Skip to main content
. 2020 Sep 18;10(9):1871. doi: 10.3390/nano10091871

Table 2.

Photocurrent densities of ternary heterostructures.

Photocatalytic Material Methods Morphology Electrolyte Potential Irradiation Photocurrent
Density
Ref
WO3–Pt–CdS Combination of wet-chemical, photodeposition and hydrothermal techniques Hollow
microspheres composed of small crystallites
0.5 M
Na2SO4
0.5 V vs. Ag/AgCl
(1.82 V vs. RHE)
Vis light 0.16 μA/cm2 [192]
SnO2/WO3/BiVO4 Combination of electron beam deposition and metal organic decomposition technique Planar film 0.5-M Na2SO3 1.23 vs. RHE 100 mW/cm2 2.01 mA/cm2 [193]
WO3/C3N 4//CoOx Combination of a hydrothermal method with wet impregnation film 1.23 V vs. Ag/AgCl
(1.8 V vs. RHE)
100 mW/cm2 5.76 mA/cm2 [170]
CuWO4−WO3 electrodeposition film 0.1-M KH2PO4 0.618 V vs. Ag/AgCl
(1.23 vs. RHE)
100 mW/cm2 0.3 mA/cm2 [194]
WO3/(Er, W):BiVO4 spray coating monoclinic clinobisvanite structure 0.1-M K2HPO4 1.23 V vs. RHE 100 mW/cm2 4.1 ± 0.19 mA cm−2 [195]
WO3/(Er, W):BiVO4 spray coating monoclinic clinobisvanite structure 0.1-M K2HPO4 2.3 V vs. RHE 100 mW/cm2 7.2 ± 0.39 mA cm−2 [195]
TiO2/WO3/BiVO4 hydrothermal brochosomes-like 0.5-M Na2SO4 0.35 V vs. RHE 100 mW/cm2 3.13 mA cm−2 [196]
WO3/
Fe2O3/Co(OH)
electrospray deposition worm-like nanobars 0.1-M NaOH 1.23 vs. RHE 0.62 mA cm−2 [197]
Ag-functionalized CuWO4/WO3 electrophoretic deposition thin film potassium phosphate buffer solution 0.62 V vs. Ag/AgCl
(1.23 V vs. RHE)
0.205 mA cm−2 [198]
CuWO4/BiVO4 with Co-Pi drop-casting and
thermal annealing method
nanoflakes 1.0 M of Na2SO4 with 0.1 M of sodium phosphate
buffer (pH = 7)
1.23 V vs. RHE 100 mW/cm2 2.25 mA cm−2 [199]
BiVO4/WO3/SnO2 connected with perovskite solar cell tandem device Spin-coating triple-layer planar film pH 7 phosphate buffer electrolyte 1.23 V vs. RHE 100 mW/cm2 3.1 mA/cm2 [26]
ZnWO4/WO3
Piezo-dispensing Spot Arrays 0.1-M Na2SO4 at pH 7 0.7 V vs. Ag/AgCl
(1.31 V vs. RHE)
0.75 mA/cm2 [200]
b-Cu2V2O7/WO3 Seeded-growth approach 0.1-M sodium borate buffer (pH 8.2) containing 0.1-M Na2SO3 1.23 V vs. RHE 100 mW/cm2 0.45 mA cm−2 [201]
CaMn2O4/WO3 Spin-coating Thin film 0.5-M Na2SO4 solution (pH 6) 1.09 V vs. RHE 1.5 × 10−3 mA cm−2 [202]
Pt/WO3/Ag Hydrothermal method, chemical bath, photoassisted electrodeposition Nanorods 100 mW/cm2 1.13
mA/cm2
[153]
WO3/CdS/NiOOH hydrothermal method, successive ionic layer adsorption and reaction, photo-assisted electrodeposition Nanorods d 0.2-M Na2SO4-0.1-M Na2SO3 1.23 V vs. RHE 1.5–2 mA/cm2 [203]
ZnWO4/WO3 hydrothermal Nanorods 0.5 M
Na2SO4
1.23 V vs. RHE 100 mW/cm2 1.87
mA cm−2
[204]
WO3/BiVO4/ZnO drop-casting method, atomic layer deposition Nanosheets 0.5-M Na2SO4 1.23 V vs. RHE 100 mW/cm2 2.5–3.00 mA cm−2 [205]
Au-surface/BiVO4/WO3/Au-bottom hydrothermal, sol–gel spin-coated, Nanospheres 0.5
M Na2SO4
1.23 V vs. RHE 1.31 mA/cm2 [63]
WO3/C@CoO hydrothermal process
and immersion method
Octopus tentacles-like 1.0-M KOH 55 mV (vs. RHE) 10 mA cm−2 [206]
WO3@ZnWO4@ZnO layer deposition technique and hydrothermal
process
nanosheets mixed
aqueous solution of 0.35-M Na2S and 0.25-M NaSO3 (pH = 13.4)
1.23 V vs.
RHE
100 mW/cm2 ~1.57 mA/cm2 [207]
WO3/rGO/Sb2S3 chemical bath deposition nanoplates 0.5-M Na2SO4 (pH~7) 1.23 V vs. RHE 1.20 mA/cm2 [208]
Cu2O/CuO/WO3 Electrodeposition, spin-coating Thin film 0 V vs. RHE −1.9 mA/cm2 [209]
WO3/BiVO4/Co-Pi Electrodeposition composite inverse opals 0.5-M Na2SO4 1.4 V
versus Ag/AgCl
(0.67 V vs. RHE)
100 mW cm−2 4.5 mA cm−2 [210]
WO3/BiVO4/TiO2 Spin-coating, wet chemistry platelike 0.1-M Na2SO4 1.23 V vs. RHE 100 mW/cm2 ~3.9 mA/cm2 [211]
TiO2/WO3/Pt Electrospinning technique fibers 0.2-M Na2SO4 15–20×10−3 mA/cm2 [212]
TiO2-TiCl4-WO3 Hydrothermal
method +
Electrodeposition
nanorods KOH 1.23 V vs
NHE
100 mW/cm2 3.86 mW/cm2 [213]