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chemistry methods, using tetrabutylammonium dihydrogen
phosphate as a template, promoting the lariat arm postfunction-
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alization reaction.

B INTRODUCTION

Combinatorial chemistry is a technology that allows for the
parallel synthesis of a large number of chemical compounds,
reaching hundreds of thousands or even millions, in a single
chemical process. It is usually used to search for new drugs in
the pharmaceutical industry," although it is increasingly being
used in creating new semiconductors,” catalysts,” and
polymers.” Parallel synthesis and analysis of the resulting
library allow costs to be minimized and significantly shorten
the time of studies. Subsequently, potentially useful com-
pounds are synthesized and analyzed by classical methods,
which allow compounds that exhibit false positive properties to
be eliminated, for example, as components showing synergic
effects. Combinatorial chemistry is equally successfully used in
the synthesis of small compounds with low-molecular weight
and macromolecules, for example, peptides.6 Although
combinatorial chemistry has been used in the industry since
the 1990s,” its roots can be traced back to the 1960s, when
Merrifield began researching the synthesis of peptides using
solid-phase methods.® Merrifield’s discovery became a mile-
stone in the development of peptide synthesis, and his solid-
phase synthesis method was developed in the second half of
the 20th century and is used in the synthesis of DNA and RNA
fragments,” as well as in the synthesis of low-molecular-weight
organic compounds.'’

The increase in the number of components in libraries is
strongly correlated with the requirements for analysis methods.
One of the possible problems involves cross effects occurring
in large sets, which may lead to the inhibition of interactions of
the tested template with a given library. At the end of the
1990s, combinatorial chemistry branched into two parts:
classical or static combinatorial chemistry and dynamic
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combinatorial chemistry, presented by Sanders,'’ Lehn,"
and others.

Static combinatorial chemistry uses a number of various
irreversible reactions that the chosen substrates can undergo.
Therefore, it is not possible to recover substrates from the
product library, once generated. An additional requirement for
the resulting static combinatorial library is its representative-
ness, which requires that the library should contain all
elements that can be obtained based on the substrates used."”

B RESULTS AND DISCUSSION

The use of combinatorial chemistry methods has allowed
significant progress to be made in the synthesis of demanding
supramolecular systems. In our previous works,'* we presented
efficient synthesis of unclosed cryptands (UCs) by post-
functionalization of the lariat arm after yield-limiting macro-
cyclization. Therefore, in this work, we decided to apply our
well-established knowledge in the design and synthesis of
supramolecular ion receptors while harnessing the advantages
of static combinatorial chemistry. As a result, we obtained a
representative library of 17 macrocyclic compounds having the
character of anion receptors. We obtained UCs, macrocyclic
polyamides, differing in substituents in the lariat arm, both by
the methods of static combinatorial chemistry (while
examining the effect of the presence of the template on the
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composition of the resulting libraries) as well as by a classical
synthetic approach. These two processes carried out in parallel
allowed us to perform a full spectroscopic analysis of the
receptors obtained and to examine their complexing properties.

We began our research with the preparation of a macrocyclic
precursor, for which we used the ICHOPAN II synthesis
method, which consists of obtaining polyamide macrorings by
a double-amidation reaction usin% a,w-diamines and methyl
esters of a,m-dicarboxylic acids.”” This method makes it
possible to obtain the expected products, as shown in Figure 1,
with relatively high yields.
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Figure 1. Structure of the macrocyclic polyamide.

The use of selected substrates, which have functions
properly protected during the macrocyclization reaction,
makes it possible to modify the complexing properties of the
receptors received during the irreversible amidation reaction.
We have recently used this type of approach in the synthesis of
chiral amide phase-transfer catalysts that selectively affect the
asymmetric synthesis of amino acid derivatives.'® This is the
basic requirement for obtaining static libraries, whose
composition is kinetically controlled and does not change

after completion of the reaction, including during the testing
stage.

Having compounds comprehensively documented by
analytical and spectral data, it was possible to start constructing
static combinatorial libraries and tracking their composition
under the influence of experimental variables. We conducted
the analysis of the obtained libraries using high-performance
liquid chromatography (HPLC) techniques, which proved to
be an excellent tool for analyzing combinatorial mixtures. We
then referred the obtained results to the complexing properties
of the presented macrocyclic receptors, as determined using
the 'H NMR titration techniques.

The synthesis of macrocyclic precursor 1 was presented in
our previous work.'** By postfunctionalization of precursor 1,
carried out under one-pot conditions (deprotection of the
amine function of 1 and subsequent reactions with one of the
17 acid chlorides shown in Scheme 1), we obtained 17
derivatives with the amide function in the lariat arm. These
reactions occurred with excellent yields (Figure 2).

The presented compounds contain various substituents in
the lariat arm and comprise both aliphatic and aromatic units.
Within the second group, compounds with electron-donating
and electron-withdrawing substituents can be distinguished.

Having 17 expected macrocyclic receptors, we proceeded to
concurrent synthesis of the presented compounds by
combinatorial chemistry using the library of acid chlorides.

In this study, we used three-substrate libraries, whose
components were as follows: macrocyclic precursor 2 (in every
case) and pairs of changing acid chlorides. The libraries were
constructed in such a way that all substrates were used
equimolarly, so each of them contained one equivalent of

Scheme 1. Synthesis of the Library of Macrocyclic Receptors 3—19
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Figure 2. Library of macrocyclic receptors 3—19.
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Figure 3. Macrocyclic product 3 content in combinatorial mixtures in

(blue).

B Untemplated B TBA-H,PO,

untemplated systems (green) and with the use of TBA-H,PO, as a template

compound 2 and one equivalent of both acid chlorides. In such
systems, the ratio of the contents of the two resulting
macrocyclic products was tested, as well as the total conversion
determined on the residual content of compound 2 in the
reaction mixture. Then, we compared the composition of the
generated libraries, in both libraries without the addition of a
template and in the presence of dihydrogen phosphate.

First, we generated static three-substrate libraries in non-
templated systems. Reactions were carried out in anhydrous
dichloromethane (DCM) at a concentration of ¢ = 1 mM for
each of the substrates for 1 h (Scheme 2). As reagents

differentiating emerging substituents in the lariat arm, we used
mixtures of appropriate acid chlorides. The reaction mixture
thus obtained was then analyzed using HPLC. The
composition of the mixtures was calculated based on the
obtained chromatograms. Overlapping signals in the HPLC
spectra of some macrocyclic products effectively prevented the
determination of the library composition. Therefore, in the
following Figures 3—6, these libraries are omitted.

In the next step, we generated similar libraries that this time
contained one equivalent of dihydrogen phosphate. Analysis of
the combinatorial libraries obtained indicates that the resulting

26273 https://dx.doi.org/10.1021/acsomega.0c04228
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Figure 4. Macrocyclic product S content in combinatorial mixtures in untemplated systems (green) and with the use of TBA-H,PO, as a template
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Figure S. Macrocyclic product 14 content in combinatorial mixtures in untemplated systems (green) and with the use of TBA-H,PO, as a template
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Figure 6. Macrocyclic product 17 content in combinatorial mixtures in untemplated systems (green) and with the use of TBA-H,PO, as a template

(blue).

macrocyclic products do not form in a statistical manner. The
composition of the reaction mixture is influenced by the
structural (geometric) factors of the substrates used, as well as
their electronic properties, which influenced the composition
of static libraries (proportions of macrocyclic products
differing in a lariat arm).

Considering the amide systems formed with the partic-
ipation of acetyl chloride (A) as a fixed element in competition
with a series of 16 different acid chlorides B—Q, we observed
that the addition of dihydrogen phosphate in the form of a
tetrabutylammonium (TBA) salt used as a template has a
strong effect on the distribution of products in the reaction
mixture, with a predominance of receptor 3, containing an
acetyl group in the lariat arm (Figure 3).

Considering intra-aliphatic competition of acid chlorides B—
H, we observed a very strong increase in the content of
macrocyclic compound 3 in all cases. The addition of a
template promotes the formation of a product with the

geometrically smallest substituent in the lariat arm. A similar
relationship occurs in the case of aliphatic—aromatic
competition with the use of large aromatic 1-naphthyl (J)
and 2-naphthyl (K) chlorides, as well as with 4-cyanobenzoyl
chloride (N) and isomers of nitrobenzoyl chlorides (O, P, Q),
containing a strong electron-withdrawing group.

An analogous analysis of competitive reactions involving
butyryl chloride (C) as a fixed element is presented in Figure 4.

Unlike the previous case, analysis of intra-aliphatic
competition indicates a much less spectacular dihydrogen
phosphate templating effect. Only in the case of competition
with large cyclohexane carboxylic acid chloride (H) did the
addition of the template result in an increase in the content of
product S5 in the reaction mixture, with a simultaneous
decrease in conversion from 91 to 77%. Worth mentioning
against the background of other aliphatic—aromatic compet-
itions are mixtures which include, in addition to the fixed C
substrate in this series, 4-chlorobenzoyl chloride (M),
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containing a strongly deactivating aromatic ring substituent, as
well as isomeric 4-nitro- (O) and 3-nitrobenzoyl (P) chlorides.
The use of tetrabutylammonium dihydrogen phosphate (TBA-
H,PO,) provided a distinct advantage of product $ in the
tested mixtures. This was associated with a drastic decrease in
conversion from the quantitative level to 10—20%.

Similar dihydrogen phosphate templating properties have
also been observed for the competition of 4-methoxybenzoyl
chloride (L) with 16 other acid chlorides. Practically in all
cases studied, the use of template significantly increased the
distribution of product 14 in combinatorial mixtures (Figure
S).

In the case of aliphatic—aromatic systems, the strongest
templating properties in the formation of compound 14 occur
for a pair with strongly expanded substituents: isobutyl
chloride (F) and cyclohexane carboxylic acid chloride (H).
In addition, in templated systems, product 14 dominated in all
competing aliphatic—aromatic pairs. In the case of intra-
aromatic competition, in most cases, the TBA-H,PO,
templating effects are not that strong. Deviations from this
principle can be seen in competition between L acid chloride
and 4-cyanobenzoyl (N) and 3-nitrobenzoyl (P) chlorides.
Thus, it can be concluded that the use of the TBA-H,PO,
template promotes the reaction with acid chloride containing
in its structure a methoxy substituent, having donating
properties. Interestingly, in this series of combinatorial
reactions, we did not observe a significant reduction in
conversion.

In turn, in the case of competitive processes leading to
compound 17, the use of TBA-H,PO, gives completely
different results from those presented so far (Figure 6).

In this series of combinatorial reactions, we observed clear
inhibitory properties of the dihydrogen phosphate anion in the
formation of the macrocyclic compound 17. This process was
accompanied by a strong, in most cases, decrease in
conversion. The strongest inhibition of receptor 17 formation
occurs in the combination of 4-nitrobenzoyl chloride (O) and
aliphatic chlorides with elongated chains (B, C, and E).

Targeted recognition of phosphates is constantly being
researched intensively.'” Macrocyclic receptors, such as UCs,
due to their structure, are perfectly geared toward recognizing
phosphates. In order to determine the affinity of the receptors
for anions, we decided to use the titration technique controlled
by 'H NMR spectrometry. The technique was chosen because
it gives more precise information about the complexing
process, unlike other methods such as microcalorimetry or
spectrophotometric methods. As a model anion for research,
we chose tetrahedral dihydrogen phosphate (H,PO,”) in the
form of a TBA salt. As a solvent, we used the highly polar and
competitive dimethyl sulfoxide (DMSO)-d¢ with 0.5% water
addition, and the concentration of the receptor throughout the
entire complexing experiment was kept constant, thus
eliminating its possible autoassociation.

For complexation studies, we decided to use representative
compounds 3, §, 6, 10, 11, 14, and 17, selected from those
synthesized in the course of the work. The resulting stability
constants (K,) for the complexes of these receptors with the
dihydrogen phosphate anion are summarized in Table 1.

Their analysis indicates that among the presented receptors,
the H,PO,™ anion is most strongly complexed by receptor 3
with the acetyl substituent in the lariat arm and by receptor 17,
which contains a strong electron-withdrawing nitro group in its

Table 1. Stability Constants K, [M™'] of Receptor
Complexes with H,PO,” in DMSO-d¢ + 0.5% H,O at 298
Ka

entry receptor K,

1 3 8600 (1:1)
210 (1:2)

2 S 40 (1:1)
100 (2:1)

3 6 1520 (1:1)
6 (1:2)

4 10 1620 (1:1)
20 (1:2)

S 11 1700 (1:1)
290 (2:1)

6 14 1020 (1:1)
210 (2:1)

7 17 3770 (1:1)
40 (1:2)

“Anion in the form of a TBA salt, constants determined using the
HypNMR program'® for the 1:1, 1:2, or 2:1 binding model (receptor/
anion).

structure, which increases the acidity of the amide proton
located in the lariat arm.

Moreover, we conducted additional titration experiments
under the control of UV—vis spectroscopy for receptors 3 and
17 using DCM as solvent and H,PO,” as anionic guest.
Unfortunately, in both cases, attempts to fit the 1:1 [H/G]
complexation model were unsuccessful (see the Supporting
Information). At the same time, both: the use of the 1:2 [H/
G] model and the 2:1 [H/G] model did not allow to obtain
the realistic values of the K, association constant (e.g,, for the
1:2 model [H/G], the constant K; ~0, and the constant K, was
very large). Furthermore, the solvation of the TBA-H,PO, ion
pair in DCM is incomplete."’

During syntheses, using combinatorial chemistry methods,
we observed a very strong influence of templating factors on
the composition of the reaction mixture and substrate
conversion. The addition of TBA-H,PO, repeatedly signifi-
cantly changed the content of individual macrocyclic
components in the created library.

The complexing properties of a number of macrocyclic
receptors with various substituents in the lariat arm that we
presented show a certain analogy to anion—receptor affinity
with the promotion of the formation of this macrocyclic
compound using the template. Despite the fact that the
complexation constant should not be directly related to
promoting the formation of a given macrocyclic compound,
the preorganization of substrates in the lariat arm post-
functionalization under the influence of the template is a
certain reflection of the subsequent complexation studies.

B EXPERIMENTAL PROCEDURES

General Procedure A for Obtaining Receptors 3—19.
To a suspension of macrocyclic compound 1 (0.140 g, 0.23
mmol) in anhydrous DCM (3 mL) at 0 °C, 4 M HCI in
dioxane (0.286 mL, 1.15 mmol) was added. Then, the mixture
was stirred at room temperature for 1 h. Subsequently, the
mixture was cooled to 0 °C, and then N,N-diisopropylethyl-
amine (0.288 mL, 1.65 mmol) and the corresponding acyl
chloride (0.28 mmol) were added. The mixture was stirred for
a further 30 min, the solvent was evaporated under a vacuum,

https://dx.doi.org/10.1021/acsomega.0c04228
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and the residue was purified employing column chromatog-
raphy and using a DCM/methanol mixture [99:1 — 95:5, v/v]
as the eluent. The obtained colorless oil was dissolved in
methanol and then sonicated in water.

General Procedure B for Parallel Synthesis of
Receptors 3—19. To a solution of two corresponding acyl
chlorides (0.001 mmol each) and additionally in templated
mixtures TBA-H,PO, (0.340 mg, 0.001 mmol) in DCM (0.5
mL) at 0 °C, the solution of macrocyclic precursor 2 (0.513
mg, 0.001 mmol) in DCM (0.5 mmol) was added. Then, the
mixture was stirred for 1 h, the solvent was evaporated under a
vacuum, and the residue was filtered through a short pad of
Celite using methanol. The mixture thus obtained was then
analyzed using HPLC.

B ASSOCIATED CONTENT

® Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.0c04228.

Copies of 'H and *C NMR spectra of all compounds
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14, and 17 (PDF)
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