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1  | INTRODUC TION

Brachial plexus root avulsion (BPRA), one of brachial plexus inju-
ries, is considered to be a polytrauma associated with motorbikes 
(Faglioni, Siqueira, Martins, Heise, & Foroni, 2014), especially hap-
pen in young men of reproductive age (Giugale, Henrikson, Baronne, 
& Lee,  2015). In this traumatic condition, extensive motoneuron 

death in spinal cord, motor axon degeneration in musculocutaneous 
nerve, and de-innervation of targeted muscles were observed, lead-
ing to serious functional deficits in the upper limb (Hallin, Carlstedt, 
Nilsson-Remahl, & Risling,  1999). Although the injured axons can 
re-innervate the target muscle after surgical re-implantation of the 
avulsed ventral roots, the functional recovery is still disappoint-
ing (Fang et  al.,  2016). Several combinatorial strategies have been 
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Abstract
Background and Purpose: Enhanced remyelination of the regenerated axons results 
in functional re-innervation and improved functional motor recovery after brachial 
plexus root avulsion (BPRA). The neural cell adhesion molecule L1 (L1CAM, L1) regu-
lates myelination and promotes regeneration after acute injury in the nervous sys-
tem. Berberine (BBR) can exert neuroprotective roles against the lesion. Herein, we 
investigated whether berberine (BBR) can affect the expression of L1 and enhance 
the axonal remyelination in rats following BPRA.
Methods: The surgical procedures were performed to build the rat brachial plexus 
avulsion and re-implantation model, and then, the rats were treated with BBR. After 
the rehabilitation for 12  weeks, the musculocutaneous nerves were collected for 
quantitative real-time PCR, Western blot analysis, and histochemical and immuno-
fluorescence staining.
Results: We observed that, BBR treatment ameliorated the abnormal musculocu-
taneous nerve fibers morphology, up-regulated the L1 expression, increased the 
myelination-related genes, decreased the differentiated-associated genes, and up-
regulated the phosphorylation of ERK.
Conclusion: These results suggest that BBR may enhance L1 expression and promote 
axonal remyelination after spinal root avulsion.
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performed for nerve re-implantation in animal models (Barbizan 
et al., 2013; Chu, Du, & Wu, 2008). Although some of neurotrophic 
factors were discovered to stimulate the neural survival and axo-
nal growth, their clinical applications are largely limited due to the 
tangible ability of through the blood–brain barrier (BBB) caused by 
their high molecular weight and hydrophility (Konishi, Chui, Hirose, 
Kunishita, & Tabira,  1993; Oliveira, Risling, Negro, Langone, & 
Cullheim, 2002; Pardridge, 1998). It is an urgent task to find a med-
icine, which is effective, safe, and convenient for clinical adminis-
tration. Also, exploring the injury and theoretic mechanism for the 
BPRA is necessary.

Attempts to target individual molecules that may promote 
the motor functional recovery of BPRA have been made to 
counteract the motor neuron death by enhancing axonal remye-
lination (Gordon, Sulaiman, & Boyd,  2003; Hoke,  2006). One of 
these molecules is berberine (BBR), a major bioactive compound 
naturally extracted from multiple traditional Chinese medicine 
with long-lasting effects and low toxicity, including Phellodendri 
Chinense Cortex, Berberidis Radix, and Coptis Rhizoma (Kumar 
et  al.,  2015; Wong, Chin, & Ima-Nirwana,  2019). BBR promotes 
the functional recovery after traumatic brain injury and spinal 
cord injury via regulating oxidative stress and glia-mediated in-
flammation (Huang et al., 2018; Wang et al., 2017). BBR promotes 
neurite extension and axonal regeneration in sciatic nerve injury 
(Han, Heo, & Kwon, 2012), and ameliorates neuropathic pain in pe-
ripheral nerve injury (Yang et al., 2018). Berberine promotes nerve 
regeneration through IGFR-mediated JNK‑AKT signal pathway 
(Zhang et al., 2018). Most importantly, BBR is able to penetrate the 
blood–brain barrier (BBB) and keep relatively stable in the brain 
(Tan et al., 2013).

Also, multiple molecular mechanisms need to be taken into 
consideration to account for the effect of BBR on axonal remye-
lination in BPRA. We therefore searched for other target molecule 
that could ameliorate BPRA, preferentially relating to axonal re-
myelination. One promising recognition molecule in the diseased 
nervous system is L1 cell adhesion molecule (L1CAM), a membrane 
glycoprotein first described in 1984 (Rathjen & Schachner, 1984). 
In vitro and in vivo studies revealed that L1 modulates neurite out-
growth, neuronal survival, and neuritogenesis (Chen et al., 2020; 
Chen, Hu, Liao, & Zhao, 2015; Lemmon, Farr, & Lagenaur, 1989; 
Wei & Ryu, 2012). Previous studies have also found that L1 regu-
lates the expression levels of ChAT and influences ChAT activity 
(Cui et  al.,  2011). L1 expression exerts essential roles in mem-
ory, learning, and regeneration following lesion (Chaisuksunt 
et al., 2000; Gu et al., 2005; Liljelund, Ghosh, & van den Pol, 1994; 
Luthl, Laurent, Figurov, Muller, & Schachner, 1994). Myelin basic 
protein cleaves cell adhesion molecule L1 and improves regener-
ation after injury (Lutz et al., 2016). Adhesion molecule L1 over-
expressed under the control of the neuronal Thy-1 promoter 
improves myelination after peripheral nerve injury in adult mice 
(Guseva et al., 2011). Schwann cells engineered to express the cell 
adhesion molecule L1 accelerate myelination and motor recovery 
after spinal cord injury (Lavdas et al., 2010).

Previous study has reported that BBR enhances survival and 
axonal regeneration of motoneurons following spinal root avulsion 
and re-implantation in rats (Zhang et al., 2019); however, whether 
BBR can regulate axonal remyelination in musculocutaneous nerve 
to promote motor function recovery and the underlying mechanism 
remain unclear. Given the key roles of L1 in regeneration and myelin-
ation, we were interested in which extent BBR modulates L1 expres-
sion in BPRA. Regarding this spinal cord injury, we hypothesized that 
BBR may affect L1 expression and exert a protective role in MNs by 
fostering axonal remyelination -related signaling in mice following 
BPRA. Here, we reported on the neuroprotective role of BBR on 
the treatment of spinal root avulsion and the modulating role on L1 
expression.

2  | MATERIAL S AND METHODS

2.1 | Animals

200–220 g male rats purchased from the Hunan Medical Laboratory 
Animal Center (PR China) were maintained at 22°C on a 12-hr 
light/12-hr dark cycle and provided food and water ad libitum. The 
Laboratory Animal Ethics Committee at University of South China 
approved all experimental protocols.

2.2 | Brachial plexus avulsion and re-
implantation model

The surgical procedures performed on animals were similar to pre-
viously described with minor modifications (Chen et  al.,  2019; Li 
et al., 2015). The animals anesthetized by intraperitoneal injection 
of chloral hydrate at a concentration of 300  mg/kg were placed 
on the surgical table with the prone position. After right C4 to C6 
hemilaminectomies, the C5-7 segments of spinal cord were identi-
fied. After opening the dura mater, the right C5-7 dorsal and ventral 
roots were dissected out and avulsed to avoid re-innervation. For 
the re-implantation models, the C6 ventral root was replanted to the 
exact point of detachment (on the surface of piamater) immediately 
following the avulsion (Chai, Wu, So, & Yip, 2000). Muscles and skin 
were sutured in layers after the surgical procedures. The animals 
were returned to their cages after recovering from anesthesia.

2.3 | Treatment and grouping

The rats (n = 15/group) with re-implantation were randomly divided 
into two groups: (a) PBS and (b) BBR (Shifeng Biotechnology Ltd.). 
The treatment groups were treated daily with BBR (500 μl at con-
centration of 4 mg/ml) or vehicle (5% DMSO in PBS, 500 μl), by sub-
cutaneous injection near the injury site daily for 7 days after surgery. 
The duration for rehabilitation was 12 weeks, and none of the ani-
mals died during that time.
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2.4 | Tissue preparation

Rats were killed by decapitation after isoflurane anesthesia. The 
musculocutaneous nerves were collected.

For qPCR analysis, total RNA was extracted from nerve sec-
tions using TRIzol reagent according to the manufacturer's protocol 
(Invitrogen). And the following steps were performed following the 
previous paper (Fang et al., 2016).

For Western blot analysis, musculocutaneous nerves were 
dissolved in 100 μl RIPA buffer with 1% PMSF (P8340-1, Solarbio 
Bioscience & Technology). After being homogenized by a microtis-
sue grinder (749540-0000, Kimble Chase Life Science and Research 
Products, LLC), the supernatants were collected after centrifugation 
at 14,000 g for 15 min at 4°C.

For histological staining, mice were deeply anesthetized with 
isoflurane at the end of survival period (12 weeks post surgery) and 
transcardially perfused with saline followed by 4% paraformalde-
hyde (PFA) in 0.1  M PBS (pH 7.4) through the left cardiac ventri-
cle. The musculocutaneous nerve was dissected and harvested for 
further analyses. After being postfixed in 4% PFA for 24 hr at 4°C, 
tissues were transferred into a solution of PBS containing 15% and 
30% sucrose for 24 hr at 4°C, respectively. After being sunk, the tis-
sues were cut into sections on a sliding microtome (LEICA CM1950, 
Leica).

2.5 | Quantitative real-time PCR

Quantitative real-time PCR was performed using SYBR Green Kit 
(Takara) in an iCycler iQTM (Bio-Rad) according to the standard 
protocols and the previous paper (Fang et al., 2016). The primer se-
quences were for quantitative real-time PCR were listed in Table 1.

2.6 | Western blot analysis

Western blot analysis was performed as previous studies with minor 
modifications (Li et al., 2017; Xu et al., 2017).

The tissue lysates from musculocutaneous nerves mixed with 
a sample loading buffer (0.125  M Tris–HCl, pH 6.8, 20% glyc-
erol, 10% sodium dodecyl sulfate, 0.1% bromophenol blue, and 
5% β-mercaptoethanol) were heated at 95°C for 15  min. Protein 
samples were subjected to 10% SDS–PAGE and electroblotted 
onto polyvinylidene difluoride (PVDF) membranes (Millipore). 
After being incubated in 5% bovine serum albumin (BSA) diluted 
in Tris–HCl saline buffer supplemented with 0.1% Tween-20 
(TBST, pH 7.4) for 1 hr to block nonspecific protein binding sites, 
membranes were incubated overnight at 4°C with following pri-
mary antibodies: goat anti-L1 antibody (1:1,000; AF277, R&D 
system), rabbit anti-pERK1/2 (1:1,000; ab4370, Abcam), or rabbit 
anti-ERK1/2 (1:1,000, ab4695, Abcam), and mouse anti-GAPDH 
(1:1,000; SC-365062, Santa Cruz Biotechnology). Wash the mem-
brane with 0.1% TBST 3 times for 5 min each at RT, horseradish 

peroxidase-conjugated goat anti-rabbit secondary antibodies 
(1:2,000; ab6721, Abcam) goat anti-mouse secondary antibodies 
(1:2,000; ab97023, Abcam), or donkey anti-goat (1:2,000; ab6885, 
Abcam) secondary antibodies, diluted in TBST were incubated at 
RT for 1.5 hr. Next, membranes were washed in 0.1% TBST 3 times 
for 5 min each at RT. The immunoreactive bands were visualized 
by an enhanced chemiluminescence (ECL) kit (170-5061, Bio-Rad 
Laboratories). The signal intensities were quantified by ImageJ 5.0 
software.

2.7 | Histochemical and 
immunofluorescence staining

Histochemical and immunofluorescence staining were performed as 
previous studies with minor modifications (Chen et al., 2019; Jiang 
et al., 2016).

For Luxol fast blue (LFB) staining, nerve sections at the thick-
ness of 3  µm were immersed in LFB solution at 60°C for 12  hr 
and then sequentially washed with 95% ethanol, water, 0.1% lith-
ium carbonate solution, 70% ethanol, and water. Next, the tis-
sue slides were dehydrated with 95% ethanol and 100% ethanol, 
rinsed with xylene, and mounted with coverslide using neutral 
balsam.

Hematoxylin and eosin (H&E) staining was performed to as-
sess the fibrosis. Cross sections of musculocutaneous nerve were 
subjected to H&E staining. Briefly, nuclei were stained with Harris 
hematoxylin for 8  min, followed by differentiation with 0.3% acid 
alcohol for several seconds. Next, cytoplasm was stained with eosin 

TA B L E  1   The primer sequences were for quantitative real-time 
PCR

Name Toward Sequences (5′−3′)

L1 Forward GGGACCTACAGCCTGACACCAAA

Reverse AGCACTGACAAAGGCGATGAACCA

hmgcr Forward ACATACTGGACTGAAACACGGGCAT

Reverse AGAACACGGCACGGAAAGAACCAT

prx Forward ACCTTCCACATCTCATTGCCT

Reverse CTTGAGTTTGTGCCCGCCAT

mpz Forward TCCTCGGGCTCAAATCCACA

Reverse ACGTCATTGGTCCTCGGTCA

egr2 Forward CCCCTCCGCTCACGCCACT

Reverse ACCCTCACCGCCTCCACTTGC

pmp22 Forward CCTACAGCAGAACAGAGACCCGAT

Reverse TCCTGATGCTCCGACCGTGA

Pou3f1 Forward CCTGTTTCCCTACCGCTTCC

Reverse GGAGAACAACCCAGAAAGCCAAA

ngfr Forward ACGACCAGCAGACCCATACGC

Reverse ATGTCGCCAGGTATCCCCGTT

β-actin Forward ACATCCGTAAAGACCTCTATGCC

Reverse TACTCCTGCTTGCTGATCCAC
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for 2 min. Sections were dehydrated by graded ethanol (95%, 95% 
and 100%, 2 dips each; 100% for 2 min; 100% for 12 min). Images 
used for observation were digitalized by light microscopy (MBF 
Nikon Microscope).

For immunofluorescence staining, the tissue slides were blocked 
with 10% normal donkey serum (NDS) in PBS at RT for 1 hr. Samples 
were incubated at 4°C overnight with a mixture of following primary 
antibodies: goat anti-L1 antibody (1:200; AF277, R&D system), rab-
bit anti-MBP (1:200, M3821, Sigma), and mouse anti-S100 (1:200, 
ab4066, Abcam). After rinsing with PBS, immunoreactivities were 
visualized by incubation with Alexa fluor 488 or 546 fluorescent sec-
ondary antibodies (1:1,000, Invitrogen). The samples mounted using 
ProLong® Gold Anti-fade reagent with 4′,6-diamidino-2-phenylin-
dole (DAPI; P36935, Gibco; Thermo Fisher Scientific, Inc.) were 
imaged using an AxioObserver A1 microscope (Carl Zeiss) with and 
AxioVision 4.6 software (Carl Zeiss).

2.8 | Cell counts

The number of LFB, L1, MBP, and S100-positive axons, fibroblast 
nuclei was calculated using ImageJ 5.0 software. This step was car-
ried out by two people who were blinded to the treatment group of 
animals.

2.9 | Statistical analysis

All statistical analyses were performed using GraphPad Prism6 soft-
ware. Data were expressed as mean  ±  SEM and performed using 
Student's t test. p < .05 was considered statistically significant.

3  | RESULTS

3.1 | BBR ameliorates the morphology of the 
abnormal musculocutaneous nerve fibers after BPRA

To assess the therapeutic effect of BBR on the morphologic im-
provement of the nerve in injured mice, the changes in the nerve 
fibers were analyzed by LFB and H&E staining.

We found that, in the PBS-treated group, scarce nerve fibers or 
degenerative, disorganized were observed; however, these abnor-
malities were dramatically ameliorated after treatment with BBR. 
Also, the number of LFB-labeled axons in the PBS-treated group 
was much lower than that in the BBR-treated group (Figure 1a–c). 
According to the statistical analysis of fibroblast nuclei evaluation, 
the amounts of fibroblasts in the BBR-treated group were signifi-
cantly decreased compared with those in the PBS-treated group 
(Figure 1d–f).

F I G U R E  1   BBR ameliorates the morphology of the abnormal musculocutaneous nerve fibers after BPRA in rats. (a–c) The number of 
LFB-positive axons is increased, and (d–f) the number of fibroblast nuclei is decreased after BBR treatment. Scale bars represent 20 μm. 
*p < .05,**p < .01, n = 3/subgroup
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These results demonstrated that BBR ameliorates the morphol-
ogy changes of the musculocutaneous nerve in mice with BPRA and 
maintains its structural integrality.

3.2 | BBR enhanced L1 expression in 
musculocutaneous nerve after BPRA

To investigate the effect of BBR on the L1 expression in musculocu-
taneous nerve, immunohistochemical staining, qPCR, and Western 
blot were performed.

We found that, the number of L1-positive axons in the PBS-
treated group was lower than in the BBR-treated group (Figure 2a–
c). Also, treatment of BBR can up-regulate the L1mRNA and protein 
levels (Figure 2d–f).

These results suggested that BBR may exert functional roles in 
BPRA via regulating L1.

3.3 | BBR promoted the remyelination in 
musculocutaneous nerve after BPRA

To investigate the effect of BBR on the remyelination in musculocu-
taneous nerve after injury, immunohistochemical staining, qPCR was 
performed to test the change of genes.

We found that, the number of L1-positive axons in the PBS-
treated group was lower than in the BBR-treated group (Figure 3a–c). 

Also, treatment of BBR can up-regulate the L1mRNA and protein 
levels (Figure 3d–f).

We also observed that, the myelination-related genes (hmgcr, 
mpz, prx, egr2, pmp22) were up-regulated (Figure 4a–e), and dedif-
ferentiation-associated genes (ngfr, pou3f1) were down-regulated 
(Figure 4f,g) in response to the treatment of BBR.

These results suggested that BBR may exert functional roles in 
BPRA via promoting remyelination.

3.4 | BBR promoted the ERK phosphorylation in 
musculocutaneous nerve after BPRA

To investigate the effect of BBR on the ERK phosphorylation in mus-
culocutaneous nerve after injury, Western blot was performed.

We observed that, the ERK phosphorylation was down-regu-
lated in response to the treatment of BBR (Figure 5a,b).

These results suggested that BBR may exert functional roles in 
BPRA via inhibiting ERK activity.

4  | DISCUSSION

When avulsion occurs, motor neurons degenerate progressively in 
the avulsed spinal segment (Koliatsos, Price, Pardo, & Price, 1994; 
Wu,  1996) and most of affected motor neurons finally die (Gu 
et al., 2004), causing the paralysis of the target muscle groups. To 

F I G U R E  2   Effect of BBR on the L1 changes in musculocutaneous nerve fibers after BPRA after BPRA in rats. BBR increased the L1-
positive axons (a–c), L1 (d) mRNA, and protein levels (e,f). Scale bar represents 20 μm. *p < .05, n = 3/subgroup
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accelerate motor recovery after BPRA, multiple surgical approaches 
have been carried out in animal models. Re-implantation surgery 
which is a widely performed technique is not able to restore motor 
function completely mainly because the axonal growth of spinal 
MNs is too slow to re-innervate the target muscles before the at-
rophy happen (Carlstedt,  2008; Carlstedt, Anand, Htut, Misra, & 
Svensson,  2004). The biceps are innervated only by the muscu-
locutaneous nerve. In order to restore motor function, injured MNs 
have to survive and regenerate axons (Carlstedt et al., 2004; Wu & 
Li, 1993). Due to the essential role of MNs survival in functional re-
covery, early and effective strategies to promote the survival of le-
sioned MNs are necessary for prolonging the time window for BPRA 
treatment (McKay Hart, Brannstrom, Wiberg, & Terenghi, 2002). 
Multiple combinatorial means have been attempted in animal mod-
els with root avulsion injuries following re-implantation (Barbizan 
et al., 2013; Chu et al., 2008). In the previous study, BBR promotes 
the motor function recovery via enhancing survival and axonal re-
generation of motoneurons (Zhang et al., 2019); in the current study, 
we revealed that BBR enhanced L1 expression and remyelination in 
musculocutaneous nerve in rats after BPRA.

L1 exerted essential roles in the survival of cultured dopami-
nergic neurons and in the substantia nigra of a mouse model of 
Parkinson's disease was considered to be neuroprotective for all of 
neurons investigated so far (Dihne, Bernreuther, Sibbe, Paulus, & 

Schachner, 2003). Overexpressed L1 in transfected embryonic stem 
cells supported re-growth and decreased the dying-back of axons 
in corticospinal tract of adult mice with spinal cord lesion (Chen, 
Bernreuther, Dihne, & Schachner,  2005; He et  al.,  2012). In acute 
and chronic injuries of the central nervous system of adult mam-
mals, which are reduced from regeneration in the inhibitory tissue 
environment, L1 promotes regeneration-conducive processes (Chen 
et  al.,  2007; Roonprapunt et  al.,  2003). After peripheral nerve in-
jury and spinal cord injury, L1 improves myelination and accelerates 
motor recovery (Guseva et al., 2011; Lavdas et al., 2010). In the pres-
ent study, we observed that BBR up-regulated L1 expression after 
BPRA.

The formation of myelin depends on the interaction between 
the axons and Schwann cells. After peripheral nerve injury, Schwann 
cells are released from the degenerating nerve, dedifferentiated, and 
then actively participated in axonal regeneration(Namgung, 2014). 
Therefore, BBR may affect one or both of these aspects to increase 
remyelination. In the present study, we observed that BBR up-regu-
lated MBP and S100 expression levels, and the myelination-related 
genes, and down-regulated the dedifferentiation-associated genes.

It has been previously reported that Mek-Erk signaling was impli-
cated in mediating Schwann cell dedifferentiation and myelin break-
down after acute nerve injury (Napoli et al., 2012). Also, sustained 
MAPK/ERK inactivation in adult schwann cells promotes nerve 

F I G U R E  3   BBR up-regulates the MBP and S100 expression levels in musculocutaneous nerve after BPRA in rats. The number of MBP-
positive axons (a–c) and S100-positive axons (d–f) is increased in response to BBR treatment. Scale bars represent 20 μm. *p < .05,**p < .01, 
n = 3/subgroup
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repair (Cervellini et al., 2018). In the present study, we observed that 
BBR inhibited the ERK phosphorylation.

5  | CONCLUSION

Taken together, we preliminarily hypothesize that treatment of BBR 
may promote remyelination of regenerating axons after BPRA via 

regulating L1. These observations potentially support a novel insight 
into the treatment of multiple disorders tightly associated with L1 
malfunction.

Although the results in the present study look promising, 
our study exhibited several limitations: More sophisticated ap-
proach, such as using the L1 siRNA, should be performed to 
gain insight into the relationship between BBR and L1 in BPRA 
pathology.

F I G U R E  4   BBR up-regulates the mRNA levels of myelination-associated genes in musculocutaneous nerve after BPRA in rats. The mRNA 
levels of myelination-associated genes (hmgcr, mpz, prx, egr2, pmp22) are increased (a–e), and dedifferentiation-associated genes (ngfr, 
pou3f1) were down-regulated (f,g) in response to the treatment of BBR. *p < .05, n = 3/subgroup

F I G U R E  5   BBR down-regulates 
the phosphorylation levels of ERK in 
musculocutaneous nerve after BPRA in 
rats. ERK phosphorylation levels (a,b) 
were down-regulated in response to 
the treatment of BBR. *p < .05, n = 3/
subgroup
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