Skip to main content
. 2020 Sep 7;17(18):6513. doi: 10.3390/ijerph17186513

Table 3.

Evaluation results of the prediction models in the National Health and Nutrition Examination Survey dataset.

Feature Selection Classifier Accuracy Sensitivity Specificity Precision F-Score
SVM-RFE LR 0.7349 0.6969 0.8874 0.7086 0.7027
RF 0.8522 0.7904 0.8805 0.8157 0.8029
KNN 0.8118 0.7432 0.8608 0.8105 0.7754
MLP 0.8002 0.7171 0.8759 0.6816 0.6989
NN 0.8339 0.7659 0.8397 0.7609 0.7634
XGBoost 0.8248 0.7707 0.8512 0.8066 0.7882
RFFS LR 0.8356 0.7169 0.8685 0.6938 0.7052
RF 0.8741 0.7863 0.9065 0.7356 0.7601
KNN 0.8444 0.7716 0.8635 0.7594 0.7655
MLP 0.8221 0.7043 0.8949 0.6842 0.6941
NN 0.8639 0.7651 0.9003 0.7534 0.7592
XGBoost 0.9029 0.8507 0.9379 0.8264 0.8384
HFS LR 0.7903 0.7781 0.8990 0.7732 0.7756
RF 0.8961 0.8157 0.9136 0.7857 0.8004
KNN 0.8363 0.7928 0.8990 0.7981 0.7954
MLP 0.7918 0.7586 0.9083 0.7635 0.7610
NN 0.8553 0.8173 0.8808 0.7934 0.8052
XGBoost 0.9309 0.8944 0.9522 0.8874 0.8909

Highest scores are marked in bold.