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ABSTRACT: Transition-metal compounds/carbon hybrids with high electrocatalytic
capability possess attractive potential as a counter electrode (CE) for dye-sensitized
solar cells (DSSCs). However, the simple structure and agglomeration always result in
poor performance. Herein, cobalt selenides confined in hollow N-doped porous
carbon interconnected by carbon nanotubes (CNTs) with cobalt selenides
encapsulated inside (denoted as CoSe@NPC/CoSe@CNTs) are formed through
in situ pyrolysis and selenization process. In this strategy, ZIF-67 is used as the
precursor, structure inducer, and carbon source for the orientated growth of CNTs.
Such a rational architecture provides a stable interconnected conductive network and
a hierarchically porous structure, with more available active sites and a shortened
pathway for charge transport, synergistically enhancing the electrocatalytic activity.
Specifically, the DSSCs based on CoSe@NPC/CoSe@CNTs demonstrate a high
efficiency of 7.36%, even superior to that of Pt (7.16%). Furthermore, the CoSe@
NPC/CoSe@CNT CE also demonstrates a good long-term stability in the iodine-
based electrolyte.

1. INTRODUCTION

The rational use of solar energy resources is of great
significance to address the issues of energy shortage and
greenhouse effect. Dye-sensitized solar cells (DSSCs) have
sparked extensive attention around the world since Graẗzel
sharply increased the power conversion efficiency (PCE),
primarily owing to its easy manufacturing process, low cost,
and environmental friendliness.1,2 The counter electrode (CE),
as an important component of a standard DSSC device, is
responsible for collecting electrons from the outer circuit and
catalyzing the conversion of triiodide to iodide in an organic
solvent.3−5 At present, a platinum-plated conductive glass is
regarded as the state-of-the-art CE for DSSCs in virtue of high
conductivity and excellent electrocatalytic ability of noble
metal Pt.6 Nevertheless, the relatively expensive price and
scarcity of resources of Pt, as well as its poor long-term
duration in redox electrolytes (I3

−/I−), have become one of the
main bottlenecks for large-scale commercial application of
DSSCs.7−9 Hence, a continuous scientific endeavor has been
devoted to developing effective and inexpensive Pt-alternative
materials in recent decades.8−12

Among the studied precious metal-free alternatives,
transition-metal compounds/nitrogen-doped carbon materials
have proven their great promise as electrocatalysts for iodide
reduction reaction (IRR).13−18 Very recently, the zeolitic
imidazolate framework-67 (denoted as ZIF-67), made up of

cobalt ions as the coordination center and nitrogen-rich 2-
metholinidazolate as the bridging organic ligand, has been
extensively developed as a novel self-sacrificed template/
precursor for fabricating transition-metal compounds/nitro-
gen-doped carbon nanostructures.19,20 These ZIF-derived
materials generally show exceptionally large pore volumes,
tunability of structures, and adjustable pore sizes, which are
particularly beneficial for charge and mass transfer during their
electrocatalytic processes.21,22 However, these materials are
mostly subjected to several disadvantages, such as simple
structures, inefficient electron transfer, and unexposed deeply
buried catalytic active sites owing to spontaneous agglomer-
ation of cobalt-based compounds during pyrolysis, which
severely impeded their further applications.23,24 Previous
studies demonstrated that the surface morphology and
microstructure play vital roles in improving electrical
conductivity, electrocatalytic activity, and stability.25−27 There-
fore, the rational synthesis of multilevel structures from ZIFs
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by a general and efficient strategy is required to make a
breakthrough.
Herein, we selected ZIF-67 as the precursor as well as the

carbon source to construct a hollow hierarchical structure of
CoSe@NPC/CoSe@CNTs by a one-step method. In this
composite, hollow CoSe@NPC polyhedra possessed a
hierarchical porous structure and an interior void, contributing
to fast mass transport and utilization efficiency of active sites.
In addition, CoSe@NPC was interconnected to form a stable
conductive network by the in situ formed carbon nanotubes
(CNTs), at the end point of which zero-dimensional CoSe
nanoparticles were encapsulated in graphitic layers to form a
synapse-like core−shell structure, which could maximize the
effective exposure of catalytic sites, and ensure the structural
durability. The synergistic effects of the above factors in
CoSe@NPC/CoSe@CNTs ensure its excellent electrocatalytic
properties toward triiodide reduction. When applied in DSSCs,
CoSe@NPC/CoSe@CNTs could outperform the noble Pt
with an efficiency of 7.36% and deliver a good long-term
stability in the I3

−/I− electrolyte.

2. RESULTS AND DISCUSSION

X-ray diffraction (XRD) measurements were implemented to
identify the phase composition and crystalline nature of as-
prepared samples. As shown in Figure 1a, the powder XRD
pattern of purple product matched well with the simulated of
ZIF-67, especially in the range of 5−40°, indicating its good
phase purity and crystallinity.28 Moreover, the sharp diffraction
peaks shown in Figure 1b were in agreement with the
characteristic peaks of hexagonal freboldite CoSe (JCPDS no.

89-2004), and no other peaks were detected except the peak of
graphite, demonstrating a complete phase transformation
reaction to CoSe during the process of selenization.29,30 The
peak intensity was relatively large, implying its significant
crystallinity. In addition, there was a broad diffraction peak
near 26°, corresponded to the (002) plane of graphitic carbon,
which was formed by carbonization of organic skeleton during
the high-temperature pyrolysis.
Raman spectra were then obtained to characterize the

degree of disorder and graphitization in carbonaceous
materials by the intensity ratio of D and G bands (ID/IG).
As shown in Figure 1c, the as-prepared three samples, CoSe@
NPC/CoSe@CNTs, CoSe@NPC, and NPC/CNTs, displayed
two distinct broader peaks at around 1335 and 1590 cm−1,
which was deemed to describe the disordered graphitic carbon
(D band) and sp2-bonded carbon (G band), respectively.
Compared with CoSe@NPC (ID/IG = 1.08), there was a slight
decrease in the disorder degree of CoSe@NPC/CoSe@CNTs
(ID/IG = 1.06). It was shown that the graphitization degree of
in situ formed CNTs was higher than that of NPC, which
might be on account of the higher well-organized arrangement
of carbon atoms in CNTs.31,32 Further compared with NPC/
CNTs (ID/IG = 1.02), the introduction of CoSe in CoSe@
NPC/CoSe@CNTs increased the value of ID/IG, which might
be the presence of more non-sp2-bonded domain resulting
from the defects near the interface between CoSe particles and
the coated carbon layer. Other peaks at 666, 506, 460, and 184
cm−1, presented in both spectra, were assigned to the
crystalline structure of cobalt selenide.33

Figure 1. (a) XRD patterns of the as-obtained pure ZIF-67 and its theoretically simulated pattern, (b) XRD patterns of CoSe@NPC/CoSe@CNTs
and the standard card of CoSe, and (c) Raman spectra of CoSe@NPC/CoSe@CNTs, CoSe@NPC, and NPC/CNTs.

Figure 2. (a) SEM image of ZIF-67 polyhedrons, (b,c) SEM images, (d) TEM image, and (e,f) HRTEM images (the inset shows the
corresponding SAED pattern and the diffraction fringe pattern individually) of CoSe@NPC/CoSe@CNTs.
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The morphology and microstructure of the as-prepared
samples were characterized by field-emission scanning electron
microscopy (FESEM) and transmission electron microscopy
(TEM). As displayed in Figure 2a, the prism crystal ZIF-67
exhibited a smooth surface and monodispersed particle
distribution with an average size of 300 nm, in agreement
with previous reports.34 After thermal treatment, ZIF-67 was
transformed into CoSe@NPC/CoSe@CNTs with the general
oriented growth of a broad set of CNTs on the primary plane,
and the size and polyhedral shape were well preserved, as
confirmed by Figure 2b. Meanwhile, Figure 2c demonstrates
the spatial interconnected conductive network, where the
cross-linked CNTs bridged the adjacent ZIF-67-derived
particles. Thus, it prevented the individual particle from
agglomeration. The TEM images (Figure 2d) further show that
the average particle size of CoSe@NPC was about 500 nm
(Figure 2a,b), and CoSe nanoparticles were embedded in the
hollow N-doped porous carbon skeleton. These thin CNTs
could also be observed in Figure 2e, with outer diameters
ranging from 10 to 20 nm and lengths ranging from 100 to 150
nm. Interestingly, the ultrafine CoSe nanocrystals of ca. 15 nm
were encapsulated firmly in graphitic layers within the apexes
of CNT, which was similar to the synapse structure and could
adequately expose the catalytic active sites to the electrolyte.
Typical high-resolution TEM (HRTEM) (Figure 2f) images

provided direct evidence that the multiwalled CNTs were
crystalline and composed of graphitic carbon layers with a clear
interlayer spacing of 0.34 nm, corresponded to the C (002)

lattice plane. Figure 2f also reveals a clear lattice distance of
0.269 nm corresponded to the (101) lattice plane of CoSe,
which was in line with the XRD result. It was noteworthy that
the graphitic carbon layers in the walls were not perfectly
parallel to the axial direction of the CNTs because of nitrogen
doping, suggesting more defects and edges in the CNTs, which
would be conducive to the enhanced electrocatalytic
property.35 The selected area electron diffraction (SAED)
pattern inset in Figure 2e also exhibits different rings assigned
to the (101), (110), and (102) diffraction of CoSe and the
(002) diffraction of carbon.36 Moreover, thermogravimetric
analysis (TGA) was carried out in air atmosphere to estimate
the CoSe contents in the sample of CoSe@NPC/CoSe@
CNTs. According to the calculation method reported
previously,37 the CoSe contents in the sample of CoSe@
NPC/CoSe@CNTs is 71%.
X-ray photoelectron spectroscopy (XPS) was carried out to

analyze the near-surface elemental compositions and chemical
states of CoSe@NPC/CoSe@CNTs. The XPS survey
spectrum shown in Figure 3a indicated the presence of Co,
O, N, C, and Se elements, in which the appearance of oxygen
might be due to the exposure and unavoidable surface
adsorption in the air atmosphere.38 The regional C 1s
spectrum in Figure S3 was deconvoluted into three different
peaks located at 284.5, 285.3, and 288.9 eV, which were
corresponded to the CO, C−C−O, and sp2-bonded C−C−
C functional groups, respectively. The N 1s spectrum (Figure
3b) could be deconvoluted into graphitic N located at 401.9

Figure 3. (a) XPS survey spectra and high-resolution XPS survey spectra of (b) N 1s and (c) Co 2p and (d) Se 3d of CoSe@NPC/CoSe@CNTs.
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eV, pyrrolic N at 400.4 eV, Co-coordinated N (Co-Nx) at
398.7 eV, and pyridinic N at 398.3 eV, respectively. The N-
doping can not only directly bond with carbon and metal
atoms but also enrich the conjugated electrons and facilitate
the electronic conductivity, enabling enhancement in the
electrochemical performance.39 Of particular note, among the
four types of N, the pyridinic N and Co-Nx were recognized as
the highly active sites, which generally played a key role in IRR
electrocatalytic activity.40−42 Interestingly, the content of these
two types of N was 42.8%, which made CoSe@NPC/CoSe@
CNT composites excellent for catalyzing the reduction of
triiodide. The high-resolution spectrum of Co 2p (as presented
in Figure 3c) exhibited two distinct spin−orbit doublets, which
was further deconvoluted into Co2+ oxidation state located at
the binding energies of 790.8 and 795.9 eV and Co3+ oxidation
state at 778.9 and 793.1 eV.43 The two binding energies
located at 54.1 and 54.9 eV of the Se 3d spectrum (Figure 3d)
corresponded to Se 3d5/2 and Se 3d3/2, respectively. The peaks
in the range of 58−64 eV were assigned to the Co 3p energy
level and Se−O bonding at the surface of composites owing to
the partial surface exposure in air.44

The surface area and pore size distribution of CoSe@NPC/
CoSe@CNTs and CoSe@NPC were then identified by the N2

absorption−desorption isotherm at 77 K. As shown in Figure
4a, these two N2 adsorption and desorption isotherms
displayed typical IV isotherms with type H3 hysteresis loops,
implying the presence of mesoporous structures.45 Notably,
compared with the Brunauer−Emmett−Teller (BET) surface
areas of CoSe@NPC (219.56 m2 g−1), a distinct reduction of
that of CoSe@NPC/CoSe@CNTs (95.28 m2 g−1) was found,
owing to the consumption of carbon sources by in situ formed
CNTs at the high temperature, which influenced the growth of
porous structure of NPC. Meanwhile, the results also implied
the abundant pores of NPC compared with CNTs. The pores
of CoSe@NPC/CoSe@CNTs, fitted by the Barrett−Joyner−
Halenda (BJH) method and based on the desorption branch,
were mainly distributed around the size of 2−30 nm, showing
a hierarchical porosity. In addition, the number of pores
around 70−80 nm of CoSe@NPC were more than that of
CoSe@NPC/CoSe@CNTs, which might be a part of CoSe
nanoparticles wrapped by CNTs, rather than inset onto NPC,
giving rise to the decrease of carbon pores of NPC of CoSe@
NPC/CoSe@CNTs. Such a hierarchically porous structure
and suitable pore size distribution could accelerate the charge

transfer at the electrode/electrolyte interface and shorten the
diffusion pathways for electrolytes.
To investigate the formation mechanism of CoSe@NPC/

CoSe@CNTs, the ZIF-67 precursor were put into the furnace
to undergo the same heating program under argon without Se
powder and H2, respectively. Figure S4a,b displays the XRD
pattern and SEM images of the intermediates. According to the
XRD pattern, metallic Co was obtained without the Se powder.
The SEM images illustrated that Co@CNT components had
been constructed before selenization, while CoSe@NPC could
be obtained without H2 as shown in Figure S5a−c. The CoSe
nanoparticles were also uniformly encapsulated in NPC. On
the basis of these observations, the possible formation
mechanism was discussed as follows and is schematically
provided in Scheme 1. During the pyrolysis process, the

coordination bonds between metal ions and organic ligands in
the ZIF-67 break first, and then the Co ions were reduced to
metallic Co clusters/nanoparticles by the reducing gases. In
addition, the organic ligands suffered degeneration and
carbonization to form the N-doped porous carbon matrices,
and then carbon atoms were further catalyzed into CNTs by
the metallic Co. Because of the preferential catalysis of metallic
Co with proper size on the surface, the ultrafine CNTs grew
from inside to outside, leading to hollow interior voids. As the
reaction progressed, the metallic Co reacted with Se source
and integrated to form the highly crystalline freboldite CoSe
nanoparticles. In the whole process, the ZIF-67 dodecahedra as
a single precursor and carbon sources oriented the in situ
growth of CNTs and were eventually converted into
morphology-preserved CoSe@NPC/CoSe@CNTs.

Figure 4. (a) N2 adsorption−desorption isotherms and (b) pore size distribution curve of CoSe@NPC/CoSe@CNTs and CoSe@NPC.

Scheme 1. Schematic Illustration for the Formation of
CoSe@NPC/CoSe@CNTs
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On account of energy conservation and facial synthesis in
the preparation process, controllable morphology, and degree
of crystallinity of the final products, we have designed two
independent heating programs in a multisection temperature-
programmed furnace (MSTPE) as delineated below: section I,
part of the quartz tube inside which precursor ZIF-67 stored in
a quartz boat was placed, heated from room temperature to
570 °C with a ramp rate of 10 °C min−1, and maintained for
180 min for use in the adequate carbonization of ZIF-67. The
selenization and crystallization temperature of the sample
prepared by carbonization of ZIF-67 in section I can influence
the crystal structure, obtain a thermodynamically stable crystal
phase, and increase the conductivity of the as-synthesized
samples. When 600 °C, rather than 650 °C, was chosen as the
final plateau temperature of section I, the XRD pattern of the
as-prepared sample (shown in Figure S6) indicated the
existence of hexagonal CoSe (JCPDS no. 89-2004), as well
as orthorhombic CoSe2 (JCPDS no. 53-0449) and cubic Co
(JCPDS 88-2325). (The corresponding heating program is
displayed in Figure S2.) Accordingly, 650 °C was suitable to
gain the phase of CoSe with high crystallinity during the
process of selenization and crystallization. In the end, section I

was heated with a heating rate of 10 °C min−1 from 570 to 650
°C and maintained for 180 min. Meanwhile, section II, another
part of the quartz tube and placed with Se powder, was heated
from room temperature to 300 °C at a low heating rate of 2 °C
min−1 and maintained for 53 min to prevent the evaporation
loss of Se powder as at the same time the ZIF-67 in section I
was under high-temperature carbonization. Universally, the
evaporation rate of Se sources is vital for the complete
chemical transformation of metallic cobalt to CoSe. For
controlling the gasification rate of Se powder, the following
rate of 10 °C min−1 from 300 to 400 °C and the holding time
of 60 min were then adopted. (The heating program of
MSTPE is displayed in Figure S1.)
In this work, electrochemical impedance spectroscopy (EIS)

was first performed to analyze the details about the interfacial
charge-transfer process. Figure 5b displays the Nyquist plots
obtained by using symmetrical sandwich-type cells composed
of two identical CEs, and the relevant impedance parameters
obtained by fitting the Nyquist plots with the Z-view software
are listed in Table 1. As illustrated in the equivalent circuit
diagram inserted in Figure 5b, the left high-frequency intercept
on the real axis is series resistance (Rs), associated with the

Figure 5. (a) CV curves, (b) Nyquist plots, and (c) Tafel polarization curves of CoSe@NPC/CoSe@CNTs, Pt, CoSe@NPC, and NPC/CNTs
samples and (d) J−V curves of DSSCs with the above different CEs.

Table 1. Detailed Photovoltaic Parameters and EIS Parameters of As-Prepared CEs

Rs (Ω) Rct (Ω) ZN (Ω) Voc (V) Jsc (mA cm−2) FF PCE (%)

CoSe@NPC/CoSe@CNTs 20.60 3.56 4.16 0.701 15.90 0.66 7.39
Pt 20.89 4.94 3.61 0.704 14.86 0.68 7.16
CoSe@NPC 22.67 14.90 12.52 0.709 13.25 0.63 5.89
NPC/CNTs 21.73 64.25 41.29 0.702 11.93 0.54 4.54
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electrical conductivity of CEs. The order of Rs values was
NPC/CNTs < CoSe@NPC/CoSe@CNTs < Pt < CoSe@
NPC, which were attributed to the low electric resistance and
better ohmic contact of interconnected NPC/CNTs. The left
high-frequency semicircle represents charger-transfer resistance
(Rct), reversely related to electrocatalytic activity, while the
right one at the low-frequency region represents Nernst
diffusion impedance (ZN), stemming from the mass transport
limitation due to the diffusion of the I3

−/I− redox shuttle.
Apparently, the Rct values increased in the order of CoSe@
NPC/CoSe@CNTs (3.56 Ω) < Pt (4.94 Ω) < CoSe@NPC
(14.90 Ω) < NPC/CNTs (64.25 Ω). The superior intrinsic
catalytic activity of CoSe could be testified by the fact that the
CoSe@NPC CE showed a much smaller Rct in comparison to
that of NPC/CNTs. It was thus concluded that the CoSe@
NPC/CoSe@CNT CE had a remarkable electrocatalytic
ability for I3

− reduction. Such a quite low Rct was attributed
to the unique structural advantage of NPC/CNT-encapsulated
CoSe nanoparticles, hence facilitating electron transfer from
carbon skeletons directionality to the highly active metal
centers. Moreover, the ZN of CoSe@NPC/CoSe@CNT CE
(4.16 Ω) was also lower than that of the others, revealing a
higher diffusion coefficient of the porous carbon skeletons for
I3
−.
Tafel polarization curve measurements were then carried out

on the same symmetric cells used in EIS experiments, and the
corresponding plots are shown in Figure 5c. The limiting
diffusion current density (Jlim) and the exchange current
density (J0) obtained from Tafel curves have a positive
correlation with the electrocatalytic activity of CEs and the
diffusion characteristics of redox couple, respectively. The
relationship between the conclusions of the EIS and Tafel
results can be demonstrated by eq J0 = RT/nFRct, where R is
the gas constant, T is the absolute temperature (298 K), n is
the number of electrons involved in the triiodide reduction,
and F is Faraday’s constant.46 As Figure 5c depicts, the values
of J0 decreased in the order of CoSe@NPC/CoSe@CNTs > Pt
> CoSe@NPC > NPC/CNTs. Similarly, the Jlim values were
also in the decreasing sequence of CoSe@NPC/CoSe@CNTs
> Pt > CoSe@NPC > NPC/CNTs. The trend of J0 and Jlim
matched well with the results of EIS experiments and further
demonstrated the highest catalytic activity and exceptional

diffusion property for triiodide reduction of hierarchical
structural CoSe@NPC/CoSe@CNT CE.
Cyclic voltammetry (CV) measurements were conducted to

further elucidate the catalytic activity and electrochemical
behavior of as-prepared CEs. As presented in Figure 5a, two
distinct pairs of oxidation/reduction peaks were unambigu-
ously observed for all electrodes, with the left pair for the redox
reaction of I3

− + 2e− → 3I− (Red-1/Ox-1) and the right one
for the redox reaction of 3I2 + 2e− → 2I3

− (Red-2/Ox-2). In
DSSCs, the cathodic peak current density of Red-1 and the
peak-to-peak separation (Epp) between Red-1 and Ox-1 are
two crucial parameters, which are interrelated to the reduction
velocity and the reversibility of the redox reaction, respectively.
The CoSe@NPC/CoSe@CNT CE delivered the highest JRed‑1
and smallest Epp, even superior to that of Pt, which confirmed
the faster reaction kinetics in catalyzing the triiodide reduction,
consistent with the results of EIS analysis. The better
electrocatalytic activity arouse from the appropriate N doping
and confined CoSe nanoparticles in NPC/CNTs, which could
increase the densities of states near the Fermi level and reduce
the work function.32

The ---photocurrent density−voltage (J−V) curves of the
DSSCs based on different CEs were obtained under the
standard AM 1.5 irradiation (100 mW cm−2), and their
detailed parameters are also recorded in Table 1. As for the
NPC/CNT CE treated with acid, a decrease in performance
was observed, with the corresponding values of Voc (0.702 V),
Jsc (11.93 mA cm−2), FF (0.54), and a lower conversion
efficiency (4.54%), which further demonstrated that CoSe was
the main active constituent. It is noteworthy that the DSSCs
based on CoSe@NPC/CoSe@CNT CE possessed the best
photovoltaic performance with a Jsc of 15.9 mA cm−2, Voc of
0.701, and FF of 0.66 and then gave the highest photovoltaic
conversion efficiency of 7.39%, outperforming that of Pt
(7.16%). The improved efficiency could be attributed to
synergistic effects between ideal components and their
hierarchical structure. The abundant pore structures and
interior hollow voids of CoSe@NPC acted as an electrolyte
reservoir promoting mass transport and accessibility of
electrochemical active sites, while the in situ growth of
CNTs onto the CoSe@NPC provided sufficient electron-
transfer paths. More importantly, the CoSe nanoparticles
encapsulated at the end point of CNTs, as well as the one

Figure 6. (a) CV curves of CoSe@NPC/CoSe@CNT CE at different scan rates (from inner to outer: 50, 70, 90, and 120 mV s−1, respectively) and
(b) CV curves of CoSe@NPC/CoSe@CNT CE obtained for successive 50 cycles at a scan rate of 50 mV s−1. The inset in (a) illustrated the
relationship between the redox peak currents and the square root of the scan rate.
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confined onto the NPC skeleton, jointly contributed to the
increased exposure of active centers, thus achieving a more
efficient catalytic reduction process.
The stability of CoSe@NPC/CoSe@CNT CE was also

tested by CV measurement. Figure 6a shows the CV curves of
CoSe@NPC/CoSe@CNT CE at different scan rates. It could
be found that the redox peak current densities gradually
increased with the increase of scan rate from 50 to 120 mV s−1.
Moreover, a good linear relationship between the peak current
density and the square root of the scan rate is observed in
Figure 6a. It could thus be deduced that the redox reduction
on the surface of CoSe@NPC/CoSe@CNT CE was
dominated by the ionic diffusion in the electrolyte, and the
redox couple had no specific effect on CoSe@NPC/CoSe@
CNT CE. The consecutive CV measurement at a scan rate of
50 mV s−1 was also presented for CoSe@NPC/CoSe@CNT
CE, as shown in Figure 6b. No obvious decline for peak
current densities or peak shifts was observed after 50 cycles of
scan, which indicated the excellent electrochemical stability in
the I3

−/I− electrolyte. These negligible changes of redox peaks
also implied that the CoSe@NPC/CoSe@CNT electrode film
had tight adhesion on a fluorine-doped tin oxide (FTO)-
conductive glass substrate. The outstanding electrochemical
stability along with exceptional photoelectric conversion
efficiency demonstrated that CoSe@NPC/CoSe@CNTs was
a reliable CE material to replace noble Pt in DSSCs.

3. CONCLUSIONS

In summary, we reported a facile and energy-conserving
strategy for the direct formation of CoSe@NPC/CoSe@CNTs
by in situ pyrolysis−selenization of ZIF-67. This unique
architecture possessed a plenty of advantages, including highly
conductive networks, a N-doping porous carbon skeleton,
abundant hierarchical porous structure, and more available
active sites. Benefitting from the synergistic effect, the CoSe@
NPC/CoSe@CNT composites demonstrated excellent elec-
trocatalytic performance in DSSCs, with a high efficiency of
7.36%, outperforming the noble Pt. It can be expected that
such an energy-efficient route could be extended to evaluate
the electrochemical properties by designing and optimizing the
hierarchical structure of ZIF-derived materials and obtain
potential CE materials for high-performance DSSCs.

4. EXPERIMENTAL SECTION

4.1. Materials. All chemical reagents and solvents
employed were purchased commercially and used as received
without further purification. The substrates of N719 dye (cis-
di(isothiocyanato)-bis-(2,20-bipyridyl-4,40-dicarboxylato)
ruthenium(II) bis-tetrabutyl ammonium) and TiO2 pastes
(NJU-SR and NJU-SCL) were purchased from Dyesol
(Australia) and Kunshan Sunlaite New Energy Co., Ltd
(Nanjing, China), respectively.
4.2. Synthesis of ZIF-67 Nanocrystals. ZIF-67 nano-

crystals were prepared based on a previously reported method
with some modifications.47

Cobalt nitrate hexahydrate (1.445 g, Co(NO3)2·6H2O, 5
mmol) and 1.642 g of 2-methylimidazole (2-mIm, 20 mmol)
were dissolved in 100 mL of methanol. Then, a 2-mIm solution
was quickly poured into the former cobalt salt solution under
vigorous stirring for 30 min at room temperature. After that,
the resulting purple mixture was added inside an oven of a
constant temperature of 25 °C to fully crystallize for 4 h.

Finally, ZIF-67 was collected by centrifugation, washed with
methanol several times, and dried in vacuum at 60 °C
overnight.

4.3. Synthesis of Hierarchical Structural CoSe@NPC/
CoSe@CNT Nanocomposites. The prepared 100 mg ZIF-67
and an appropriate amount of Se powder were placed in two
individual quartz boats in a flow-through tube furnace. Then,
the two boats were inserted into an MSTPE in which the
porcelain containing Se powder was placed at the upstream
side of the furnace. A reducing atmosphere of H2/Ar (H2, 10
vol %) with a total gas flow rate of 100 sccm was then used and
the detained heating program is depicted in Figure S1. After
cooling down to room temperature naturally, the as-produced
black product was CoSe@NPC/CoSe@CNTs. Additionally,
CoSe@NPC and NPC/CNTs were also produced as the
control samples. CoSe@NPC was obtained by a similar
process without the reducing gas H2. Specifically, NPC/CNTs
were synthesized by two steps: (i) the first step was similar to
the previous procedure without Se powder. (ii) Afterward, the
resultant materials were immersed into a 2 M H2SO4 aqueous
solution with the protection of inert gas to remove exposed
cobalt metal and finally NPC/CNTs were obtained after
rinsing with ethanol/water and drying in a vacuum oven at 60
°C.

4.4. Fabrication of CEs for DSSCs. Briefly, after sufficient
cleaning of conductive FTO glasses to remove the surface
impurities, the treated FTO glasses were pretreated with 50
mM TiCl4 at 70 °C for 30 min. Then, a commercial TiO2 paste
with a size of 20 nm and another TiO2 with a size of 400 nm
were cast on the FTO substrate using a doctor-blade
technique. These prepared films were then heated to 450
and 500 °C for 30 min, respectively, in an air atmosphere using
a muffle furnace. After cooling to room temperature, these
films was immersed in 50 mM TiCl4 aqueous solution for 30
min at 70 °C, followed by heating to 500 °C in an air
atmosphere. After cooling to 120 °C or so, the resulting TiO2
films were transferred into the dispersed N719 dye solution
(0.5 mM) in a mixture of tert-butyl alcohol and acetonitrile
(1:1 vol ratio) for 1 day to thoroughly adsorb and obtain dye-
sensitized photoanode.
Typical sandwich-like DSSCs were assembled with an

above-prepared sensitized photoanode, an acetonitrile electro-
lyte coupled with different CEs fabricated. A 30 μm thick
Surlyn film separated the photoanode and the CE. The
working electrolyte, containing 0.6 M 1-methyl-3-propylimi-
dazoliumiodide (DMPII), 0.03 M I2, 0.06 M LiI, and 0.5 M 4-
tert-butyl putyl pyridine in an acetonitrile organic solvent, was
injected rapidly into the gap between the two electrodes and
clamped together with binder clips. As a benchmark, a Pt CE
was prepared by thermally decomposing 20 μL of 20 mM
H2PtCl6 ethanol solvent onto conductive FTO glass at 400 °C
for 15 min in the air atmosphere.

4.5. Characterization. The XRD spectra of the as-made
samples were collected on a Rigaku Ultima IV X-ray
diffractometer with a Cu Kα radiation (λ = 1.5418 c5)
operated at 40 kV and 40 mA in a scanning range of 10−90°
(2θ). The morphologies of products were characterized by
FESEM (Hitachi S4800) and HRTEM (JSM-2100, JEOL,
Japan). XPS (PHI Quantera-II SXM) was carried out to
analyze bonding configurations. N2 adsorption−desorption
isotherms were analyzed at 77 K with a Micromeritics ASAP
2020, and the analyses of surface area and pore size were fitted
by BET and BJH (before this test, the samples were out-gassed
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at 200 °C for 4 h). The graphitic degree and defects were
recorded by a HORIBA LabRam HR Raman spectrometer
equipped with a 532 nm laser excitation. TGA was carried out
by an SDT Q600-1649 instrument under the N2 atmosphere at
a ramp rate of 10 K per minuets with a temperature of 25−950
°C.
All of the electrochemical measurements were measured on

an electrochemical working station (CHI 604E) and the test
details could be referenced by our previous works.48,49 It
should be noted that the light intensity was calibrated using a
Si solar cell (National Institute of Metrology, China).
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