Skip to main content
. 2020 Sep 7;17(18):6513. doi: 10.3390/ijerph17186513

Table 2.

Evaluation results of the prediction models in the Korea National Health and Nutrition Examination Survey dataset.

Feature Selection Classifier Accuracy Sensitivity Specificity Precision F-Score
SVM-RFE LR 0.7948 0.7818 0.7532 0.7676 0.7746
RF 0.7890 0.7989 0.7984 0.8115 0.8052
KNN 0.7342 0.6958 0.7381 0.7961 0.7426
MLP 0.8070 0.7936 0.7791 0.8016 0.7976
NN 0.8197 0.8274 0.8203 0.8387 0.8330
XGBoost 0.8098 0.8108 0.8310 0.8533 0.8315
RFFS LR 0.7804 0.7371 0.7422 0.8024 0.7684
RF 0.8264 0.7699 0.7338 0.8236 0.7958
KNN 0.8048 0.7128 0.7661 0.7753 0.7427
MLP 0.7994 0.7808 0.7396 0.8115 0.7959
NN 0.8507 0.8871 0.8902 0.8522 0.8693
XGBoost 0.8311 0.8782 0.7984 0.8626 0.8703
HFS LR 0.7834 0.7989 0.7813 0.7959 0.7974
RF 0.8362 0.7805 0.8496 0.8115 0.7957
KNN 0.8032 0.8018 0.7123 0.7872 0.7944
MLP 0.8421 0.8305 0.7513 0.8257 0.8281
NN 0.8758 0.8518 0.8158 0.8691 0.8604
XGBoost 0.8812 0.8677 0.8126 0.8737 0.8707

SVM-RFE: support vector machine recursive feature elimination; RFFS: random forest feature selection; HFS: hybrid feature selection; LR: logistic regression; KNN: k-nearest neighbors; NN: neural network; RF: random forest; MLP: multilayer perceptron; XGBoost: extreme gradient boosting. Highest scores are marked in bold.