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Abstract: Hydroclimatic change may affect the range of some infectious diseases, including tularemia.
Previous studies have investigated associations between tularemia incidence and climate variables,
with some also establishing quantitative statistical disease models based on historical data, but studies
considering future climate projections are scarce. This study has used and combined hydro-climatic
projection outputs from multiple global climate models (GCMs) in phase six of the Coupled Model
Intercomparison Project (CMIP6), and site-specific, parameterized statistical tularemia models,
which all imply some type of power-law scaling with preceding-year tularemia cases, to assess
possible future trends in disease outbreaks for six counties across Sweden, known to include tularemia
high-risk areas. Three radiative forcing (emissions) scenarios are considered for climate change
projection until year 2100, incuding low (2.6 Wm−2), medium (4.5 Wm−2), and high (8.5 Wm−2) forcing.
The results show highly divergent changes in future disease outbreaks among Swedish counties,
depending primarily on site-specific type of the best-fit disease power-law scaling characteristics of
(mostly positive, in one case negative) sub- or super-linearity. Results also show that scenarios of
steeper future climate warming do not necessarily lead to steeper increase of future disease outbreaks.
Along a latitudinal gradient, the likely most realistic medium climate forcing scenario indicates
future disease decreases (intermittent or overall) for the relatively southern Swedish counties Örebro
and Gävleborg (Ockelbo), respectively, and disease increases of considerable or high degree for the
intermediate (Dalarna, Gävleborg (Ljusdal)) and more northern (Jämtland, Norrbotten; along with
the more southern Värmland exception) counties, respectively.

Keywords: hydroclimatic change; infectious disease; tularemia; CMIP6 projections; high-risk
sites; Sweden

1. Introduction

Climate change may cause shifts in geographical range, prevalence, and/or severity of some
infectious diseases [1–5], including tularemia [6,7], a dangerous zoonotic disease caused by the
intracellular bacterium Francisella tularensis [8] and widely prevalent in Europe, Asia, and America [8].
Transmission of Tularemia is usually caused by contact with infected rodents and hares, or by arthropod
vectors [9]. In Europe, there is also a strong association between F. tularensis subsp. holarctica (Type B)
and water conditions, with many humans reported to have contracted the disease around lakes and
rivers [10]. Europe as a whole does not have a clear trend of tularemia outbreaks in recent decades,
but rather a pattern of repeated local emergence and re-emergence throughout most countries [11].
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In Sweden, however, the nationwide incidence of tularemia increased during the period 1984-2012 and
the disease now occurs over a larger geographical area [12].

Previous studies have reported relationships between hydroclimatic factors and tularemia
outbreaks [10,13–17], with some also evaluating future change scenarios [10,15,16]. However,
perspectives and conclusions regarding future tularemia changes vary. For example, for tularemia
in Sweden, Palo et al. [16] concluded that warming should not increase the frequency of tularemia
outbreaks, whereas Rydén et al. [10] addressed a future scenario of an approximately 2 ◦C increasinge,
concluding that increase in monthly summer temperature should be expected to increase the duration
of tularemia outbreaks in Sweden, and Ma et al. [6] showed generally high tularemia sensitivity to
hydroclimatic variability and change.

In view of the quite limited investigations so far, and their different perspectives and conclusions,
this study aims to more comprehensively consider future climate change projections and assess their
implications for tularemia incidence. This is done with focus on change trends in disease outbreaks
along the steep climatic gradient spanned by different Swedish sites (counties) with relevant data and
previously established statistical disease models, which are here combined with the latest outputs
of a multi-model ensemble of global climate models (GCMs) from phase six of the Coupled Model
Intercomparison Project (CMIP; [18]).

2. Methods

2.1. Six High-Risk Counties with Established Statistical Models of Tularemia

The cases considered for future disease trend projections are six Swedish counties (Norrbotten,
Jämtland, Dalarna, Gävleborg, Värmland, and Örebro) distributed throughout Sweden (Figure 1).
These counties fully or partly encompass seven previously identified tularemia high-risk regions
that account for 56.4% of tularemia cases in Sweden, even though they contain only 9.3% of
Sweden’s population, according to disease surveillance data for 1984–2012 [14]. Moreover, projection
at county scale is consistent with the administration system in Sweden, where reported diseases are
managed per county.
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Previously established statistical models (fitted to data) have been reported and are of the same
type but with different coefficients for each Swedish site [14]. Statistical models do not assume
known functional relationships between infectious disease spreading and hydroclimatic and other
environmental variables, but quantify the data-given statistical signals of such relationships so
far [19]. These can further be used to quantify the implications of GCM-projected scenarios of future
hydroclimatic changes for diseases like tularemia, for which adequate mechanistic knowledge is
still lacking, e.g., on bacteria ecology and transmission routes to humans [10]. Figure 2 illustrates
schematically the overall approach to such quantification developed and applied in this study.

The disease models used in this study were selected because they are, so far, the only quantitative
models available that have been developed and tested for modeling of temporal variations of tularemia
cases in direct relation to associated hydroclimatic conditions, based on actual data for targeted
high-risk regions in Sweden from 1984 to 2012 [14] . The basic disease model type is power-law scaling,
which relates the annual number of tularemia cases (Tul) to the preceding-year number of cases (Tullag)
with exponent β1, as Equation (1) [14,17]:

Tul = EXP
(
β0 + β2sRMA + β3STlag + β4SP

)
∗ Tullag

β1 = A ∗ Tullag
β1 (1)

The scale factor A in Equation (1) is determined by disease-independent hydroclimatic variables of:
summer temperature in the preceding year (STlag, ◦C); summer precipitation in the same year (SP, mm);
along with standardized relative annual mosquito abundance (sRMA). The latter, derived from annual
mosquito aboundance(RMA), in turn fully depends on hydroclimatic variables, as expressed by
Equations (2)–(5) [14,17]:

sRMA =
log2 RMA−mean

(
log2 RMA

)
SD
(
log2 RMA

) (2)

RMA = Median
(
RMA(t)

)
(3)

RMA(t) = 2SN(F)SM (4)

SM = −2.76 + 0.67Q1 + 0.62Q2 + 0.19T (5)

where mean and SD (standard deviation) denotes the sample mean and sample standard deviation
of RMA; RMA is median value of daily mosquito aboundance RMA(t); SM is the standardized mosquito
abundance; SN(F) is the standard deviation of SM observed in the mosquito modeling area, which is
cancelled out when substituted into Equation (2); Q1 and Q2 (unitless) are maximum standardized
river flows in two time periods preceding each RMA evaluation time t (36–42 days and 22–28 days,
respectively, before time t), and mean temperature (T, ◦C) over 1–7 days before time t. Original model
expressions also included winter days with low snow coverage (CW, days) in A, but the variation
in Tul has been shown to be insensitive to CW [6]; as such, it has been omitted from this analysis,
for simplicity and increased clarity. Mosquitoes are main disease vectors in the large boreal forest
regions of Alaska, Sweden, Finland, and Russia [20–22], and the statistical disease models used in this
study include mosquito abundance as a main variable; in a fitted statistical model, however, such a
variable may also be a proxy for other vectors.
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Figure 2. Schematic diagram of the model and statistical analysis approach in this study. For each county,
we selected daily outputs of disease-relevant hydroclimatic variables (related to air temperature T,
precipitation P, and runoff R) for the grid cells of each global climate model (GCM) with at least
40% of their area located within each targeted county (35% for Örebro county in The Geophysical
Fluid Dynamics Laboratory’s Earth System Model version 4 (GFDL-ESM4) and The Geophysical
Fluid Dynamics Laboratory’s climate model version 4 (GFDL-CM4)). We spatially averaged the
values of each hydroclimatic output variable of each GCM over these county grid cells to represent a
corresponding county-average daily hydroclimatic variable value (air temperature Tc, precipitation Pc,
and runoff Rc). Furthermore, for each GCM, we assessed its hydroclimatic projection implications
for the future scenario evolution of disease cases in each county, based on a previously established
county-relevant statistical disease model that we quantified by preceding-year number of disease cases
and relevant GCM-projected county-average hydroclimatic variables (including summer temperature
in the preceding year STlag, summer precipitation in the same year SP, and standardized relative annual
mosquito abundance sRMA, which is in turn related to various river flow Q conditions). Finally, across
all GCMs, we calculated the model ensemble mean and inter-model standard deviation (as a GCM
uncertainty measure) of scenario-implied possible future evolution of disease cases in each county.
SSP1-2.6: Shared Socioeconomic Pathways (SSP) with emissions driven by sustainable practices to
produce radiative forcing of 2.6 Wm−2 by 2100; BCC-CSM2-MR: The Beijing Climate Center Climate
System Model, Version 2-MR; MRI-ESM2-0: The Meteorological Research Institute Earth System Model,
Version 2.0; NorESM2-MM: The Norwegian Earth System Model, Version 2-MM.

Table 1 lists the β0–β4 coefficients in the power-law scaling Equation (1), as calculated and
assigned to each Swedish county based on reported best fits to outbreak data for the associated
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high-risk sites [14,17]. For a high-risk site extending over more than one county, the associated site
coefficient values were allocated to the county containing the largest proportion of the high-risk site.
Gävleborg county contains two high-risk sites (Ockelbo, southern part of the county, and Ljusdal,
northern part of the county) and was assigned two comparative sets of coefficients.

Table 1. Tularemia model coefficients assigned to the six Swedish study counties.

High-Risk County Intercept (β0) Tullag (β1) sRMA (β2) STlag (β3) SP (β4)

Norrbotten −5.73 1.16 0.20 0.35 0.005
Jämtland −11.47 0.93 0.75 0.84 0.003

Gävleborg (Ockelbo) −2.86 −0.19 0.36 0.10 0.010
Gävleborg (Ljusdal) −7.60 0.09 0.29 0.50 0.009

Dalarna −10.74 0.37 0.43 0.67 0.008
Värmland 10.11 0.99 0.82 −0.39 −0.014

Örebro −9.19 0.73 0.75 0.18 0.023

β: coefficients in the power-law scaling Equation (1); Tullag: the annual number of tularemia cases to the preceding-year
number of cases; sRMA: standardized relative annual mosquito abundance; STlag: summer temperature in the
preceding year; SP: summer precipitation in the same year.

2.2. Climate Change Scenario Data, Human Tularemia Data, and Projection of Annual Cases

We used daily data for required hydroclimatic variables over 2015–2100 from GCMs that provide
such outputs in phase six of the Coupled Model Intercomparison Project, CMIP6 (with raw output
data downloaded from https://esgf-node.llnl.gov/projects/cmip6/). The required variables are air
temperature T (corresponding to GCM variable: tas), precipitation P (pr), and runoff R (mrro; which
in turn relates to river flow Q as R times the (constant) river catchment area). Because the finest
available spatial resolution for daily runoff R is 100 km, we chose this spatial resolution also for the
other hydroclimatic variables (T and P).

With regard to climate projection scenarios, we considered the low, medium, and high end
scenarios of Shared Socioeconomic Pathways (SSPs) from the CMIP6 range of future radiation and
emission pathways, i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively [23]. The SSP1-2.6 scenario
represents low emissions driven by sustainable practices to produce radiative forcing of 2.6 Wm−2

by 2100, leading to a multi-model mean warming projection of significantly less than 2 ◦C warming
by 2100, while the SSP5-8.5 scenario represents sufficiently high emissions to produce radiative forcing
of 8.5 Wm−2 by 2100, leading to projected warming of 4.9 ◦C by 2100. The scenario SSP2-4.5 represents
an intermediate radiative forcing level following continued historical patterns, leading to likely more
realistic model projections than the other two more extreme scenarios. As such, we show in the
following main results for the SSP2-4.5 climate scenario, and comparative results from the other two
scenarios in Supplementary Material.

For each climate scenario, we only considered GCMs with daily outputs of all hydroclimatic
variables required for full β0 –β4 quantification, as listed in Table 2.

According to the overall study approach illustrated in Figure 2, we selected for each target county
the relevant daily outputs for GCM grid cells with at least 40% of their area located within the county
(35% for Örebro county in the Geophysical Fluid Dynamics Laboratory’s (GFDL) model GFDL-ESM4
and GFDL-CM4). We further spatially averaged the values of each output variable in these grid cells to
represent a corresponding county-average daily value, and further quantified the associated Tul result
for each GCM from the disease model Equation (1). Finally, we averaged the Tul results across all
GCMs to determine and illustrate GCM-ensemble mean annual Tul values, and associated inter-model
standard deviations (as a GCM uncertaintly measure) around the ensemble mean, for each county
and for each considered climate scenario. In addition, we also determined ensemble mean values
of each GCM-projected hydroclimatic and related disease variable included in the basic tularemia
model Equation (1), in order to also separately illustrate the projected temporal evolutions of these
county-average variables in each projected climate scenario. Initial values of Tullag for year 2015 were

https://esgf-node.llnl.gov/projects/cmip6/
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determined from data on human tularemia outbreaks for each county obtained from the data repository
of the Nordic project CLINF [24] as listed in Supplementary Material Table S1.

Table 2. List of global climate models (GCMs) considered in this study.

Model SSP1-2.6 SSP2-4.5 SSP5-8.5

BCC-CSM2-MR X X X
MRI-ESM2-0 X X X

NorESM2-MM X X X
EC-Earth3 X X X

* INM-CM5-0 X X X
* INM-CM4-8 X X X

MPI-ESM1-2-HR X X X
GFDL-ESM4 X X X
GFDL-CM4 X X

* Not included in Gävleborg county because of data error. Remarks: BCC-CSM2-MR: The Beijing Climate Center
Climate System Model, Version 2-MR; MRI-ESM2-0: The Meteorological Research Institute Earth System Model,
Version 2.0; NorESM2-MM: The Norwegian Earth; System Model, Version 2-MM; EC-Earth3: The European
Consortium Earth System Model, Version 3; INM; CM5-0: The Institute for Numerical Mathematics Climate Model,
version 5.0; INM-CM4-8: The Institute for; Numerical Mathematics Climate Model, Version 4.8; MPI-ESM1-2-HR:
Max Planck Institute Earth System Model, Version 1.2-HR; GFDL-ESM4: The Geophysical Fluid Dynamics
Laboratory’s Earth System Model version 4; GFDL-CM4: The Geophysical Fluid Dynamics Laboratory’s climate
model version 4. SSP1-2.6: Shared Socioeconomic Pathways (SSP) with emissions driven by sustainable practices to
produce radiative forcing of 2.6 Wm−2 by 2100; SSP2-4.5: Shared Socioeconomic Pathways with an intermediate
radiative forcing level following continued historical patterns of 4.5 Wm−2 by 2100; SSP5-8.5: Shared Socioeconomic
Pathways with sufficiently high emissions to produce radiative forcing of 8.5 Wm−2 by 2100.

2.3. Typology of Model Behavior Under Mean Climate State in the Long-Term

For any projected combination of hydroclimatic variable values determining the scale factor A,
the power-law scaling of Tul = A ∗ Tullag

β1 in Equation (1), with β1 values given for the different
Swedish counties in Table 1, follows the distinct types of behaviour illustrated in Figure 3a. Specifically,
blue and green curves represent sublinear (0 < β1 < 1; most county cases, Table 1) and superlinear
(β1 > 1; Norrbotten case, Table 1) conditions of positive β1, respectively, and the orange curve represents
sublinear negative β1 conditions (−1 < β1 < 0; Gävleborg (Ockelbo) case, Table 1). All three (power-law
scaling) types of curves intersect some point of the black 1:1 line, which in turn represents (linear β1 ≈ 1
conditions with) unchanging number of tularemia outbreaks over time (Tul = Tullag).

For the most common sublinear positive case (0 < β1 < 1), the power-law curve (blue in Figure 3a)
intersects the 1:1 line at N∗A, and implies convergence of Tul over time to this N∗A level, for any shift
in long-term average hydroclimatic conditions (i.e., shift in A) and initial Tullag level larger (N01) or
smaller (N02) than N∗A (Figure 3b1); we refer to N∗A as the endemic convergence level, in consistency
with the definition and use of this term also in Ma et al. (2019). In contrast, for the superlinear positive
case (β1 > 1), the power-law curve (green in Figure 3a) intersects at D∗L, and implies divergence of
Tul over time to increasingly greater or smaller values than D∗L, for any hydroclimatic shift in A and
initial Tullag level larger (N01) or smaller (N02) than D∗L, respectively (Figure 3b2); we refer to D∗L as
a divergence level for future tularemia outbreaks. For the sublinear negative case (−1 < β1 < 0),
the power-law curve (orange in Figure 3a) intersects at N∗O, and implies convergent oscillation of
Tul (i.e., with decreasing oscillation amplitude) around N∗O over time, for any hydroclimatic shift
in A and initial Tullag level larger (N01) or smaller (N02) than N∗O (Figure 3b3); we refer to N∗O as
endemic oscillation level. There is no such case among the Swedish study counties but, for the sake of
completeness, we note that a superlinear negative case (β1 < −1) would imply divergent oscillation
of Tul (i.e., with increasing oscillation amplitude) around a constant level analogous to N∗O for the
sublinear negative case. Endemic convergence (for 0 < β1 < 1) and endemic oscillation (for−1 < β1 < 0)
both imply an expected constant level toward/around which tularemia cases will tend to converge
with time after a shift in long-term average hydroclimatic conditions (shift in A), so we combined these
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two terms into simply referring to the endemic level expected for any (positive or negative) sublinear
power-law scaling of Tul with Tullag.
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Figure 3. Conceptual diagram of: (a) different types of power-law scaling of number of tularemia
outbreaks in a year (Tul) with the preceding-year number of outbreaks (Tullag); and (b1–b3) the
associated evolution of Tul with time. The curve intersections with the black 1:1 line at Tul = Tullag =

N∗A, D∗L, N∗O in (a) represent endemic convergence level (dashed line in (b1)), divergence level (dashed
line in (b2)), and endemic convergent oscillation level (dashed line in (b3)), respectively, for Tul after a
shift in long-term average hydroclimatic conditions from a initial Tullag level larger (N01) or smaller
(N02) than N∗A, D∗L, N∗O (i.e., in A of the best-fit power-law scaling Tul = A ∗ Tullag

β1 for different
exponent β1 cases of relevance for the Swedish study counties (Table 1).

3. Results

3.1. Change Trends for Hydroclimatic and Related Mosquito Abundance Variables

Figure 4 shows Dalarna county as an example for the resulting GCM ensemble mean time series
(solid lines) and corresponding inter-GCM ± 1 standard deviation (shaded area) of (a) yearly summer
temperature (ST), (b) summer precipitation (SP), (c) standardized relative mosquito abundance (sRMA),
(d) mean temperature (T) over 1–7 days before time t of the sRMA evaluation, along with maximum
standardized river flows (e) Q1 and (f) Q2 over 36–42 days and 22–28 days before t, respectively, for
climate scenario SSP2-4.5. Results are shown in terms of 20-year running averages in (a–c), and in terms
of annual average values in (d–f). Black lines show average values over the time periods 2015–2057
and 2058–2100. Supplementary Figures S1 and S2 show results for all counties corresponding to panels
(a–c) and (d–f), respectively. For comparison, corresponding results of T, SP, and sRMA for the other
two climate scenarios are also shown in Supplementary Material Figure S3, with the 43-year averages
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for the two climate periods 2015–2057 and 2058–2100 also shown in histograms in Supplementary
Material Figure S4.
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Figure 4. Projected ensemble mean results (orange line) ± 1 inter-model standard deviation (shaded
areas) for the example of Dalarna county under the CMIP6 climate scenario SSP2-4.5. (a) Summer
temperature (ST, ◦C), (b) summer precipitation (SP, mm), (c) standardized relative mosquito abundance
(sRMA), (d) mean temperature (T) over 1–7 days before time t of the sRMA evaluation, along with
maximum standardized river flows (e) Q1 and (f) Q2 over 36–42 days and 22–28 days before t,
respectively. Results are shown in terms of 20–year running averages in (a–c), and in terms of
annual average values in (d–f). Black lines show average values over the time periods 2015–2057 and
2058–2100. Supplementary Figures S1 and S2 show results for all counties corresponding to panels
(a–c) and (d–f), respectively.

For climate scenario SSP2-4.5, all counties exhibit similar weakly increasing trends for ST (Figure 4a,
Figure S1a), with scenario SSP1-2.6 yielding even weaker and scenario SSP5-8.5 leading to steeper
increase trends (Figure S3a). For SP, change trends are overall small for all counties and climate
scenarios (Figure 4b, Figure S1b, Figure S3b). For sRMA in scenario SSP2-4.5, all counties have similar
subtle increase trends (Figure 4c, Figure S1c), which also applies to the other two climate scenarios
(Figure S3c), with the exception of Örebro county for SSP1-2.6. Overall, similar inter-GCM uncertainty
levels are exhibited for these three hydroclimatically dependent variables among counties and climate
scenarios. Figure 4d–f and Figure S2 further show projected ensemble mean results for scenario
SSP2-4.5 of the three hydroclimatic variables underlying and determining sRMA from 2015 to 2100.
Values of temperature T generally increase while values of standardised flow Q1 and Q2 exhibit mainly
small-range fluctuations over time.

3.2. Tularemia Change Trends Under Projected Future Hydroclimatic Conditions

Figure 5 shows resulting projected ensemble means of annual tularemia cases for scenario SSP2-4.5
for each county, along with associated endemic levels (Insert figures; expected divergence level for
Norrbotten is shown in Supplementary Material Figure S5) over two climate periods (2015–2057 and
2058–2100). Comparison with the other two climate scenarios is shown in Supplementary Material
Figure S5. All values shown are normalized with the respective actual numbers of tularemia cases
occurring in year 2015 in each county (listed explicitly in Supplementary Table S1). The normalization
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focuses on and facilitates direct comparability of overall change trends and associated uncertainty
levels for and across different counties. Furthermore, it avoids giving a misleading impression of
predicting absolute numbers of disease cases at specific future points in time. Even though change
trends are relatively mild and largely similar among counties for the hydroclimatic variables determing
the scale factor A in the disease Equation (1), the counties exhibit widely diverging resulting tularemia
change patterns, with consistent trends in endemic levels.Int. J. Environ. Res. Public Health 2020, 17, x 10 of 14 
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Figure 5. Normalized projected ensemble mean number of annual tularemia cases (nTul) for 2015–2100,
and (inserts) associated normalized endemic levels (N∗A or N∗O ) for the periods 2015–2057 and
2058–2100. Results are shown for the Swedish counties Norbotten (a), Jämtland (b), Dalarna (c),
Gävleborg (two sites) ((d) and (e)), Värmland (f), and Örebro (g) under CMIP6 climate scenario SSP2-4.5.
The shaded areas (main figures) and error bars (inserts) show ± 1 inter-model standard deviation
around the model ensemble mean.
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Annual disease cases in Norrbotten are projected to surge towards much higher levels if no
counter-measures are taken. Large and rapid disease increases also emerge for Värmland and Jämtland.
In contrast, projected annual cases in Dalarna and Gävleborg (Ljusdal) show overall slower and
smaller increase trends, while Gävleborg (Ockelbo) and Örebro exhibit overall and intermittent disease
decreases (values <1) from the 2015 disease status.

Comparison with the other two climate scenarios (Figure S5) shows similar dramatic rise trends
for Norrbotten, Värmland, and Jämtland, while Dalarna and Gävleborg (both sites) exhibit increase in
endemic levels with higher scenario forcing level. Örebro exhibits mixed annual case occurrence among
climate scenarios and lowest endemic level for the intermediate scenario SSP2-4.5, but overall projected
endemic levels for Örebro are <1 (i.e., smaller than the 2015 number of cases) and near-zero across
all scenarios. Inter-model uncertainties can be large, and are particularly dramatic for Norrbotten,
Jämtland and Värmland, while they are relatively small for Gävleborg (Ockelbo).

4. Discussion and Conclusions

Results for the six Swedish counties show large tularemia sensitivity to relatively small
hydroclimatic change trends, and large inter-GCM uncertainty levels for disease projections compared
to those for the underlying hydroclimatic variables. High sensitivity to the power-law disease scaling
characteristics is also evident in the widely different disease projection results under more or less
similar hydroclimatic change trends among the counties. Among counties, the relatively southern
counties of Örebro and Gävleborg (Ockelbo) exhibit periodic or overall tularemia declines, respectively,
while the most northern counties Norrbotten and Jämtland, but also the southern Värmland, exhibit
large increases, and the intermediate Dalarna and Gävleborg (Ljusdal) exhibit intermediate trends of
mostly increases (depending on climate scenario) until 2100.

In general, projected long-term trends in endemic levels are closely related to the power-law
exponent β1 for scaling of Tul with Tullag. With Norrbotten having superlinear β1 > 1 and Värmland
and Jämtland having sub- but near-linear β1 = 0.99 and 0.93, respectively, associated tularemia and
endemic level impacts tend to be enhanced by projected shifts in hydroclimatic (scale factor A)
conditions. The differences in projected tularemia cases among counties and some mixed results for the
three climate scenarios challenge possible notions that climate change (and higher emission scenarios)
will generally lead to (higher) increases of disease incidence. The different best-fit β1 values for the
different counties may then implicitly reflect geographic differences in, e.g.,: (1) demographics; (2) risk
of pathogen exposure; (3) other local conditions/measures affecting vulnerabity/resilience to disease;
(4) and interactions among hydroclimatic factors. This notion has also been discussed in other research
using statistical disease modeling to project future disease burden under various climate scenarios.
For example, Hales et al. (2002) [25] estimated that climate change would lead to 50–60% of the global
population being at risk of dengue transmission by 2085, compared with 35% without the projected
climate change. For falciparum malaria, however, Rogers and Randolph (2000) [26] projected that,
by 2050, 23 million hosts would be gained in previously uninfected regions while 25 million human
hosts would be lost in areas no longer suitable for transmission, which would lead to little net disease
change in total.

With regard to the latter, the high-emissions scenario (SSP5-8.5) led to similar increases in summer
temperature across the counties, but warming-related changes in precipitation and runoff affected
tularemia results most. Other studies have found that human-related factors may play a more important
disease role than climate, e.g., superior healthcare infrastructure might lead to net lowering of disease
impacts even if climate change enhances pathogen ranges [19]. The history of widely studied diseases
(e.g., malaria, yellow fever, dengue fever) also shows that human activities and their impacts on local
ecology may affect disease spreading more significantly than climate change [27]. In addition to external
drivers, internal complexity of climate-disease interactions also affects disease risk. For example,
an increase in temperature may increase mosquito biting rates, parasite replication within mosquitoes,
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and mosquito development, but also increase mosquito mortality, making disease outcomes difficult to
determine [28].

This study also has several limitations. First, in Sweden, high tularemia incidence usually appears
in low- population areas [14]. So, although an area can have high outbreak rate projections (such as
Norrbotten and Värmland in this study), local population levels may set lower upper limits for
outbreaks. Second, the considered disease models do not explicitly take human behavioral factors into
account, such as time spent on outdoor activities, which is an important factor for exposure of humans
to the disease. Moreover, the statistical tularemia models have been rather inaccurate in estimating
the magnitude of recent outbreaks, especially for the two most northern counties (Norrbotten and
Jämtland) [14]. Thus, the present results for how hydroclimatic changes may impact future outbreaks
should be used with caution, as comparative indications rather than in terms of absolute disease
outbreak projections.

Uncertainties are inevitable in and among projected results of different climate models, and in
all studies using climate model outputs in other types of models. The latter, propagated type of
climate-related uncertainties are here shown to be amplified in disease models with high climate
sensitivity, such as the tularemia models for Norrbotten, Jämtland, and Värmland in this study.
Bring et al. (2019) [29] found relatively good model-data agreement for ensemble mean outputs of
runoff and temperature in the Nordic-Arctic region, but worse agreement for precipitation outputs,
and considerable doubt still remains about realism and accuracy of hydroclimatic results from
individual GCMs. Contradictions inevitably emerge in disease projections for localized transmission
routes [14] and future work needs to continue exploration of opportunities to improve projection
realism and accuracy.

Well-archived data of infectious diseases in clinics and laboratories, along with adequately-
recorded climate, hydrological, and other environmental as well as socio-economic data in recent years
has made it feasible to develop statistical disease models, which can further be used in combination with
related projected hydroclimatic and other types of data to quantify scenarios of possible future disease
evolution (Figure 2). The available historical records along with forthcoming new scenario-projected
model data and model-coupling methods will surely benefit more accurate large-scale assessments of
future disease pressures and risks. In addition, advancements in mechanistic disease modeling are
needed to bridge gaps and overcome weakness of statistical models, which may not be as relevant for
other locations and new hydroclimatic and other environmental and societal conditions than the ones
they were fitted to.

In conclusion, this study has quantified the implications of scenario-projected future hydroclimatic
trends for possible future disease evolution, using site-specific, established, and parameterized
statistical tularemia models. Results show highly divergent disease change trends and fluctuation
levels around these for future climate change scenarios among Swedish counties, with scenarios of
steeper future climate warming not necessarily leading to steeper disease increases. The directions of
future tularemia change trends are robust in some counties, as seen from results across various future
climate scenarios and their representations by different GCMs. Such robust change-trend projections
are essential to identify and useful in pointing out needs for policy and management measures to
avoid clear negative directions of future disease evolution, even though uncertainties about absolute
future disease numbers may be large.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/18/6786/s1,
Figure S1: Projected ensemble mean results ± 1 inter-model standard deviation of relevant variables for each
county under the CMIP6 climate scenario SSP2-4.5, Figure S2: Projected ensemble mean results ± 1 inter-model
standard deviation of mosquito abundance dependent variables for each county under the CMIP6 climate scenario
SSP2-4.5, Figure S3: Projected ensemble means of summer temperature, summer precipitation, and standardized
relative mosquito abundance under three targeted scenarios, Figure S4: Forty-three-year mean of projected
summer precipitation, summer precipitation, and standardized relative mosquito abundance under three targeted
scenarios, Figure S5: Normalized projected annual tularemia cases (nTul) 2015-2100 (left panel) and normalized
divergence or endemic levels in the periods 2015-2057 and 2058-2100; Table S1: Number of tularemia outbreaks in
humans occurring in each county in year 2015.
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