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Calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a protein kinase that belongs to the serine/threonine kinase family. It
phosphorylates kinases like CAMK1, CAMK2, and AMP, and this signaling cascade is involved in various biological processes
including cell proliferation, apoptosis, and proliferation. Also, the CAMKK2 signaling activity is required for the healthy activity
of the brain which otherwise can cause diseases like bipolar disorders and anxiety. The current study is based on in silico
bioinformatics analysis that combines sequence- and structure-based predictions to mark a SNP as damaging or neutral. The
combined results from sequence-based, evolutionary conservation-based, and consensus-based tools have predicted a total of 18
nsSNPs as deleterious, and these nsSNPs were further subjected to structure-based analysis. The six mutant models of V195A,
V249M, R311C, F366Y, P389T, and W445C showed a higher deviation from the wildtype protein model and hence were further
taken for docking studies. The molecular docking analysis has predicted that these mutations will also be disruptive to the
protein-protein interactions between CAMKK2 and PRKAG1 which will create an evident reduction in the kinase activity. The
current study has enlightened us that a few of the significant mutations are prime candidates in CAMKK2 which could be the
fundamental cause of various bipolar and psychiatric disorders. This is the first detailed study that predicts the deleterious
nsSNPs in CAMKK2 and contributes positively in providing a better understanding of disease mechanisms.

1. Introduction

Calcium ions (Ca2+) are secondary messengers with an
important regulatory role in cell signaling including hor-
mone signaling, cell cycle regulation, and gene expression.
Calmodulin (CaM), a small protein with a length of 148
amino acids, belongs to four EF-hand motifs, and each one
of the four EF-hand motifs binds to Ca2+ ions. When cal-
modulin binds with Ca2+, it introduces conformational
changes both locally by changing the EF-hand motifs and
globally by increasing the alpha helix percentage in the pro-
tein [1]. One of the major functions of CaM is to activate
the family of protein kinases which are CaM-dependent pro-
tein kinases or cited as CaM kinases. Among them, one of the

CaM kinases is CAMKK2, which belongs to the serine/threo-
nine kinase family. It phosphorylates various kinases like
CAMK1, CAMK4, and AMP-activated protein kinases
(AMPK). The signaling pathway of CAMKK2 is involved in
various biological processes which include cell proliferation,
energy balance, homeostasis, and apoptosis [2]. The human
CaMKK2 locus has a total length of 40 kb pairs, and it is
located at chromosome 12q24.2 and contains 18 exons and
17 introns. Polyadenylation of the last two exons generates
two transcripts that play a part in neuronal differentiation.
CAMKK2 activates AMPK by phosphorylating it at residue
Thr172. The kinase has a catalytic alpha subunit which is
encoded by PRKAA1 and PRKAA2, while the regulatory
subunit is encoded by PRKAG1 and PRKAG2. These two
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kinases together make a stable multiprotein complex which is
further regulated by the presence of Ca2+ ions [3].

Single-nucleotide polymorphisms (SNPs) are the most
common type of genetic variation, and identifying those
SNPs which have a phenotypic effect is a major challenge
for medical researchers. SNPs more frequently occur in the
noncoding regions which include the 5′UTR, 3′UTR, and
intronic regions. The SNPs occurring in the protein-coding
regions are also called as nonsynonymous SNPs (nsSNPs)
that alter the encoded amino acid and cause structural and
functional changes in the protein. Those SNPs that cause
structural-functional damage are termed as deleterious SNPs
and can further be associated with disease formation [4].

CAMKK2 is highly expressed in the nervous system and
hence is involved in providing neuronal plasticity and also
regulating axonal growth and dendrite formation. The
CAMKK2 activity is important for normal and healthy brain
development. The upregulation of CAMKK2 is associated
with hepatic cancer and prostate cancer, while the downreg-
ulation of CAMKK2 is associated with human schizophrenia
and bipolar disorders. Lately, numerous studies have been
conducted to analyze the effects of nsSNPs on the structure
and function of the protein. One study reported nine point
mutations that are occurring at the phosphorylation site of
CAMKK2 and hence decrease the autonomous activity of
the protein [5]. The study carried out by O’Brien et al. deter-
mines the effect of T85S substitution, which is an autophos-
phorylation site on the activity of CAMKK2 and is also
associated with behavioral disorders including anxiety. The
autophosphorylation occurring at this position decreases
the CAMKK2 activity and hence causes neuronal disorders
[6]. It has been experimentally determined by Ling et al. that
the R311C variant occurring in the loop region of the cata-
lytic domain of CAMKK2 affects kinase activity [7]. This var-
iant abolishes the T85 autophosphorylation site and creates a
negative effect on the wildtype CAMKK2. The mutation is
also predicted to be one of the genetic causes of people with
bipolar disorders. So far, no complete in silico study has been
conducted before that has predicted the nsSNPs in
CAMKK2; to this end, the current study explores the delete-
rious SNPs that are associated with multiple diseases.

2. Materials and Methods

2.1. Sequence Retrieval. The protein sequence of CAMKK2
was obtained from UniProt [8] (https://www.uniprot.org/;
UniProtKB: Q96RR4 (KKCC2_HUMAN)), and the struc-
ture was obtained from RCSB PDB (PDB ID: 2ZV2). This
was followed by querying the NCBI dbSNP [9] to obtain
the human CAMKK2 SNPs that broadly classify the SNPs
based on their genomic locations (https://www.ncbi.nlm.nih
.gov/snp/). dbSNP retrieved a total of 435 missense SNPs
out of a total of 15,182 SNPs; hence, we picked only the
missense SNPs for further analysis.

2.2. Prediction of nsSNPs Based on Sequence Homology. The
missense SNPs were first functionally annotated using
sequence-based tools, namely, SNPNexus (SIFT and Poly-
Phen) [10], PROVEAN [11], and Mutation Assessor [12].

SIFT and PolyPhen are built-in tools of SNPNexus which
label the SNPs as probably damaging or benign based on
the scores predicted. The tools are accessible at https://www
.snp-nexus.org/v4/. PROVEAN (Protein Variation Effect
Analyzer) is a sequence homology-based tool that runs the
blast search on the query sequence to determine if the partic-
ular mutation is damaging or neutral. The cutoff threshold of
PROVEAN is -2.5. The Mutation Assessor scores based on
evolutionary conservation analysis that determines how con-
served is the mutated residue, and based on that, it predicts
the pathogenicity of a particular variant.

2.3. Prediction of nsSNPs Based on Consensus. The second
group of tools are based on consensus methods, namely,
Meta-SNP [13], SNPs&GO [14], and PredictSNP [15].
Meta-SNP combines a total of four predictors, namely, SNAP
(Screening for Non-Acceptable Polymorphism) [16], SIFT
(Sorting Intolerant from Tolerant), PANTHER (Protein
Analysis through Evolutionary Relationships) [17], and
PHD-SNP (Predictor of Human Deleterious SNP) (https://
snps.biofold.org/meta-snp/). PredictSNP pools seven tools,
namely, nsSNPAnalyzer [18], PolyPhen (Polymorphism
Phenotyping), SNAP, MAPP (Multivariate Analysis of Pro-
tein Polymorphism), PHD-SNP, SIFT, and consensus Pre-
dictSNP (https://loschmidt.chemi.muni.cz/predictsnp/). The
tool SNPs&GO has sequence- and function-derived features
which include evolutionary conservation analysis and fea-
tures derived from GO terms (https://snps-and-go.biocomp
.unibo.it/snps-and-go/).

2.4. Prediction Based on Protein Sequence or Structure. The
tools that fall in this category are mCSM [19], structure-
based stability change prediction (STRUM) [20], and site-
directed mutator (SDM) [21]. These three predictors either
use sequence information or structural information to pre-
dict the protein stability changes upon mutation. These tools
calculate the difference of the Gibbs free energy DDG value to
determine the stability and instability of the protein structure
upon mutation.

A SNP is categorized as high risk if it is predicted as
deleterious from 7 out of these 9 tools to avoid any biases
in the results.

2.5. Analysis of Evolutionary Conserved Residues. To analyze
if the variants are occurring at evolutionary conserved resi-
dues, we have utilized the ConSurf webserver [22] available
at http://consurf.tau.ac.il/2016/. The tool runs the sequence
homology analysis via BLAST to generate the conservation-
profile-labelled conservation scores. The scores ranging from
1 to 4 are labelled as variable, those ranging from 5 to 6 are
labelled as intermediate, and those ranging from 7 to 9 are
labelled as conserved. The tool defines the structurally and
functionally important residues by identifying its location
in the structure as buried or exposed.

2.6. Predicting Disease-Related Mutations Using MutPred. To
predict the disease pathogenicity associated with the mis-
sense variants, the MutPred predictor was utilized [23].
MutPred takes the output of three tools, namely, Psi-BLAST,
SIFT, and PFAM. The tool is accessible at http://mutpred
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.mutdb.org/. Further, the tool also combines three more
structural disorder algorithms including TMHMM, MAR-
COIL, and DisProt. This combination will lead to a more
confident prediction.

2.7. Protein Structure Modelling. The modelled 3D structure
of wildtype CAMKK2 was deposited in RCSB PDB, and we
have downloaded the PDB structure (PDB ID: 2ZV2) which
covers the modelled residues from 158 to -448. As the full ter-
tiary structure is not known, the I-TASSER homologymodel-
ling tool [24] was used to predict the full 3D structure of
CAMKK2. This is a fully automated tool that uses threading
and ab initio methods to determine the structure. Both the
wildtype and mutant structures were generated using I-
TASSER. The quality of the predicted structures was evalu-
ated by ERRAT [25] to determine the structure quality of
the wildtype and mutant models. Next, the wildtype and
mutant structures were superimposed using TM-Align [26]
to identify the location of mutations on the structure. It gen-
erates the superimposed structures along with the computed
RMSD which determines how deviated the mutant models
are from the wildtype. The higher the value, the more devi-
ated the models are; hence, they are expected to cause more
structural and functional damage.

2.8. Pathway Enrichment Analysis and Molecular Docking of
CAMKK2. To determine the functional binding partners of
CAMKK2, the STRING database [27] was used. The thresh-
old for generating the network was set to 0.7. Further, the
protein-protein docking studies were carried out using the
ClusPro webserver [28] (https://cluspro.org/login.php) by
using the default settings. The server uses the Fast Fourier
Transform Correlation approach hence making it a flexible
approach for docking. Further, ClusPro generates clusters
of docked poses using the greedy approach that first rotates
the ligand in 70,000 different angles, and based on the scores
generated, 1000 poses were selected. On querying, the server
generated 10 different docked poses which were ordered
based on the energy and the cluster size.

3. Results

3.1. nsSNPs in CAMKK2. A total of 430 missense SNPs were
downloaded from dbSNP; out of these, SNPNexus predicted
197 SNPs as possibly damaging to the protein. SNPNexus
combines SIFT and PolyPhen as a built-in tools and takes
an average voting to label a SNP as damaging or neutral.
These SNPs were further subjected to other sequence
homology-based tools.

First, the PROVEAN predicted 147 variants as deleteri-
ous, while the others are predicted as neutral. Only 8 muta-
tions were predicted as highly damaging by Mutation
Assessor. From the next group of tools which are based on
consensus-based predictions, firstly, the Meta-SNP predicted
92 substitutions, secondly, the PredictSNP predicted 98 vari-
ants as diseased, and lastly, the predictions made from
SNPs&GO shortened the list to 55 mutations as diseased.
The last category of tools falls in protein sequence- and
structure-based predictions for which we have used the

STRUM, mCSM, and SDM online servers. STRUM predicted
99 variants as destabilizing, while mCSM and SDM predicted
18 as highly destabilizing.

Per category, we have selected 2 out of 3 tools as signif-
icant predictors, which makes 6 out of 9 tools on the whole
as significant and high-confidence predictors. The com-
bined results from functional annotation tools are tabulated
in Table 1 and Table 2, while detailed predictions of the
SNPs for each tool are tabulated in Supplementary File
Tables S1–S5.

3.2. Evolutionary Conservation Analysis Using ConSurf. The
evolutionary conservation analysis carried out by ConSurf
has categorized the conservation as variable, intermediate,
and conserved, with conserved categorized as buried; hence,
it has a structural role or is exposed. Therefore, it has the
functional role in the protein. The server predicted 105 total
residues that occur at the surface of the protein and also pos-
sess a functional role in the protein, while 47 residues are
conserved, buried, and have a structural role in the protein.
The detailed results are tabulated in supplementary Table S6.

3.3. Predicting Disease-Associated Mutations Using MutPred.
To interpret if the deleterious SNPs predicted above are also
disease causing and whether there is any pathogenicity asso-
ciated with them, we have utilizedMutPred. The tool predicts
the molecular process associated with mutants like altered
disordered interface, gain or loss of catalytic sites, alterations
of transmembrane helices, and posttranslational modifica-
tions. The p value = 0.05 and the g value > 0.75 are consid-
ered as significant. The mutants R311C, V195A, V249M,
W445C, and F366Y have the highest MutPred scores as
predicted. The detailed results are tabulated in Table S7.

3.4. Protein Structure Prediction and Molecular Docking. The
deposited 3D structure of CAMKK2 has modelled residues
from 158 to 448; therefore, we predicted the tertiary structure
using the I-TASSER homology modelling tool that covers the
full protein sequence. The mutant models were also gener-
ated using PyMOL further, and TM-Align was used to
compute the structural similarity between wildtype and
mutant models by generating the RMSD scores. The mutants
R311C, V195A, V249M, W445C, and F366Y showed the
highest deviation of 1.98, 1.65, 1.52, 1.78, and 1.34Å, respec-
tively. Next, the quality of the predicted structures was
checked with ERRAT. The following quality factors were
generated: for wildtype, 79.56; for mutant F366Y, 72.95; for
R311C, 72.65; for V195A, 72.72; for V249M, 73.25; for
W445C, 73.24; and for P389T, 78.78.

The results from STRING showed that CAMKK2 binds
with PRKAG1, and it also activates and catalyzes the protein
(Figure 1). In addition to that, the phosphorylation which is a
posttranslational modification is also carried out by
CAMKK2 to PRKAG1. So, our next task was to determine
the binding affinities between the two proteins. For this pur-
pose, we have utilized the ClusPro webserver. The wildtype
models and the mutant models of CAMKK2 (PDB ID:
2ZV2) with PRKAG1 (PDB ID: 4CFE) were docked. To
determine if the mutations are affecting the interactions of
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two proteins, we have calculated the buried surface area
(BSA) which we considered as the measure of the strength
of the bound complex. The difference of BSA will determine
if the mutations are actually disturbing the protein-protein
interactions. The protein complex with highest BSA is
expected to be more stable as observed in the wildtype
protein-protein docked model. The decrease in BSA clearly
shows that the mutations are affecting the protein-protein
interactions between CAMKK2 and PRKAG1 which is nec-
essary for the signaling cascade. Table 3 and Figure 2 show
the computed buried surface area of the docked complexes
of the wildtype and mutant models. Further, the interacting
residues between CAMKK2 and PRKAG1 both in wildtype
and mutant models were generated via the Protein-Ligand
Interaction Profiler (PLIP) [29] accessible at https://projects
.biotec.tu-dresden.de/plip-web/plip. The tool predicts the

binding pocket which indicates that the different sets of
residues are interacting with the wildtype docked model as
compared to the mutant docked complexes (Figure 3). The
details are listed in supplementary Table S8.

4. Discussion

This study carried out an in-depth analysis on the nsSNPs in
the CAMKK2 protein by applying a combination of bioinfor-
matics tools. First, the SNPs were functionally annotated using
9 different tools from 3 different categories, namely, sequence
homology-based, consensus–sequence-based, and sequence–
structure-based tools. This give us 14 mutations that are pre-
dicted as high risk from the abovementioned tools. The SNPs
that were labelled as damaging by the functional annotation
tools were further passed to evolutionary conservation analysis

Table 1: Deleterious SNPs predicted from homology-based tools, consensus-based tools, and MutPred.

Homology-based tools Consensus-based methods MutPred
Mutation SNPNexus PROVEAN Mutation Accessor Prediction Meta-SNP PredictSNP SNPs&GO Prediction MutPred

E465H Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Neutral

R508C Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Neutral

R504W Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Neutral

C461S Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Neutral

D458H Deleterious Deleterious Deleterious Deleterious Deleterious Neutral Neutral Deleterious Neutral

D458L Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Neutral

P453Q Deleterious Deleterious Neutral Deleterious Deleterious Neutral Deleterious Deleterious Neutral

P453C Deleterious Deleterious Neutral Deleterious Deleterious Neutral Deleterious Deleterious Neutral

W445C Deleterious Deleterious Neutral Deleterious Deleterious Deleterious Neutral Deleterious Neutral

H443Y Deleterious Deleterious Neutral Deleterious Deleterious Deleterious Deleterious Deleterious Neutral

A182I Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Neutral

P438R Deleterious Deleterious Neutral Deleterious Neutral Neutral Neutral Neutral Neutral

M193T Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Neutral

I435A Deleterious Deleterious Neutral Deleterious Deleterious Neutral Deleterious Deleterious Diseased

V195A Deleterious Deleterious Deleterious Deleterious Deleterious Neutral Deleterious Deleterious Diseased

R217W Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Neutral Deleterious Neutral

P389T Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Diseased

F366Y Deleterious Deleterious Neutral Deleterious Neutral Neutral Neutral Neutral Diseased

L419H Deleterious Deleterious Neutral Deleterious Neutral Deleterious Deleterious Deleterious Diseases

R492C Deleterious Deleterious Neutral Deleterious Deleterious Deleterious Deleterious Deleterious Neutral

V249M Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Diseased

V487M Deleterious Deleterious Neutral Deleterious Deleterious Deleterious Deleterious Deleterious Neutral

Y183C Deleterious Deleterious Deleterious Deleterious Deleterious Neutral Neutral Neutral Diseased

N460K Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Neutral

L318A Deleterious Deleterious Neutral Deleterious Deleterious Deleterious Deleterious Deleterious Diseased

M265T Deleterious Deleterious Neutral Deleterious Neutral Neutral Neutral Neutral Diseased

M265D Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Diseased

R311C Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Diseased

V233L Deleterious Deleterious Neutral Deleterious Neutral Neutral Neutral Neutral Neutral

P444L Deleterious Deleterious Neutral Deleterious Deleterious Deleterious Deleterious Deleterious Neutral

E432A Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Neutral

V275T Deleterious Deleterious Deleterious Deleterious Neutral Neutral Neutral Neutral Diseased

P389T Deleterious Deleterious Deleterious Deleterious Neutral Deleterious Deleterious Deleterious Diseased
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to identify if these variants are occurring at evolutionary con-
served residues of the protein. ConSurf combines evolutionary
information with the solvent accessibilities to identify
conserved-structural and conserved-functional residues. From
the conservation profile generated, we have focused only on
those 13 mutations which were labelled as damaging from
functional annotation. Next, the structural analysis of these

13 mutations were carried out. The wildtype model was
generated using I-TASSER, while the mutant models were cre-
ated from PyMOL by altering the sequence at the mutation
position. Following this, the TM scores and RMSDs were
computed to measure the distance of α-carbon backbones of
wild type and mutant models. The higher the RMSD, the
greater is the deviation of the mutant model from the wild
type. The six variants V195A, V249M, R311C, F366Y,
P389T, and W445C showed the maximum deviation from
the wildtype protein.

Based on the higher values, we have finally selected these
5 mutations for docking studies. First, the wildtype models of
CAMKK2 and PRKAG1 were docked using ClusPro, then
the BSA was computed. Next, the six mutant models of
CAMKK2 were docked with the wildtype PRKAG1, and
BSA was computed for these docked complexes. As BSA
was considered as the measure of strength of the protein
bound complex, hence, the difference can shed light on the
effect of mutations on the protein-protein interactions. Sub-
sequently, these six mutations were analyzed with the HOPE
webserver [30], which predicts that all these substitutions are

Table 2: Deleterious SNPs predicted from protein stability analysis and evolutionary conservation analysis.

SNP Mutation Evolutionary conservation DDG and effect

rs1291358851 F366Y Highly conserved, exposed Destabilizing

rs1305210574 V195A Highly conserved, exposed (f) Highly destabilizing

rs200059037 V249M Highly conserved, buried (structural) Highly destabilizing

rs1307905721 R311C Highly conserved, exposed (f) Highly destabilizing

rs1219582970 W445C Highly conserved, buried (structural) Highly destabilizing

rs746740827 Y183C Conserved, exposed Highly destabilizing

rs746740827 Y183T Conserved, exposed Highly destabilizing

rs767392357 L318A Conserved, buried Highly destabilizing

rs751909766 I435A Conserved, buried Highly destabilizing

rs1459757320 L419H Conserved, buried Highly destabilizing

rs769333324 P389T Conserved, exposed (functional) Highly destabilizing

rs1354124033 V275T Conserved, buried Highly destabilizing

rs1275152562 M265T Conserved, buried Highly destabilizing

rs1275152562 M265D Conserved, buried Highly destabilizing

PRKAA1

PRKAA2
PRKAB1

PRKAB2
PRKAG1

CAMKK2
CAMK2B

CALM1

CAMK4

PRKAG3

PRKAG2

Figure 1: The protein network generated from the STRING database.

Table 3: Buried surface area of the wildtype bound complex and the
mutant bound complex.

CAMKK2-PRKAG1-bound complex Buried SA (A2)

Wildtype interactions 4450

V195A-PRKAG1 3204

V249M-PRKAG1 3201

R311C-PRKAG1 3227

F366Y-PRKAG1 3214

W445C-PRKAG1 3202

P389T-PRKAG1 3186
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occurring at the catalytic site of the protein kinase domain
which is evolutionary conserved and regulates several cellular
processes including apoptosis, cell differentiation, and prolif-
eration. The W445C variant mutates tryptophan to cysteine,

which introduces a size difference as tryptophan is bigger in
size than cysteine; this can create a space in the core of the
protein. Also, the wildtype makes a hydrogen bond with argi-
nine at position 286, which cysteine might not make. The

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2: The buried surface area (BSA) for the protein-bound complex. (a) The CAMKK2 wildtype with PRKAG1. (b) The V195A
(CAMKK2) variant with PRKAG1. (c) The V249M (CAMKK2) variant with PRKAG1. (d) The R311C (CAMKK2) variant with PRKAG1.
(e) The F366T (CAMKK2) variant with PRKAG1. (f) The P389T (CAMKK2) variant with PRKAG1. (g) The W445C (CAMKK2) variant
with PRKAG1.
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mutation might affect the interaction and thereby disturb sig-
nal transfer from the binding domain to the activity domain.

The V195A substitution replaces valine with alanine;
valine is more hydrophobic then a mutant residue.
Although, the mutated residue is not in direct contact with
any ligand, the mutation is expected to affect the local sta-
bility of the protein which in turn could affect the ligand
contacts made by one of the neighboring residues. The
altered mechanisms with this variant as predicted from
MutPred are gain of phosphorylation at the Y190 residue
and altered DNA binding sites.

In the F366Y substitution, the hydrophobicity of the
wildtype and mutant residue differs. The mutation will cause

loss of hydrophobic interactions on the surface of the protein.
The variant results in loss of relative solvent accessibility and
loss of acetylation at K369 which affect the binding of
CAMKK2 with other proteins or ligands. In V249M, the
wildtype binds with the 34U ligand. The difference in proper-
ties between wildtype and mutated residue can clearly cause
loss of interactions with the ligand. Also, it causes gain of
allosteric site at H245 which clearly affects the binding with
the ligand.

In the R311C variant, the wildtype residue forms a
hydrogen bond with asparagine at positions 335 and 346.
The size difference of the two residues will disrupt the posi-
tion; hence, the mutated residue will not make the same

Protein
Ligand
Water
Charge center
Aromatic ring center
Metal ion
Hydrophobic interaction
Hydrogen bond

Water bridge
-stacking (parallel)⤆

-stacking (perpendicular)⤆

-cation interaction
Halogen bond
Salt bridge
Metal complexation

⤆
(a) (b)

(c) (d) (e)

(f) (g)

Figure 3: The interactive residues of the two interacting proteins in the wildtype model and mutant models. (a) The CAMKK2 wildtype with
PRKAG1. (b) The R311C (CAMKK2) variant with PRKAG1. (c) The P389T (CAMKK2) variant with PRKAG1. (d) The W445C (CAMKK2)
variant with PRKAG1. (e) The F366T (CAMKK2) variant with PRKAG1. (f) The V195A (CAMKK2) variant with PRKAG1. (g) The V249M
(CAMKK2) variant with PRKAG1.

7Computational and Mathematical Methods in Medicine



hydrogen bond as the wildtype residue was making. The
mutation also causes the gain of a catalytic site and an altered
metal-binding site which disrupts the interaction at this posi-
tion. In addition to that, the wildtype residue forms a salt
bridge with aspartic acid at position 372. The difference in
charge will disturb the ionic interaction that leads to the loss
of interactions. Also, as predicted, the mutated residue is
located very close to the active site, and the mutation at this
position will affect the local structure surrounding the active
site, hence affecting the function of the protein. The P389T
substitution will result in the loss of a loop in the protein
structure as proline is a rigid amino acid which introduces
a special backbone conformation which might be lost by this
mutation. The structure location of mutations in the protein
structure predicted by HOPE is shown in Figure 4.

5. Conclusion

The current study is based on in silico bioinformatics analysis
that combines sequence- and structure-based predictions to
mark a SNP as damaging or neutral. The predicted six muta-
tions V195A, V249M, R311C, F366Y, P389T, and W445C
will create an evident reduction in the kinase activity which

is necessary to regulate various cellular processes including
cell differentiation and apoptosis. The variant R311C is
already experimentally predicted in one of the studies
reported in the past as mentioned in the Introduction, which
further supports our methodology and provides our predic-
tion with a more confident score. The other five nsSNPs
can further be experimentally analyzed to depict more accu-
rately their role in CAMKK2.

Data Availability

All the data is available in the main manuscript and in the
supplementary files.
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Supplementary Materials

Table S1 lists down the SNPs that are predicted from
SNPNexus (SIFT and PolyPhen). Table S2 shows the delete-
rious SNPs predicted from the PROVEAN tool. Table S3
summarizes the results from the Mutation Assessor tool that

(a)

V195A

(b)

V249M

(c)

R311C

(d)

F366Y

(e)

P389T

(f)

W445C

(g)

Figure 4: (a)Wildtype model of the CAMKK2 protein structure. (b) The location of the V195Amutant residue. (c) The V249Mmutation. (d)
The R311C mutation. (e) The F366T variant. (f) The P389T variant. (g) The P389T variant.
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has a function prediction category as medium, low, and high.
Table S4 shows the combined SNPs that are predicted as
damaging from Meta-SNP, PredictSNP, and SNPs&GO.
Table S5 has the list of SNPs that are predicted as destabiliz-
ing the protein structure and function. Table S6 shows the
SNPs that are predicted as evolutionary conserved from the
ConSurf tool. Table S7 shows the disease causing mutations
from MutPred. Table S8 shows the interacting residues gen-
erated from PLIP for wildtype and mutant docked com-
plexes. (Supplementary Materials)
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