease transmission dynamics remain one
of the most useful and popular methods, that allow to predict, assess,
and control potential epidemic outbreaks (Djordjevic, Silva, & Torres,
2018; Rachah & Torres, 2018).

Traditionally, differential equations have been used to describe the
spreading of a contagious disease (Murray, 1993). An epidemic model
usually falls under one of the following types: 𝑆𝐼𝑅, 𝑆𝐼𝑆, 𝑆𝐸𝐼𝑅 or
𝐸𝐼𝑅𝑆. This involves taking into account in our model parameters

pecific to the 𝑆𝐸𝐼𝑅 models. The components of these models, i.e. in-
ividuals susceptible (𝑆), exposed (𝐸), infected (𝐼) and recovered
𝑅), change their value over the time according to time-dependent
ifferential equations (Fu & Milne, 2003; Liu, Jin, & Liu, 2006; Milne,
ermanis, & Johnston, 2008; Pfeifer et al., 2008). Recently, more com-
lex compartmental models have been proposed for COVID-19 analysis,
.e. 𝑆𝐼𝑅𝐷 model with death (𝐷) class (Fanelli & Piazza, 2020) and
𝐸𝐼𝑃𝐴𝐻𝑅𝐹 model with new super-spreaders (𝑃 ), asymptomatic (𝐴),

hospitalized (𝐻), fatality (𝐹 ) classes (Ndairou, Area, Nieto, & Torres,
2020). These models introduce new groups of population, which appear
to be relevant in the context of medical reports, but still do not take
into account the local characteristics of the epidemic spread process,
individual contact processes and their effects, spatial aspects of the
spread of the epidemic, and different vulnerability patterns groups of
individuals (White, del Rey, & Sanchez, 2007).

In this paper we applied an improved cellular automata (CA) ap-
proach to verify (using available epidemiological and social data) the
potential causes of the observed epidemic features and help to develop
guidelines which will be more effective in terms of government goals.
Our analyses are based on the use of a modified influenza spread model,
which we presented in our earlier paper (Holko, Medrek, Pastuszak,
& Phusavat, 2016). Our model remove the drawbacks of traditional
models (Achmed & Agiza, 1998) by the inclusion of external infections
attributed to moving individuals (Boccara & Cheong, 1993) and reflect-
ing the realistic age structure of the population with age dependent
vulnerability of individuals (White et al., 2007) and real population
density distribution. Although classic CA model has some limitations
like shape of cells, the regular neighbors pattern and simple rules
of interconnections between people, researches try to overcome these
disadvantages integrating e.g. the geographical assumptions necessary
for studying the epidemics spread in a realistic way (Zhong, Huang,
& Song, 0000). Our model develops such approach and introduces
factors related to the actual demographic and geographic profiles of
the simulated population. Consequently, we can now present a novel,
complete 𝑆𝐸𝐼𝑅 model to simulate the epidemic spread based on
CA. The simulation results obtained seem to be in agreement with
the observed features of the COVID-19 epidemic. The considerations
presented in the paper are aimed mainly at presenting a new simulation
model and detailed analysis of the results of modeling in the social and
economic perspectives will be the subject of our further work.

The paper is organized as follows: the next Section presents numeri-
cal model. The spatial and social parameters used in our simulations are
described briefly in Section 3. Section 4 contains results of numerical
simulations. The paper is concluded by a short summary of main
results.

2. Numerical epidemic model

Most epidemic models which incorporate death causing diseases
and varying total population assume a population of size N which is
partitioned into separated subclasses of individuals who are susceptible
(𝑆) i.e. who can contract the disease, who are infectious (𝐼) and who
have recovered (𝑅) (Anderson & May, 1979). The size of each class of
the population varies in time and the whole population size 𝑁 is given
by

𝑆 + 𝐼 + 𝑅 = 𝑁. (1)
2

t

In the 𝑆𝐸𝐼𝑅 model (Aron & Schwartz, 1984) and additional com-
partment is incorporated and it describes those exposed who are in-
fected but not yet infectious (denoted by 𝐸). The time evolution of
the population compartments model is described by set of differential
equations (Pfeifer et al., 2008)
𝑑𝑆
𝑑𝑡

= 𝜇𝑏𝑁 − 𝛽(𝑡) 𝐼
𝑁

𝑆 − 𝜇𝑆, (2)
𝑑𝐸
𝑑𝑡

= 𝛽(𝑡) 𝐼
𝑁

𝑆 − (𝜇 + 𝛿)𝐸, (3)
𝑑𝐼
𝑑𝑡

= 𝛿𝐸 − (𝜇 + 𝛾)𝐼 , (4)
𝑑𝑅
𝑑𝑡

= 𝛾𝐼 − 𝜇𝑅, (5)
𝑑𝑁
𝑑𝑡

= 𝜇𝑏𝑁 − 𝜇(𝑆 + 𝐸 + 𝐼 + 𝑅). (6)

where 𝑡 is time, 𝜇 and 𝜇𝑏 are death and birth rates, 1∕𝛿 is the mean
atent period for the disease, 1∕𝛾 is the mean infectious period and 𝛽
s the contact rate which denotes the probability of getting the disease
hrough contacts between susceptible and infectious individuals. The
asic reproduction number 𝑅0 which determines whether an infectious
isease can spread (𝑅0 > 1) is given by

0 =
𝛿

𝜇 + 𝛿
𝛽

𝜇 + 𝛾
, (7)

nd it measures the number of secondary cases that can be expected
rom a single case of the disease.

Since the SEIR model does not reflect the behavior of individuals
nd it shows the infection on the population level we use as the basis
n our simulation framework an enhanced model (Holko et al., 2016),
hich introduces into the system additional coefficients that reflects

ome demographic interactions and geographical configuration.

.1. Cellular automata model

We use CA model where the finite set of states 𝑄 ∈ (𝑆,𝐸, 𝐼, 𝑅) can
e observed in the cellular two-dimensional space 𝐶 = {(𝑖, 𝑗) ∶ 0 ≤
< 𝑟 ∧ 0 ≤ 𝑗 < 𝑐}, with 𝑟 rows and 𝑐 columns iterated by 𝑖 and 𝑗,

espectively. The CA system is defined by tuple (𝐶,𝑄, 𝑉 , 𝑓 ), where 𝑉
s a function of the Moore neighborhood (del Rey, White, & Sánchez,
006; Delorme, 1999) with a distance of one and 𝑓 is a local transition
unction 𝑠𝑡𝑖𝑗 = 𝑓

(

𝑖, 𝑗, 𝑠𝑡−11,1 ,… , 𝑠𝑡−1𝑟,𝑐

)

∈ 𝑄 of 𝑖, 𝑗 cell at the 𝑡 instant of
ime. Fig. 1 shows the example of a state of an (𝑖, 𝑗)–th cell at the time
described by equations
𝑡
𝑖𝑗 =

∑

𝑠𝑡𝑖𝑗 , (8)

𝑠𝑡𝑖𝑗 = (𝑆𝑡
𝑖𝑗 , 𝐸

𝑡
𝑖𝑗|1, 𝐸

𝑡
𝑖𝑗|2,… , 𝐸𝑡

𝑖𝑗|𝑎, 𝐼
𝑡
𝑖𝑗|1, 𝐼

𝑡
𝑖𝑗|2,… , 𝐼 𝑡𝑖𝑗|𝑏, 𝑅

𝑡
𝑖𝑗 ), (9)

here 𝑁 𝑡
𝑖𝑗 is the whole population of the 𝑖𝑗 cell, 𝑆𝑡

𝑖𝑗 and 𝑅𝑡
𝑖𝑗 are

espectively numbers of susceptible and recovered individuals and 𝐸𝑡
𝑖𝑗|𝑑

nd 𝐼 𝑡𝑖𝑗|𝑑 are the numbers of exposed and infective individuals in a 𝑑–th
ay of the given stage of an infection, where 𝑎 and 𝑏 are the periods of
xposed and infective stages in days.

In the CA model, we assume that the exposed state 𝐸 has no any
nfectivity capability. However, there are many reports that infected
ersons who have no any symptoms yet can infect others (Ferretti et al.,
020; Hu, Song, & Xu, 2020). In our opinion such presymptomatic cases
an be included into the presented model through the extension of the
ength of the infective state 𝑏 (reduction of the length of exposed state
) in Eq. (9), since the only difference between 𝐸 and 𝐼 is the ability
o infect. Including new compartments (besides SEIR) into the model
equires the consensus on the values of the parameters characterizing
hese new groups — as far as we know, there is no such agreement yet
ecause of the early stage of the pandemic.

In the next part of this section we present some new components
hich we introduced into the model of Holko et al. (Holko et al., 2016)

o reflect the condition of individuals and population dynamics over
ime, that appear to be relevant to COVID-19 epidemic.
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Fig. 1. Illustration of number of individuals in 𝑖, 𝑗 cell in different states at 𝑡 instant of time, Eq. (9).
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2.1.1. Improved daily commutes model
We introduced into the daily commutes model the assumption that

exposed (𝐸) and recovered (𝑅) travelers are irrelevant to the spread of
he epidemic since they cannot infect anyone and re-infect themselves.
he numbers of individuals who travel to another cell at the 𝑡 instant
f time is denoted by the
𝑡
𝑖𝑗 =

(

𝜙ℎ𝑆
𝑡
𝑖𝑗 , 𝜙𝑖𝑛𝑣𝐼

𝑡
𝑖𝑗|1,… , 𝜙𝑖𝑛𝑣𝐼

𝑡
𝑖𝑗|𝑏

)

, (10)

here 𝜙ℎ and 𝜙𝑖𝑛𝑣 denote the fractions of healthy and infective individ-
als commuting outside the cell, respectively. The states of the source
𝑖, 𝑗) and destination (𝑥, 𝑦) cells are defined by

𝑡
𝑖𝑗→𝑥𝑦 =

{

𝑠𝑡𝑖𝑗 − 𝑛𝑡𝑖𝑗 , for cell(𝑖, 𝑗) ,
𝑠𝑡𝑥𝑦 + 𝑛𝑡𝑖𝑗 , for cell(𝑥, 𝑦) .

(11)

Moreover, we assume that the destination cell is randomly selected
from the three cells with largest population over a neighborhood de-
fined by the Chebyshev distance 𝐷𝑖𝑗→𝑥𝑦 (Abello, Pardalos, & Resende,
2002) between the (𝑖, 𝑗) and (𝑥, 𝑦) cell given by

𝐷𝑖𝑗→𝑥𝑦 = max (|𝑥 − 𝑖|, |𝑦 − 𝑗|) = 3. (12)

2.1.2. Direct contact rate
In our model the transition function is defined by the set of the

following equations:

𝑆𝑡+1
𝑖𝑗 = (1 − 𝜇𝑑 + 𝜇𝑏)((1 − 𝑝𝑡𝑖𝑗 )(𝑆

𝑡
𝑖𝑗 −

∑

(𝑥,𝑦)∈𝐶 𝑆𝑡
𝑖𝑗→𝑥𝑦)

+
∑

(𝑥,𝑦)∈𝐶 (1 − 𝑝𝑡𝑥𝑦)𝑆
𝑡
𝑥𝑦→𝑖𝑗 ) , (13)

𝐸𝑡+1
𝑖𝑗|1 = (1 − 𝜇𝑑 + 𝜇𝑏)(𝑝𝑡𝑖𝑗𝑆

𝑡
𝑖𝑗 ) , (14)

𝐸𝑡+1
𝑖𝑗|𝑘 = (1 − 𝜇𝑑 + 𝜇𝑏 − 𝜇𝑚)𝐸𝑡

𝑖𝑗|𝑘−1 , (15)

𝐼 𝑡+1𝑖𝑗|1 = (1 − 𝜇𝑑 + 𝜇𝑏 − 𝜇𝑚)𝐸𝑡
𝑖𝑗|𝑎 , (16)

𝐼 𝑡+1𝑖𝑗|𝑙 = (1 − 𝜇𝑑 + 𝜇𝑏 − 𝜇𝑚)𝐼 𝑡𝑖𝑗|𝑙−1 , (17)

𝑅𝑡+1
𝑖𝑗 = (1 − 𝜇𝑑 + 𝜇𝑏)𝑅𝑡

𝑖𝑗 + (1 − 𝜇𝑑 + 𝜇𝑏 − 𝜇𝑚)𝐼 𝑡𝑖𝑗|𝑏 , (18)

where 2 ≤ 𝑘 ≤ 𝑎 and 2 ≤ 𝑙 ≤ 𝑏 denote the day number of 𝐸 and 𝐼 states
respectively, 𝜇𝑑 and 𝜇𝑏 are natural deaths and births rates (Eq. (23)),
𝑚 is the COVID-19 mortality rate. Descriptions and initial values of all
arameters used in eqs. (13)–(18) are listed in Table 2. Additionally we
ntroduced the direct contact rate 𝛽𝑐 which corresponds to the number
f direct contacts of susceptible individuals (∈ 𝑆) with infectious

(∈ 𝐼), which may reflect the population density (Hu, Nigmatulina, &
Eckhoff, 2013), the epidemic phase and prevention. New infections
appear according to Eq. (14) where 𝑝𝑡𝑖𝑗 is the random probability of
nfection given by

𝑝𝑡𝑖𝑗 =

⎧

⎪

⎨

⎪

0, 𝑔𝑡𝑖𝑗 < 0 ,
1, 𝑔𝑡𝑖𝑗 > 1 ,
𝑡 𝑡

(19)
3

⎩
𝑔𝑖𝑗 , 0 ≤ 𝑔𝑖𝑗 ≤ 1 ,
𝑡
𝑖𝑗 = rnd

(

𝑏𝑖,𝑗 (𝛽𝑐 , 𝑛, 𝑝𝑡𝑠) =
(

𝛽𝑐
𝑛

)

⋅ 𝑝𝑡𝑠
𝛽𝑐 ⋅ 𝑞𝑛−𝛽𝑐

|

|

|

|

|𝑖,𝑗
, 𝑐𝑣

)

, (20)

here 𝑔𝑡𝑖𝑗 is a Gaussian random number with mean value 𝑏𝑖,𝑗 (𝛽𝑐 , 𝑛, 𝑝𝑡𝑠)
efined by the binomial probability of infection in 𝛽𝑐 direct contacts
etween susceptible 𝑆 and infectious 𝐼 individuals, 𝑛 is the total
umber of contacts a person has with other people, 𝑝𝑡𝑠 =

𝐼 𝑡𝑖,𝑗
𝑁 𝑡

𝑖,𝑗
is the

traight probability of infection given by the ratio of infectious in the
hole population, 𝑞 = 1 − 𝑝𝑡𝑠 and 𝑐𝑣 is the variance of the Gaussian
enerator. Fig. 2(a) shows the mean value of probability of infection as
function of direct contact rate 𝑐 for four cases of straight probability
𝑡
𝑠 =∈ {0.01, 0.05, 0.10, 0.15}.

.1.3. Variable mortality rate
To reflect different mortality for various age ranges 𝐴 of a popula-

ion we introduced into our model variable mortality rate 𝜇𝑚, which
s randomly chosen with the probability density which reflects the
emographical structure of the population:

r(𝐴 = 𝑎) ∈ {𝑝𝑎∀𝑎} , (21)
∑

𝑎
𝑝𝑎 = 1 (22)

where 𝑎 ∈ {0 − 9, 10 − 19, .., 70 − 79, 80+} is the age range and 𝑝𝑎 is the
probability density of belonging the individual to chosen age range. The
values of 𝜇𝑚 we select with particular attention to empirical data (Lin
et al., 2020) in Section 2.2.

2.2. Geographical and demographical configurations

Our CA simulation system is based on heterogeneous distribution
of the population across the cells (Fig. 3) and can change over time
due to births and deaths. We use numerical grids of population counts
for Poland, France and Spain with the cell size ≈ 9x9 km (Poland),
≈ 13x13 km (France) and ≈ 12x12 km (Spain) where initial values
𝑁0

𝑖𝑗 we set according to CIESIN population counts, v. 3 (Center for
International Earth Science Information Network (CIESIN) / Columbia
University; United Nations Food and Agriculture Programme (FAO);
Centro Internacional de Agricultura Tropical (CIAT), 2005).

Since the mortality rate in our simulation varies for different age
ranges of individuals (see Eq. (21)) we use the actual age distribution
of Poland (Central Statistical Office, 2017), France and Spain (United
Nations, Department of Economic and Social Affairs, Population Divi-
sion, 2020) to set the appropriate mortality rates for each age range of
these populations (Fig. 4).

According to recent reports COVID-19 mortality rate differs not only
by age, but also by gender of the individuals. Although male COVID-19
mortality rate is generally higher than the COVID-19 female mortality
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Fig. 2. (a): mean value of the infection probability 𝑝𝑡𝑖𝑗 in particular cell for four different values of the straight probability of infection 𝑝𝑠 =
𝐼𝑖𝑗
𝑁𝑖𝑗

as a function of individual contact
rate 𝑐, according to Eq. (19). (b): map plot of 𝑝𝑡𝑖𝑗 as a function of 𝑝𝑠 and 𝑐, with four isolines for 𝑝𝑡𝑖𝑗 = 0.3, 0.5, 0.75 and 0.9.

Fig. 3. Simulation grids with the populations counts of Poland (a), France (c), and Spain (e).

Fig. 4. Age structure of the population of Poland, France, and Spain (a) and COVID-19 mortality rates (World Health Organization, 2020) as a function of different age ranges
(b).
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Table 1
COVID-19 mortality rates for different genders and age groups in Spain.
Age range Fraction of population Mortality rate GMR Age–gender mortality rate

Male Female see Fig. 4 Male Female

40–49 0.086 0.084 0.0040 1.6 0.0049 0.0031
50–59 0.074 0.074 0.0130 2.2 0.0179 0.0081
60–69 0.053 0.057 0.0360 2.3 0.0509 0.0221
70–79 0.039 0.046 0.0800 2.3 0.1153 0.0501
80+ 0.023 0.039 0.1480 1.5 0.1873 0.1248
a

c
1
c
p
e
i

i
t

rate across all ages in all countries, there are some notable differ-
ences between individual countries. Table 1 shows the GMR (gender
mortality ratio) defined by

𝐺𝑀𝑅 =
Male mortality rate

Female mortality rate
or age ranges 40+ reported by Reinsurance Group of America (Ng,
akrania, Russell, & Falkous, 2020) for Spain (data for age groups 0−40,
nd Poland and France were not accessible). We use the GMR values
nd the age–gender structure of Spanish population (United Nations,
epartment of Economic and Social Affairs, Population Division, 2020)

o obtain corresponding mortality rates for males and females in all age
roups — they are presented in two last columns of Table 1.

. COVID-19 numerical model parametrization

At initial stages of an epidemic, numerical modeling can help un-
erstand the dynamics of a new disease and identify key parameters
ffecting the speed of its spread. Table 2 shows the initial values of key
odel parameters which we estimate according to recent reports from

he regions that were affected by the COVID-19 epidemic — estimation
ources are listed in the last column. The lengths of exposed 𝑎 = 1∕𝛿

(Eq. (3)) and infective 𝑏 = 1∕𝛾 (Eqs. (4) and (5)) states we set according
to median incubation period of COVID-19 (5.1 days) reported by Lauer
et al. (Lauer et al., 2020) and most infectious period (7 days) reported
by Kelvin Kai Wang et al. (Kai-Wang To, 2020).

Our simulations are geographically located in three countries:
Poland, France, and Spain. Fig. 3 (left panel) shows the grids con-
figuration for selected regions. Moreover, to show the age structure
for each country we divided each population into age ranges corre-
sponding to different reported mortality ratios of COVID-19. Fig. 3
shows the structure of populations provided by Countrymeters.info
database (CountryMeters, 2020) and corresponding COVID-19 mortal-
ity ratios (WorldoMeters, 2020). Respective values of natural birth 𝜇𝑏
and natural death 𝜇𝑑 rates per one time step (1 day) for each countries
we calculated using demographic data on the number of births and
deaths in Poland, France, and Spain (United Nations, Department of
Economic and Social Affairs, Population Division, 2020) according to
equation

𝜇𝑏∕𝑑 = number of births/deaths
𝑁 ⋅ number of days in a year , (23)

where 𝑁 is the total population of each country.
Since the probability of dying from the disease depends on the age

f an individual we use heterogeneous and age-dependent mortality
ate per time step 𝜇𝑚, which is chosen according to age population
tructure (Fig. 4(a)) and age distribution of COVID-19 mortality rate
Fig. 4(b)). Additionally, our model includes daily commutes of indi-
iduals with different commuters ratio for healthy 𝜙ℎ and infected 𝜙𝑠
ndividuals and commuting over a longer distance 𝜙𝑐 (Holko et al.,
016). These parameters we estimate according to ‘‘Statistics on com-
uting patterns at regional level’’ provided by Eurostat (Eurostat,
016), where the number of people commuting to another region
NUTS, level 2) is assessed to 8.1% of total persons in employment,
hich gives the number of daily commuters about 3.7% of total pop-
lation (with respect to employment rate ≈ 70% and the percentage
f people of working age ≈ 64.7% in Europe, (Eurostat, 2020). The
5

c

Fig. 5. Mean value of 𝑅0 as a function of contact rate 𝛽𝑐 .

fraction of commuting infected population we estimate as 4∕7 of the
value of daily commuters according to the median interval between
symptom onset and hospitalization (isolation) (4 days) reported by
epidemiologists (Kai-Wang To, 2020) while the mean length of the
infective state we previously assessed to 7 days.

4. Results of the simulation

To organize our simulations, we divided them into three parts. Sec-
tion 4.1 concerns the dependence of reproduction number 𝑅0 (Eq. (7))
on the contact factor 𝛽𝑐 describing the interaction between individuals
in 𝐼 and 𝑆 groups of the population. Section 4.2 describes the dynamics
of the epidemic and the impact of various intervention scenarios for
Poland. The last part (Section 4.3) compares the most important results
for all countries under analysis (Poland, France, and Spain).

4.1. Basic reproduction number 𝑅0

As reproduction number 𝑅0 is the critical conditioning parameter
for the disease, we started by determining the relationship between 𝑅0
and the parameter of our simulation — contact rate 𝛽𝑐 (Eq. (20)). To
set 𝑅0(𝑡 = 0), we use the equation

𝑅0 =

∑

(𝑖,𝑗)∈𝐶
∑𝑎

𝑘=1 𝐸
𝑎
𝑖𝑗|𝑘

∑

(𝑖,𝑗)∈𝐶 𝐼0𝑖𝑗|1
, (24)

ccording to Holko et al..
Fig. 5 shows that 𝑅0 grows with 𝛽𝑐 and 𝑅0

(

𝛽𝑐 = 0.5
)

= 3.5 which
orresponds to the estimated value of reproduction number for COVID-
9 (Hellewell et al., 2020). The direct contact rate 𝛽𝑐 = 0.5 meets the
ase when an infectious individual (∈ 𝐼) has contacts with susceptible
erson (∈ 𝑆) once every two days. For values of 𝛽𝑐 > 0.5 we can
xpect epidemic progress while for smaller values of 𝛽𝑐 the epidemic
s suppressed.

Additionally we empirically verified that the relationship of 𝑅0(𝛽𝑐 )
s independent of the geometry of simulation and the population struc-
ure; therefore we can assume that it is the same for all countries

onsidered.
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Table 2
Initial parameters of the model.
Parameter Description Initial value References —

estimation source

𝑎 Fixed length in days of the exposed state (𝐸). 5 Lauer et al. (2020)
𝑏 Fixed length in days of the infective state (𝐼). 7 Kai-Wang To (2020)
𝛽𝑐 Individual contact rate between individuals in a cell. from 0.15 to

2.00
Linka, Peirlinck, and
Kuhl (2020)

𝑐𝑣 Variation coefficient of the infection probability. 0.1

𝜇𝑏 New births per one individual per time step.a
2.89E − 5 United Nations, Department of

Economic and Social Affairs,
Population Division (2020)

3.32E − 5
2.49E − 5

𝜇𝑑 Natural deaths per one individual per time step.a
2.73E − 5 United Nations, Department of

Economic and Social Affairs,
Population Division (2020)

2.39E − 5
2.36E − 5

𝜇𝑚 Mortality rate per time step, i.e. probability of a
death of an infected individual.

Eq. (21) WorldoMeters (2020)

𝜙ℎ Fraction of a healthy population commuting outside
of their cell.

0.037 Eurostat (2016)

𝜙𝑠 Fraction of an infected population commuting
outside of their cell

0.021 Kai-Wang To (2020)

𝜙𝑐 Fraction of commuters commuting outside of their
neighborhood.

0.23 Eurostat (2016)

aValues for Poland, France, and Spain respectively.
Fig. 6. Average number of 𝑆,𝐸 + 𝐼, 𝑅 for 𝛽𝑐 = 0.15 (a), 𝛽𝑐 = 0.2 (b), 𝛽𝑐 = 0.5 (c), 𝛽𝑐 = 0.7 (d), 𝛽𝑐 = 1.0 (e) and 𝛽𝑐 = 2.0 (f) as a function of time step 𝑡.
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.2. Dynamic of the epidemic

All results presented in this part are ensemble-averaged over 10
uns performed for the same initial configuration of infected individual,
hich was generated by a random selection of 15 cells with the
opulation above 10000 and moving in each of these cells a group of
0 individuals to the infectious state. We ensured that averaging over a
arger number of realizations gave no significant changes in the results.

First, we perform simulation of spreading disease for set values of
𝑐 ∈ {0.15, 0.20, 0.50, 0.70, 1.00, 2.00}, corresponding to the most likely
0 values, in the vicinity of reported 𝑅0(𝛽𝑐 = 0.5) = 3.5. Fig. 6 displays

he time history (with time step 𝑡 in days, horizontal axis) of the number
f individuals in compartments 𝑆,𝐸 + 𝐼, 𝑅. Since in the upper row
f Fig. 6(a)–(c) we present results for smaller 𝛽𝑐 and the disease lasts
uch longer than for bigger 𝛽𝑐 (lower row of Fig. 6(d)–(f)), we set the

ange of 𝑡-axis to 750 and 250 days for upper and lower row of Fig. 6,
espectively.
6

o

Fig. 6 shows that for all values of contact rate 𝛽𝑐 the number of
usceptible individuals 𝑆 (dash–dot line) decreases, while the number
f recovered ones 𝑅 (dotted line) grows with time. It is the result of
n ongoing epidemic whose intensity depends on the number of the
nfected 𝐸 + 𝐼 (solid line). For very small values of 𝛽𝑐 ∈ {0.15, 0.20}
he number of 𝑆 never falls below the number of the recovered 𝑅
Fig. 6(a)–(b)), which means that the disease affected less than half of
he population. For 𝛽𝑐 = 0.15 the epidemic spreads for limited time
𝑡 < 75 days) but the numbers of 𝐸 + 𝐼 and 𝑅 is much smaller than 𝑆
nd they are not discernible on Fig. 6(a).

The dynamic of the disease hinges on the values of contact rate
arameter (𝛽𝑐). Higher values of 𝛽𝑐 accelerate the disease (lower row of
ig. 6, from (d) to (f)) and the number of infected individuals (𝐸 + 𝐼)
eaches its maximum value faster if the 𝛽𝑐 is greater. The maximum
alue of 𝐸+𝐼 increases with the contact rate, the disease is accumulated
n time for higher values of 𝛽𝑐 , while for low contact rates the number
f infected individuals 𝐸+𝐼 is blurred in time and becomes less intense.
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Fig. 7. The number of deaths as a function of time step 𝑡 for 𝛽𝑐 ∈ {0.2, 0.3, 0.7, 1.0, 2.0}
internal panel enlarges the dependency for 𝛽𝑐 = 0.2 to ensure the sufficient visibility).

Fig. 7 illustrates the number of deaths for 0 ≤ 𝑡 ≤ 100 days of
pidemic for different values of contact rate 𝛽𝑐 . It is noticeable that this
elationship is more non-linear for larger values of 𝛽𝑐 > 0.2, while for
mall 𝛽𝑐 = 0.2 (which corresponds to 𝑅0 = 1.28) the number of victims
ncreases almost linearly (internal enlarged panel in Fig. 7). Observed
ependency is in general agreement with epidemic patterns shown in
ig. 6, where the nonlinearity of 𝐸 + 𝐼 grows for larger 𝛽𝑐 values.

The disease reveals time signatures that follow similar scenario for
he constant values of 𝛽𝑐 : a rapid increase in the number of 𝐸 + 𝐼
nd a slower decrease after it reaches its maximum (Fig. 6). In order
o simulate preventive measures that inhibit the development of an
pidemic, we conducted simulations with 𝛽𝑐 value which changes in
ime – Fig. 8. To reflect the preventive action taken at various stages of
he epidemic development we use initial configurations with 𝛽𝑐 = 0.5
𝑅0 = 3.5) and reduce it 5 times, at 𝑡𝑖𝑛𝑡 = 15, 20, .., 40 day of the disease.
t corresponds to a five-fold reduction in the number of direct contacts
mong people in the epidemic population. The left panel of Fig. 8
hows the number of 𝐸 + 𝐼 as a function of time 𝑡 and it confirms
hat such a strong reduction of 𝛽𝑐 (corresponding to 𝑅0 ≈ 0.6) stops
he development of the epidemic and reduces the number of infected
ndividuals faster if the reduction occurs earlier. However, this relation
s not linear and the effect of shortening the epidemic is stronger for
maller 𝑡𝑖𝑛𝑡 (right panel of Fig. 8): intervention at 𝑡𝑖𝑛𝑡 = 15 reduces the
ength of the disease to ≈ 38% of its original length, while changing 𝛽𝑐
t 𝑡𝑖𝑛𝑡 = 30 gives the epidemic reduction time up to ≈ 59%. It means that
trong intervention taken even later in the development of epidemic
an effectively shorten its duration.

Another way to reduce the spread of an epidemic may be decreasing
he population mobility. In our model we have three commuting rates,
eparately for healthy population (𝜙ℎ), infected population (𝜙𝑠) and
or individuals commuting outside their neighborhoods (𝜙𝑐) – typical
alues of these parameters are presented in Table 2.

To verify the influence of such defined mobility of individuals on
he spread of the disease, we set at 𝑡 = 0 20 infectious in the most
ense cell of our system (with the population of over 112 000) and
heck how the disease develops for different values of commuting ratio
ℎ (𝜙𝑠 = 4∕7𝜙ℎ and 𝜙𝑐 = 0.23𝜙ℎ,𝑠 - see Table 2). The results are
resented in Fig. 9 where (a) shows the evolution of infection for
ℎ = 0.04 and (b) for increased mobilities 𝜙ℎ = 0.1. A much faster
evelopment of the epidemic is noticeable (Fig. 9(b)) due to greater
opulation mobility and this relationship is quantitatively confirmed
y the time history of 𝑅 number for different values of 𝜙ℎ, presented
n Fig. 9(c). The difference between 𝑅 number for growing commuting
atios is more discernible for larger 𝑡 which suggests, that in the early
7

o

able 3
stimated model parameters values for the COVID-19 disease cases presented on Fig. 12
Country Time step

t
Contact rate
𝛽𝑐

Commuting
rates 𝜙ℎ,𝑐

Date

Poland Fig. 12(a)

𝑡1 = 0 1.20 0.37 04.03.2020
𝑡2 = 22 0.30 0.10 26.03.2020
𝑡3 = 32 0.15 0.10 05.04.2020
𝑡4 = 62 0.15 0.37 05.05.2020

France Fig. 12(b)
𝑡1 = 0 1.40 0.37 23.02.2020
𝑡2 = 33 0.30 0.10 27.03.2020
𝑡3 = 45 0.10 0.19 08.04.2020

Spain Fig. 12(c)

𝑡1 = 0 1.50 0.37 22.02.2020
𝑡2 = 22 0.40 0.10 15.03.2020
𝑡3 = 42 0.12 0.10 04.04.2020
𝑡4 = 48 0.10 0.19 10.04.2020

stages of an epidemic 𝑡 < 70, the impact of mobility of individuals on
the speed of epidemic development may be less. To check it we plot
on Fig. 10 the number of 𝑅 as a function of commuting ratio 𝜙ℎ for
three instants of time: 𝑡 = 50 (a), 𝑡 = 60 (b) and 𝑡 = 100 (c). Our results
confirm that the acceleration of the epidemic due to increased mobility
is clearly visible after some period of time (𝑡 = 100, Fig. 10(c)), while
at shorter intervals (Fig. 10(a), (b)) it is not clearly visible. It may be
the result of acquiring population resilience over time due to the larger
𝑅 compartment in limited area (Fig. 10(a), (b)), whereas for longer
time the disease propagates to new regions (CA cells) and the epidemic
suppression effect for higher values of commuting ratio 𝜙ℎ is not so
significant (Fig. 10(c)).

4.3. Influence of the population age structure on the epidemic mortality rate

In this section we consider the impact of the age structure of the
population on the mortality rate 𝜇𝑚, which we define as an indicator
quantifying the increase or decrease in mortality due to the epidemics,
i.e.

𝜇𝑚 =
𝑁𝑑
𝑅

, (25)

where 𝑅 and 𝑁𝑑 denote the number of recovered and deaths from
the disease, respectively. To verify the impact of the age structure of
the population in real conditions, we conducted simulations for three
selected countries whose populations show discernible differences —
the right panel of Fig. 3 shows population structures of Poland, France,
and Spain in the analyzed age ranges. In the case of Poland, the largest
age groups are in the range of 20–69 years, and the number of older
people (70+) is rapidly decreasing. In the case of Spain, and France
especially, the oldest groups (70+), for which the observed mortality
rate is the highest (8% for 70–79 and over 14% for the 80+ group)
are much more numerous. Moreover, France has the most balanced age
structure — all groups below 70 years are similar.

To reflect the age structure we used in our model heterogeneous
mortality, which was introduced into the numerical system as the
COVID-19 mortality rate per time step 𝜇𝑚 selected according to differ-
ent age structures for countries analyzed (Fig. 4).

Fig. 11 presents averaged (over 10 runs) mortality rate 𝜇𝑚 as a
unction of the contact rate 𝛽𝑐 for the analyzed populations, for the first
= 200 days of the epidemic. The highest values of 𝜇𝑚 were obtained

or France, which has the highest percentage of age group 60+. Slightly
ower values of 𝜇𝑚 occur for Spain, which has a similar percentage in
he 60+ age group, but in this case the number of people in the 0-29 age
roup is much smaller than in France. For Poland, whose population
s relatively the most numerous in the 0-39 age range, the mortality
ate is the lowest, regardless of 𝛽𝑐 . In general, the values of mortality
ates for France range from about 𝜇𝑚(𝛽𝑐 = 0.2) ≈ 0.045 (corresponding
o 4.5%) to 𝜇𝑚(𝛽𝑐 ≥ 0.5) ≈ 0.02 (2%). The lowest values of 𝛽𝑐 were

btained for Poland, and they are in the range 𝜇𝑚 ∈ ⟨0.019, 0.024⟩, while
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Fig. 8. The number of exposed and infected 𝐸 + 𝐼 individuals as a function of time step 𝑡 for 𝛽𝑐0 = 0.5 and 𝛽𝑐𝑖𝑛𝑡 = 0.1 for different days of intervention 𝑡𝑖𝑛𝑡 (a) and epidemic length
𝐿 as a function of day of intervention 𝑡𝑖𝑛𝑡 (b).
Fig. 9. The map plot of the number of recovered 𝑅 individuals for 𝛽𝑐 = 0.5 and commuting rates 𝜙ℎ = 0.04 (a), 𝜙ℎ = 0.10 (b) at 𝑡 = 100 days. Figure (c) presents time history of
the number of recovered 𝑅 for different values of commuting rates 𝜙ℎ ∈ {0.02; 0.03; 0.04; 0.06; 0.08; 0.10} and 𝑡 ∈ (0, 100).
Fig. 10. The number of recovered 𝑅 individuals for 𝛽𝑐 = 0.5 as a function of commuting ratio 𝜙ℎ for three instants of time 𝑡 = 50 (a), 𝑡 = 60 (b) and 𝑡 = 100 (c).
for Spain we received intermediate values of 𝜇𝑚 ∈ ⟨0.022, 0.038⟩. Our
results confirm expectations related to the impact of the size of most
exposed age groups (which are the biggest in France), on the mortality
rate expressed for the entire population.

Another interesting effect is the dependence of 𝜇𝑚 on the value
of contact rate 𝛽𝑐 : mortality rates are lower for bigger values of 𝛽𝑐 .
Since increasing value of 𝛽𝑐 accelerates the spread of the epidemic we
conclude that this relationship is the result of a faster reduction in the
8

number of the most vulnerable population age groups (60+), which
follows more intensively in the beginning of disease.

Finally, to test the impact of the gender (different mortality rates
for males and females) on total mortality rate 𝜇𝑚, we run some sim-
ulation for Spain with age–gender dependent mortalities provided by
Reinsurance Group of America (see Table 1). Received values of 𝜇𝑚 for
𝛽𝑐 ∈ {0.2, 0.3, 0.5, 0.7} where consistent (within the error limits) with
values presented in Fig. 11. We conclude that such result confirms our
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Fig. 11. Mortality ratio 𝜇𝑚 as a function of 𝛽𝑐 for Poland, France and Spain.

indings and to assess the value of total mortality ratio 𝜇𝑚 we can use
he averaged mortalities for different age groups (regardless of gender).

.4. Model calibration for the COVID-19 outbreak in Poland, France, and
pain

A common approach to quantify model parameters that cannot
9

asily be measured directly is to adjust the parameters until the model
output closely matches empirical data. This approach is known as
inverse modeling or model calibration (Schittkowski, 2002). We infer
the model parameters based on the data provided by European Centre
for Disease Prevention and Control (ECDC, 2020) about the evolution
of COVID-19. Fig. 12 shows the best fit of cumulative number of
infection 𝐸 + 𝐼 + 𝑅 we have been able to get for Poland (a), France
(b), and Spain (c). To estimate the values of the parameters 𝛽𝑐 , 𝜙ℎ,𝑠,𝑐
that should realistically reproduce the data, we use a best-fit approach:
(1) we started with initial values of contact rate and commuting ratios
reported in Table 3 for 𝑡 = 0, (2) then we checked if the simulation
results deviate from the data by more than 10% for the subsequent
time steps 𝑡; (3) if so, we tried to adjust the parameters 𝛽𝑐 , 𝜙ℎ,𝑐 to
achieve the assumed compliance. At the beginning of the calibration
process for each country, we set the initial configuration of infected
individuals, which was generated by a random selection of 5 cells with
the population above 50000 of inhabitants and moving in these cells a
group of 5 individuals to the infective state. The estimated values of
the model parameters are presented in Table 2.

For the very early stage of the epidemic (Fig. 12, 𝑡 ∈ (𝑡1, 𝑡2)) we
estimated the highest value of 𝛽𝑐 = 1.5 (which corresponds to the
eproduction number 𝑅0 ≈ 10.5) for Spain, while for France it is 𝛽𝑐 = 1.4

(𝑅0 = 9.5) and for Poland 𝛽𝑐 = 1.2 (𝑅0 = 8). Received values of 𝑅0 are
slightly overestimated in comparison with values of 𝑅0 ∈ (1.49, 6.49)
reported by Liu et al. (Liu, Gayle, Wilder-Smith, & Rocklov, 2020)
and Yuan et al. (Yuan, Li, G., & Lu, 2020). However, the effective

reproduction number values estimated for other 𝑆𝐸𝐼𝑅-type models are
Fig. 12. The number of reported COVID-19 cases (circles) and corresponding simulation results: mean cumulative number of infections 𝐸 + 𝐼 + 𝑅 (solid line) and the number of
infected 𝐸 + 𝐼 (dashed line) as a function of time for Poland (a), France (b), and Spain (c). Shaded areas represent reference ranges.
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Fig. 13. The number of reported COVID-19 cases (circles) and corresponding simulation results for different lengths of the exposed state 𝑎 = 5 (dotted line) and 𝑎 = 4 (solid line)
as a function of time for Poland (a), France (b), and Spain (c).
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higher than for different methods (e.g. statistical exponential Growth,
statistical maximum likelihood estimation) (Liu et al., 2020) and it may
be the result the significant impact of the initial configuration of the
system. For longer time 𝑡 we can observe significant reduction in the
contact rate 𝛽𝑐 and commuting rates 𝜙ℎ,𝑐 , first for Poland and Spain
(𝑡2 = 22) and then for France (𝑡 = 33). This is the result of introducing
prevention, travel limitation and quarantine. The imposed restrictions
were initially the largest in Poland (e.g. relatively the earliest closing
of schools after registering the first cases of COVID-19), but over time
France and Spain introduced stricter restrictions (especially in terms
of freedom of communication) which are maintained in a mild form
up today, while in Poland after about 60 days travel restrictions were
lifted. Such scenario is in general agreement with our findings (Fig. 12),
where initial value of 𝑅0 is reduced to ≈ 0.5 for France and Spain
(𝛽 = 0.10), and to ≈ 0.9 for Poland (𝛽 = 0.15). The number of infected
individuals for France and Spain after 𝑡 ≈ 50 and 𝑡 ≈ 42 (respectively)
clearly drops (Fig. 12(b)–(c), dashed lines) which corresponds to the
effective suppression of the epidemic, while for Poland the size of 𝐸+𝐼
compartment is not reduced in time (Fig. 12(a), dashed line), which can
be interpreted as a sign of lower effectiveness of the preventive action
taken (𝑅0 is close to 1).

Obtained simulations results show also a good agreement with the
reported COVID-19 data for active cases (𝐸 + 𝐼). Fig. 13 presents the
time history of the active cases for Poland (a), France (b), and Spain
(c) for the configuration from Table 3 (dotted line) and reported values
(circles) (WorldoMeters, 2020). The number of CA based active cases
10
(dotted lines) is close to the real values for all countries. Solid lines on
Fig. 13 show the numbers of active cases for reduced length of exposed
state 𝐸 and extended length of infective state 𝐼 (respectively, 𝑎 and
𝑏 parameters from Table 2). We made such modification since there
are many reports that the transmission of the virus may be presymp-
tomatic (Ferretti et al., 2020; Wei et al., 2020). We tried to check the
impact of such presymptomatic infections on the disease spreading by
changing the duration of 𝐸 and 𝐼 states. Received results indicate high
dependence on lengths of 𝐸 and 𝐼 states: with the reduction 𝑎 to 4
ays (extension 𝑏 to 8 days) the number of active cases (Fig. 13, solid
ines) increases rapidly and significantly exceeds the observed values
Fig. 13, circles). Better results we received for the previous model
onfiguration (Fig. 13, dotted lines) which confirms the typical duration
f the exposed (𝑎 = 5 days) and infective (𝑏 = 7 days) states.

. Conclusions and future research

We investigate numerically the 𝑆𝐸𝐼𝑅 epidemic model for the novel
oronavirus spreading. Our model uses two-dimensional cellular au-
omata. Numerical simulations were performed for three countries
ffected by the epidemic, i.e. Poland, France, and Spain. Although
he results obtained refer to the 𝑆𝐸𝐼𝑅 models described in earlier
ublications, the approach we propose includes new elements that
ncrease the scientific and practical value of the models used so far.

Since the empirical data show a strong relationship between the age
f infected people and the level of mortality, we introduced into the
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system probability of death which depends on the age structure of the
populations under analysis. Numerical results show varying mortality
rates for different countries, e.g. for France, where the fraction of
people in the most vulnerable age group 60+ is high, the mortality is
higher than that determined for Spain and Poland, where the group
of 60+ is smaller, which is in general agreement with the statistical

ortality values of COVID-19 (ECDC, 2020). Moreover, we examined
he relationship of the basic reproduction number and direct contact
ate between individuals. The results show that one per two days
ontact of infectious people leads to infection over three individuals.
he mobility of population also influences the speed of the epidemic
preading: increasing the population mobility leads to a growth in
he number of people infected, particularly in the long term and this
inding is consistent with the results of global metapopulation disease
ransmission model (Chinazzi et al., 2020). Our model also enables an
nalysis of the optimal response time in the early period of the epidemic
evelopment, which may be the basis for taking appropriate actions
s a function of the expected effects, described by the parameters of
uration of the epidemic and the level of disease incidence of citizens.
umerical simulations show that the implementation of prevention by

imiting the number of contacts in a population significantly reduces
he duration of the epidemic. However, even the earliest application
nd continuous maintenance of strong restrictions on people-to-people
ontacts does not shorten the epidemic duration below 120 days. Our
tudy also confirms that to control the pandemic it might not be
nough to limit the mobility of individuals (𝜙ℎ,𝑠,𝑐) and that contact

rates (𝛽𝑐) reduction interventions will provide the greatest benefit for
mitigating the epidemic (Chinazzi et al., 2020; Wei et al., 2020).
Moreover, the calibration of our model on real epidemic data from
Poland, France, and Spain allows us to reconstruct the real course of the
epidemic in these countries, and the obtained reproduction ratio values
at the beginning and current stage of the epidemic (𝑅𝑡=0

0 ∈ (8, 10.5)
and 𝑅𝑡≈100

0 ∈ (0.5, 1.0)) are qualitatively consistent with the reported
ata (Yuan et al., 2020).

We conclude that because CA based numerical framework repro-
uces several observed features of coronavirus disease, it can be a
seful tool to study the mechanism of the COVID-19 epidemic spread
nd it may create a broad spectrum of new useful data. In every aspect
f social life our framework can be used to model the impact of the
pidemic on the social and economic environment, where the number
f people available on the market or excluded from participating in its
rocesses is important.

Although the model presented has some limitations, we believe that
t may constitute an area for future research to be carried out by other
uthors. We plan to focus future work on the applicability of the CA
odel in modeling different preventing scenarios and in applying the

ame in social and economic processes.
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