Table 3.
Feature Selection | Classifier | Accuracy | Sensitivity | Specificity | Precision | F-Score |
---|---|---|---|---|---|---|
SVM-RFE | LR | 0.7349 | 0.6969 | 0.8874 | 0.7086 | 0.7027 |
RF | 0.8522 | 0.7904 | 0.8805 | 0.8157 | 0.8029 | |
KNN | 0.8118 | 0.7432 | 0.8608 | 0.8105 | 0.7754 | |
MLP | 0.8002 | 0.7171 | 0.8759 | 0.6816 | 0.6989 | |
NN | 0.8339 | 0.7659 | 0.8397 | 0.7609 | 0.7634 | |
XGBoost | 0.8248 | 0.7707 | 0.8512 | 0.8066 | 0.7882 | |
RFFS | LR | 0.8356 | 0.7169 | 0.8685 | 0.6938 | 0.7052 |
RF | 0.8741 | 0.7863 | 0.9065 | 0.7356 | 0.7601 | |
KNN | 0.8444 | 0.7716 | 0.8635 | 0.7594 | 0.7655 | |
MLP | 0.8221 | 0.7043 | 0.8949 | 0.6842 | 0.6941 | |
NN | 0.8639 | 0.7651 | 0.9003 | 0.7534 | 0.7592 | |
XGBoost | 0.9029 | 0.8507 | 0.9379 | 0.8264 | 0.8384 | |
HFS | LR | 0.7903 | 0.7781 | 0.8990 | 0.7732 | 0.7756 |
RF | 0.8961 | 0.8157 | 0.9136 | 0.7857 | 0.8004 | |
KNN | 0.8363 | 0.7928 | 0.8990 | 0.7981 | 0.7954 | |
MLP | 0.7918 | 0.7586 | 0.9083 | 0.7635 | 0.7610 | |
NN | 0.8553 | 0.8173 | 0.8808 | 0.7934 | 0.8052 | |
XGBoost | 0.9309 | 0.8944 | 0.9522 | 0.8874 | 0.8909 |
Highest scores are marked in bold.