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Hepatocellular carcinoma (HCC) is a primary liver cancer associated with a growing incidence and extremely high mortality.
However, the pathogenic mechanism is still not fully understood. In the present study, we identified 1,631 upregulated and
1,515 downregulated genes and found that cell cycle and metabolism-related pathways or biological processes highly
dysregulated in HCC. To assess the biological importance of these DEGs, we carried out weighted gene coexpression network
analysis (WGCNA) to identify the functional modules potentially involved in HCC pathogenesis or progression. The five
modules were detected with Dynamic Tree Cut algorithm, and GO enrichment analysis revealed that these modules exhibited
different biological processes or signaling pathways, such as metabolism-related pathways, cell proliferation-related pathways,
and molecules in tumor microenvironment. Moreover, we also observed two immune cells, namely, cytotoxic cells and
macrophage enriched in modules grey and brown, respectively, while T helper cell-2 (Th2) was enriched in module turquoise.
Among the WGCNA network, four hub long noncoding RNAs (lncRNAs) were identified to be associated with HCC prognostic
outcomes, suggesting that coexpression network analysis could uncover lncRNAs with functional importance, which may be
associated with prognostic outcomes of HCC patients. In summary, this study demonstrated that network-based analysis could
identify some functional modules and some hub-lncRNAs, which may be critical for HCC pathogenesis or progression.

1. Introduction

Hepatocellular carcinoma (HCC) is a primary liver cancer
associated with a growing incidence and extremely high
mortality, whose confirmed etiologic factors include hepa-
titis B/C, alcohol use, nonalcoholic steatohepatitis, and
obesity [1]. Also, cirrhosis is regarded as an important indi-
cator in the screening and surveillance of HCC [2]. The rapid
progression often leads to poor prognosis of HCC as most
diagnoses are made at advanced disease stages [3].

With the advance in biotechnologies, genomic causes
behind HCC have been gradually revealed. Genomic analyses
of HCC have identified some recurrently mutated genes, such
as TERT promoter, TP53, CTNNB1, and AXIN1 [4]. Previ-
ous studies about microRNAs (miRNAs) show that miRNAs
are closely related to HCC tumorigenesis, development and
metastasis [5, 6]. For example, miR-188-5p can inhibit the
proliferation and metastasis of HCC by targeting FGF5 [7].

Moreover, long noncoding RNAs (lncRNAs), which are gen-
erally unable to encode proteins, are also involved in tumor
formation, development, or metastasis. Overexpression of
lncRNA HULC in liver cancer promotes HCC proliferation
by downregulating tumor suppressor gene p18 [8].

With the development of the biomarkers of HCC, the
therapeutics has been greatly improved. However, for
patients with advanced stages, the traditional surgical resec-
tion and chemotherapy are inadequacy. Transplantation,
genomic-based, and immune therapies now become the cen-
ter of attention as they exhibit a very promising effect on
those virally induced cancers like HCC, and immunotherapy
regarding immune checkpoint inhibitors has been applied
clinically in cancers such as melanoma and non-small-cell
lung cancer [9]. Infiltrating immune cells play a critical role
in the surveillance and immune response of various solid
tumors and contribute greatly to the identification of immu-
notherapy targets [10]. Infiltrating immune cells mainly fall
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into two groups: lymphoid and myeloid [11]. Recent study
stated that the degree of immune cell infiltration into HCC
is associated with divergent immune cell types and correlated
to prognosis [12]. In the present study, we attempt to identify
some key genes, functional modules, and pathways for HCC
tumorigenesis and progression using network-based algo-
rithm. The immune cells infiltrated in HCC tissues were also
evaluated, and some critical lncRNAs were identified by the
coexpression network. In summary, this study improved
our understanding of HCC tumorigenesis and provided
some potential therapeutic targets for HCC.

2. Materials and Methods

2.1. Data Collection. We collected RNA sequencing data of
50 HCC and 50 paired nontumor tissues from the
Sequence Read Archive (SRA, https://www.ncbi.nlm.nih
.gov/sra) database [13] with an accession number
SRP068976 [14]. The SRA files were preprocessed by fastq-
dump with the option –split-files, which generated two paired
fastq files.

2.2. Read Mapping and Gene Expression Quantification. The
RNA sequencing reads were first mapped to UCSC hg19
human reference genome (http://www.genome.ucsc.edu/)
using hisat2 [15], and the alignments in SAM file were then
sorted by samtools. The gene expression was quantified by
StringTie [16] and ballgown pipeline, with the gene annota-
tion from GENCODE v19 [17].

2.3. Differential Expression Analysis. The read count-based
expression was used to identify the differentially expressed
genes (DEGs) by R/bioconductor DESeq2 package [18].
The stably expressed genes were firstly identified if
FPKM ðfragment per kilobasemillionÞ > 1 in more than
20% samples. The differentially expressed genes were identi-
fied with the thresholds of BH (Benjamini and Hochberg)
adjusted P value < 0.05 and fold change > 2 or < 1/2 [19, 20].

2.4. Weighted Gene Coexpression Network Analysis
(WGCNA). WGCNA [21] was performed to identify poten-
tial functional modules. The soft threshold for scale-free net-
work was determined based on the maximal R-square
(power = 9). TOM similarity was used to evaluate the dis-
tance between each gene pair. Moreover, hierarchical cluster-
ing analysis with average method and dynamic method was
used to build the cluster tree and classify the genes into mod-
ules, respectively. We finally identified 5 functional modules.

2.5. KEGG, GO, and Immune Cell-Based Overrepresentation
Enrichment Analysis. The KEGG (Kyoto Encyclopedia of
Genes and Genomes) [22], GO (Gene Ontology) [23, 24],
and immune cell-based overrepresentation enrichment anal-
ysis were implemented in R with clusterProfiler package [25],
which used overrepresentation enrichment analysis (ORA)
to identify enriched KEGG pathways, GO terms, and
immune cells. The gene markers for immune cells were
extracted from the previously published study [26]. The
threshold for these gene sets was P value < 0.05.

2.6. Cox Regression Proportional Hazard Model-Based
Survival Analysis. Cox regression proportional hazard model
was used to evaluate the differences of overall survival
between patients with two conditions, which was imple-
mented in R programming software survival package with
coxph function. To visualize the overall survival for each
group, we used Kaplan-Meier curves to estimate the survival
probability.

3. Results

3.1. Identification of Differentially Expressed Genes in HCC
Tumors and Healthy Tissues. To uncover the dysregulated
genes associated with HCC, we compared the gene expres-
sion profiles between tumor tissues and normal tissue adja-
cent to the tumor (NAT). From the HCC gene expression
profiles, a total of 15,186 genes were identified (fragment
per kilobase million, FPKM > 1 in more than 20% samples),
while the number of protein coding genes (PCGs) and
lncRNA genes significantly varied between tumor tissues
and NAT, as more PCGs and lncRNAs were observed in
tumor tissues compared with NAT (Wilcoxon rank-sum test,
P < 0:05) (Figures 1(a) and 1(b)). Moreover, we observed
quite dissimilar patterns regarding gene expressions between
HCC tumor tissues and NAT (Figure 1(c), adjusted P value <
0.05 and log2 fold change > 1 or < −1), and identified 1,631
upregulated and 1,515 downregulated genes. Hierarchical
clustering analysis was performed to further visualize expres-
sion patterns of the differentially expressed genes (DEGs),
suggesting that there was a great difference between these
two groups (Figure 1(d)).

3.2. Biological Interpretation of Differentially Expressed Gene
Sets Utilizing GO and KEGG-Based Enrichment Analysis.
To investigate the dysregulated signaling pathways and
biological processes, we performed GSEA analysis of the
DEGs based on using gene sets of KEGG and GO data-
bases. KEGG-based enrichment analysis revealed that
upregulated genes exhibited significant enrichment in
pathways regarding cell division, cell replication, and other
biological processes related to cell cycle, while downregulated
genes were mainly involved in metabolic and catabolic
processes (Figure 2(a)). GO enrichment analysis further con-
firmed our observations as upregulated genes were signifi-
cantly enriched in cell cycle, DNA replication, and
ribosome, while terms including metabolic pathways, fatty
acid degradation, chemical carcinogenesis, and PPAR signal-
ing pathway were significantly enriched of the downregu-
lated genes (Figure 2(b)). Based on the KEGG and GO
enrichment analysis, we observed that cell cycle and
metabolism-related pathways or biological processes were
up- or downregulated in HCC, suggesting that cell prolifera-
tion was hyperactivated and metabolic capability of liver was
significantly decreased in HCC.

3.3. Coexpression Network Analysis of the DEGs. In order to
assess the biological importance of these DEGs and the corre-
lation patterns among them, weighted gene coexpression net-
work analysis (WGCNA) was carried out. We chose soft
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power value 9 as it reflected the best scale independence and
mean connectivity (Figure 3(a)). With this selected soft
power, similarity matrices were calculated, and hierarchical

clustering of these DEGs based on this dissimilarity measure
was performed. Five modules were detected with Dynamic
Tree Cut algorithm and distinguished by different colors

7000

Nontumor Tumor

N
um

be
r o

f p
ro

te
in

-c
od

in
g 

ge
ne

s
8000

9000

10000

11000

P = 2.33e–7

(a)

Nontumor Tumor

600

N
um

be
r o

f I
nc

RN
A

 g
en

es

800

1000

1200

P = 0.0014

(b)

–5
0

50

–L
og

10
 (a

dj
us

te
d 
P

 v
al

ue
)

100

Tumor vs. normal

Downregulated genes
Upregulated genes

0

Log2 (FC)

5 10

(c)

–3

–2

–1

0

1

2

3

Tissues

Tissues

Nontumor
Tumor

TTis

(d)

Figure 1: The overview of the protein-coding genes, lncRNAs, and differentially expressed genes. The distribution of number of protein-
coding genes and lncRNAs was illustrated in (a) and (b). (c) The differentially expressed genes (DEGs) were represented by the points
with colors red (upregulation) and green (downregulation). (d) The expression patterns of DEGs in tumor and nontumor tissues.
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(Figure 3(b)). After obtaining these module gene listings, the
GO enrichment analysis was performed to interpret each
module’s biological functions. Except for a few shared terms,
these modules exhibited little similarity in functions
(Figure 3(c)). Genes in module 1 (blue, 325 genes in total)
were mainly associated with ribosome, peroxisome, and
PPAR signaling pathway, module 2 (brown, 101 genes in
total) dealt with Toll-like receptor signaling pathway, salmo-
nella infection, and phagosome, while module 5 (yellow, 103
genes in total) consisted of genes concerned with focal adhe-
sion, ECM-receptor interaction, and PI3K-Akt signaling
pathway. Modules 3 and 4 (denoted in grey and turquoise,
including 286 and 384 genes, respectively) were both associ-
ated with retinol metabolism, metabolism of xenobiotics by
cytochrome P450, drug metabolism-cytochrome P450, and
chemical carcinogenesis. Specifically, module 2 (brown) was
characterized by dysregulation of tumor microenvironment,
such as ECM-receptor interaction and focal adhesion, while
module 3 was enriched by the metabolism-related pathways.

Moreover, we also found that cell proliferation-related path-
ways, such as cell cycle, DNA replication, and Fanconi ane-
mia pathway, were enriched by the genes of module 4.
Taken together, these modules were recognized as biologi-
cally meaningful in HCC patients.

3.4. Identification of Infiltrated Immune Cells in HCC Tissues.
As the immune cells were infiltrated into the tumor tissues
[27], we next investigated the infiltrated levels of the immune
cells for the HCC tissues based on their marker gene sets. We
performed gene set enrichment analysis (GSEA) to test the
enrichment degree of the differentially expressed marker
genes for each WGCNA module. Notably, two immune cells,
namely, cytotoxic cells and macrophage, were enriched in
modules grey and brown, respectively, while T helper cell-2
(Th2) was enriched in module turquoise (Figure 4(a)). Spe-
cifically, the marker genes of cytotoxic cells and macrophage
were upregulated in HCC, and the marker genes of Th2 were
downregulated in HCC, suggesting that cytotoxic cells and
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Figure 2: The GO biological processes and KEGG pathways enriched by the differentially expressed genes. (a) The GO biological processes
enriched by the DEGs. The bars on the left and right represent the enriched GO terms enriched by the upregulated and downregulated genes,
respectively. (b) The enriched KEGG pathways by the DEGs. The up- and downregulated genes were enriched in the pathways represented by
the bars on the left and right, respectively.
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Figure 3: The weighted gene coexpression network analysis (WGCNA) of the DEGs. (a) The scale independence and mean connectivity used
for the selection of soft power. (b) The hierarchical clustering analysis of the DEGs based on the TOM similarity. (c) The KEGG pathways
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macrophage were highly infiltrated in HCC, while the Th2
cells were reduced in HCC tissues as compared with nontu-
mor tissues. Moreover, the marker genes of the three
immune cell types, including BIRC5, CDC7, CENPF,
CDC25C, WDHD1, RORA, ZBTB16, CTSW, KLRK1,
CD68, and GM2A, were observed to be dysregulated in
HCC (Figure 4(b)). Correlation analysis revealed that marker
genes within each immune cell were highly correlated with
each other, suggesting that they could cooperate with each
other to function in immune cell (Figure 4(c)). In addition,
we also observed that the markers of cytotoxic cells and mac-
rophages exhibited higher correlation, indicating that the two
cell types may have interactions in HCC tissues.

3.5. Identification of Critical Hub-lncRNAs and Evaluation
of Their Prognostic Power in HCC Patients. To better sum-
marize the functional roles of each module in HCC, it is
important to recognize the intramodular interactions and
representative genes in a coexpression network. Thus, using
Cytoscape [28], we visualized the interaction networks of
these genes based on their coexpression and uncovered
hub-lncRNAs for each module, which may resemble func-
tional importance (Figure 5(a)). We successfully identified
SNHG3 in the blue module, LINC00152 in the brown mod-
ule, TMEM220-AS1 and CTC-297N7.9 in the turquoise
module, and RP11-286H15.1 in the yellow module as hub-
lncRNAs. Notably, SNHG3 and LINC00152 were previously
reported to function as competing endogenous RNA or reg-
ulate essential pathways to promote tumorigenesis [29, 30].

For each hub-lncRNA, samples were divided into high- and
low-expression groups based on the expression of this hub-
lncRNA. Utilizing the survival data of HCC patients in corre-
sponding high- and low-expression groups from TCGA
LIHC (liver hepatocellular carcinoma) datasets, Kaplan-
Meier curves were plotted for each hub-lncRNA, and signif-
icant differences in overall survival were observed between
high- and low-expression groups (P < 0:05, Figure 5(b)).
These findings not only suggested that the identification of
hub-lncRNA based on coexpression network could uncover
lncRNAs with critical function but also revealed that these
hub-lncRNAs had the power of evaluating prognostic out-
comes in HCC patients.

4. Discussion

Hepatocellular carcinoma (HCC) is a primary liver cancer
associated with a growing incidence and extremely high mor-
tality. However, the pathogenic mechanism is still not fully
understood. In the present study, we compared the gene
expression profiles between tumor tissues and NATs and
identified 1,631 upregulated and 1,515 downregulated genes.
GSEA was subsequently performed to investigate the dysreg-
ulated signaling pathways and biological processes, which
revealed that DEGs exhibited significant enrichment in cell
cycle and metabolism-related pathways or biological pro-
cesses. The hyperactivated cell cycle and metabolism-
related pathways indicated that uncontrolled tumor cell
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proliferation and decreased metabolic capability may be the
hallmark of HCC [31–33].

In order to assess the biological importance of these
DEGs and the correlation patterns among them, weighted
gene coexpression network analysis (WGCNA) was carried
out. Five modules were detected with Dynamic Tree Cut
algorithm (Figure 3(b)). After obtaining these module gene
listings, the GO enrichment analysis was performed to inter-
pret each module’s biological functions. Except for a few
shared terms, these modules exhibited little similarity in
functions (Figure 3(c)). Specifically, the module 2 (brown)
was characterized by dysregulation of tumor microenviron-
ment, such as ECM-receptor interaction and focal adhesion,
while module 3 was enriched by the metabolism-related
pathways. Moreover, we also found that cell proliferation-
related pathways, such as cell cycle, DNA replication, and
Fanconi anemia pathway, were enriched by the genes of
module 4. Taken together, these modules were recognized
as biologically meaningful in HCC patients. In accordance
with the characteristics of HCC subtypes [34–36], the path-
ways or biological processes characterized for the three mod-
ules may also be associated with the signatures of previous
HCC subtypes. To further characterize the features of the
WGCNA modules, we further tested the enrichment degree
of the differentially expressed marker genes of immune cells
for each WGCNA module. Notably, two immune cells,
namely, cytotoxic cells and macrophage, were enriched in
modules grey and brown, respectively, while T helper cell-2
(Th2) was enriched in module turquoise (Figure 4(a)). Even
though cytotoxic cells and macrophages were highly infil-

trated in HCC tissues, their immune activities were sup-
pressed, indicating that the immune checkpoint inhibitors
such as PD1/PDL1 and CTLA-4/B7-1/B7-2 may function in
HCC tissues [37, 38]. Consistently, CTLA4 was highly
expressed in HCC (P < 0:05).

Among the network constructed by WGCNA, SNHG3 in
the blue module, LINC00152 in the brown module,
TMEM220-AS1 and CTC-297N7.9 in the turquoise module,
and RP11-286H15.1 in the yellow module were identified as
hub-lncRNAs. SNHG3 and LINC00152 were previously
reported to function as competing endogenous RNA or reg-
ulate essential pathways to promote tumorigenesis [29, 30].
Survival analysis of these hub-lncRNAs revealed that these
hub-lncRNAs were closely associated with the HCC overall
survival (P < 0:05, Figure 5(b)). These findings suggested that
coexpression network analysis could uncover lncRNAs with
functional importance, which may be associated with prog-
nostic outcomes of HCC patients.

In addition, the present study also has some limitations.
First, the relationship between suppressed activities of cyto-
toxic cells and macrophages and CTLA4 and the functional
roles of the hub-lncRNAs should be further validated by
experiments. Second, the prognostic values of the hub-
lncRNAs should be validated in independent datasets. In
summary, this study demonstrated that network-based anal-
ysis could identify some functional modules and some hub-
lncRNAs, which may be critical for HCC pathogenesis or
progression.

In summary, this study demonstrated that network-
based analysis could identify some functional modules and
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Figure 5: The hub-lncRNAs in WGCNA network and their prognostic association with HCC overall survival. (a) The visualization of the
WGCNA modules with hub-lncRNAs by Cytoscape. (b) The KM curves of the hub-lncRNAs in TCGA-LIHC cohort.
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some hub-lncRNAs, which may be critical for HCC patho-
genesis or progression.
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