
Deschamps and Ries BMC Bioinformatics (2020) 21:456
https://doi.org/10.1186/s12859-020-03727-8

SOFTWARE Open Access

EMU: reconfigurable graphical user
interfaces for Micro-Manager
Joran Deschamps* and Jonas Ries

*Correspondence:
joran.deschamps@embl.de
European Molecular Biology
Laboratory, Meyerhofstrasse 1,
Heidelberg, Germany

Abstract
Background: Advanced light microscopy methods are key to many biological
studies. Their ease of use depends, besides experimental aspects, on intuitive graphical
user interfaces (GUI). The open-source software Micro-Manager offers a universal GUI
for microscope control but requires implementing plugins to further tailor it to specific
systems. However, GUIs are often tailored to a single system. Since even similar devices
can have different Micro-Manager device properties, such as power percentage versus
absolute power, directly transferring a GUI to another instrument usually requires
changing the source-code.

Results: We developed Easier Micro-Manager User interface (EMU), a Micro-Manager
plugin, to simplify building flexible and reconfigurable GUIs. EMU can be seamlessly
used with the Java Swing library to create device-independent GUIs for Micro-Manager.
Such GUIs are easily transferred to another microscope thanks to an intuitive
configuration menu that includes mapping of the device properties to the GUI
functionalities and customization of the graphical elements. We also provide resources
such as user and programming guides, a tutorial and code examples.

Conclusions: Micro-Manager users now have a powerful tool to improve the user
experience on their instruments. EMU GUIs can be easily configured for new
microscopes and shared with other research groups. In the future, newly developed
GUIs will be added to EMU to benefit the whole community.

Keywords: Microscopy, User interface, GUI, Micro-Manager

Background
Light microscopy is an ever-growing field with countless applications in biosciences. A
substantial portion of technology developments and cutting-edge research are carried out
on custommicroscopes because of their high flexibility. Beyond the mechanical and opti-
cal requirements of such microscopes, researchers face the challenges of controlling the
hardware and presenting the users with an intuitive graphical user interface (GUI). While
control software are often developed for a specific instrument, a number of more general

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03727-8&domain=pdf
http://orcid.org/0000-0001-8462-2883
mailto: joran.deschamps@embl.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Deschamps and Ries BMC Bioinformatics (2020) 21:456 Page 2 of 13

platforms are available. These software can be commercially available, such as Meta-
Morph (Molecular Devices), SlideBook (3i), SciScan (Scientifica) or ScanImage (Vidrio)
[1], or shared online by their authors. They span a variety of programming languages,
allowing users to work with their preferred tools and facilitating post-processing and
analysis. Examples of such microscope control software are found for LabView (National
Instruments) [2], Matlab (MathWorks) [3] or Python [4–7]. Another well-established
alternative is Micro-Manager (μManager) [8], an open-source software written in C++
and Java, and based on ImageJ [9].
μManager is a ready-to-use platform compatible with a wide range of hardware devices.

The support for new devices is community driven and constantly expanding. In addition,
μManager features the possibility to run scripts or plugins to perform custom experi-
ments. μManager offers a universal GUI and some customization tools that are easy to
set-up and use. However, because they are aimed at covering general needs, they cannot
rival with a tailored GUI in terms of user experience. The preferred way to implement a
GUI in μManager is by writing a plugin in Java, which is automatically detected at start-up
and can be loaded from the main menu. Several dedicated Java libraries exist in order to
build a GUI, among which the widely used Swing toolkit [10]. In order to simplify the pro-
gramming task, most major Java integrated development environments provide graphical
tools based on Swing. With only a basic understanding of Swing, developers can assemble
complex GUIs by placing (“drag-and-drop”) components on a panel or a frame. In order
to control a microscope, the Swing GUIs should be made compatible with μManager plu-
gin system and call its application programming interface (API) to modify the devices’
states whenever users interact with the graphical components.
Yet, similar devices might have different properties, such as absolute laser power ver-

sus laser power percentage; as well as different property state values, such as “On” versus
“1”. These differences originate from the absence of industry standards for device com-
munication API or simply from distinct inherent working principles. Additionally, device
properties are defined in μManager device adapters, which are implemented by the man-
ufacturers or individual researchers, and lack device property standardization as well.
Therefore, in order to benefit the community, μManager GUIs should be flexible enough
to accommodate these discrepancies without requiring modifying the source code.
Several GUIs have been developed to control complex microscopes with μManager,

such as for the Olympus IX83 [11], OpenSPIM [12], OpenSpin [13] and diSPIM [14]
microscopes. Because these GUIs perform specialised acquisitions and hardware control,
they are meant to work with very specific hardware devices. As a result, any departure
from the original devices requires modifying the source-code to achieve compatibility.
Regrettably, this is a common trait of GUIs, which are generally bound to a single system
and never benefit other users.
Here, we present a framework, called Easier Micro-Manager User interfaces (EMU),

allowing developers to build μManager GUIs without explicit references to the devices
or their properties. While EMU GUIs are, as previously, assembled using Swing, they
additionally declare settings, properties and parameters. These are automatically aggre-
gated upon starting EMU and can be configured through an intuitive graphical interface.
The EMU configuration specifies the mapping between device and GUI properties, as
well as the settings’ and parameters’ values. Thus, each EMU GUI is independent from
the devices and can be rapidly configured to suit a microscope or accommodate device

Deschamps and Ries BMC Bioinformatics (2020) 21:456 Page 3 of 13

Fig. 1 EMU plugin example. SimpleUI is a GUI available by default in EMU. It can control four lasers and an
optional filterwheel. The solid box delimits the ConfigurableMainFrame instance while the dashed boxes are
the two base ConfigurablePanel objects of the GUI. All titles and colors are GUI parameters, while the GUI
properties are, for each laser, the power percentage and on/off, and the filter wheel position. Additional GUI
parameters allow disabling the on/off buttons. Finally, a plugin setting hides or shows the filter wheel panel

exchanges. Finally, EMU aims at offering a repository of already existing GUIs for the
community to use.

Implementation
EMU is a μManager 2.0.0-gamma plugin. It is written in Java and includes its own plu-
gin system. EMU can be started from the plugin menu of μManager. When starting EMU
for the first time, users can choose a GUI among the list of available EMU plugins, before
configuring it using the EMU configuration menu. The configuration file is saved locally
and is loaded automatically at the next start. In the next sections, we showcase how
to implement an EMU plugin with code examples and how to configure the plugin in
μManager.

Implementing an EMU plugin

The EMU framework is based on the Java Swing toolkit [10]. EMU plugins consist
of multiple ConfigurablePanel objects arranged within a single ConfigurableMainFrame

Table 1 UIProperty class and child classes. A UIProperty object only changes the state of a device
property within the μManager device property limits or allowed values. UIProperty child classes have
additional constraints, as specified in the second column. In the EMU configuration menu, these
constraints lead to additional fields as indicated in the third column

Class Note in EMU configuration menu

UIProperty General GUI property device and property drop-down lists

SingleStateUIProperty Accepts a single-state + field for the state value

TwoStateUIProperty Accepts an On and an Off state + fields for the On and Off values

MultiStateUIProperty Accepts a fixed number of states + field for each state value

RescaledUIProperty Rescales value to slope*v+offset + fields for the slope/offset values

Deschamps and Ries BMC Bioinformatics (2020) 21:456 Page 4 of 13

instance, as illustrated in Fig. 1. ConfigurablePanel and ConfigurableMainFrame are
subclasses of the Swing classes JPanel and JFrame, respectively.
A ConfigurablePanel is a unit of device control. In the following code snippet, we create

a subclass of ConfigurablePanel similar to the laser panel of Fig. 1, with a slider to set the
laser power and a toggle button to turn it on or off. We also create a border, with title,
around the graphical components. Since ConfigurablePanel is a subclass of JPanel, the
laying out of components is performed using Swing:

Several abstract methods from ConfigurablePanel must additionally be implemented
(see Additional file 1). Three of these methods concern the GUI properties: initilizeProp-
erties, addComponentListeners and propertyhasChanged.
In initilizeProperties, we need to declare the GUI properties. Since we want to control

two device properties, laser power and laser on/off, we have to declare two GUI prop-
erties. Different UIProperty subclasses exist (see Table 1 and Additional file 2), and the
choice of the class depends mainly on the graphical components to which it is linked. For
instance, the slider allows setting a value between 0 and 100 by default. As we do not know
whether the device property ultimately linked to the slider will be a power percentage or
an absolute power, we should declare a RescaledUIProperty. In the EMU configuration
menu, this type of property allows users to set scaling factors mapping the slider value to
a suitable range with respects to the device property (see Fig. 2). Likewise, the laser opera-
tion is controlled by a toggle button. Therefore we choose a property with only two states
(TwoStateUIProperty). The on and off states are set in the EMU configuration menu as
well. Declaration of the GUI properties is done as follows:

Deschamps and Ries BMC Bioinformatics (2020) 21:456 Page 5 of 13

When the user interacts with a graphical component, the state of the corresponding
device property should change. In Swing, you can register a listener with a component,
the former being called when the component’s state is modified. In a listener implemen-
tation, the ConfigurablePanel should call setPropertyValue(String, String) (see Additional
file 1) to update the GUI property given the component’s new state. In turn, the UIProp-
erty will change the state of the device property. The listeners can be registered with the
components in the constructor or in the addComponentListeners method. Alternatively,
the EMU SwingUIListeners class provides a number of static methods that cover common
cases. For instance, here, a convenient way to have the slider and toggle button modify
their respective properties is:

Whenever the state of the graphical components needs to be updated, the Config-
urablePanel instances are notified, which triggers the propertyhasChanged method. In

Fig. 2 Configuring GUI properties. In the “Properties” tab of the EMU configuration menu, users can map
device properties to GUI properties using drop-down lists. Additionally, some GUI properties have state
values than need to be specified. Here shown for SimpleUI

Deschamps and Ries BMC Bioinformatics (2020) 21:456 Page 6 of 13

this method, we need to update the state of the graphical components to reflect the device
properties’ values. Here, this means setting the slider value to the (rescaled) laser power,
or switching the toggle button to the state of the laser operation. This is done in the
following way:

Note that here, we made use of a TwoStateUIProperty class method (see Additional file
2).
With these three methods implemented, any numerical device property can be linked

to the slider, while any device property can be switched between two states by the toggle
button.
Another aspect of EMU panels are the GUI parameters, which are meant to add addi-

tional levels of customization to the panel, such as title, colors or button texts. Similarly
to the properties, they are declared in initializeParameters. Parameters are not modified
by the panel and their value only changes at start-up when the configuration is loaded,
or when a new configuration is saved, which triggers a call to the parameterhasChanged
method. Various types of parameters are available in EMU (see Table 2 and Additional
file 3).
Since we added a titled border to the panel, we can use a StringUIParameter to let users

choose the border title:

Other mechanisms make EMU panels flexible but are beyond the scope of this section,
for instance: internal properties (see Additional file 4), which are values shared between
panels; the possibility to map multiple GUI properties to the same device property; or
the mapping of a GUI property to a bundle of device properties, known as “configuration
group preset” in μManager.

Deschamps and Ries BMC Bioinformatics (2020) 21:456 Page 7 of 13

Table 2 UIParameter child classes. Each UIParameter child class holds a member variable
represented by the type indicated in the second column. In the EMU configuration menu, the GUI
parameters appear as specified in the third column

Class Parameter type in EMU configuration menu

BoolUIParameter Boolean checkbox

ColorUIParameter java.awt.Color drop-down list of colors

ComboUIParameter String drop-down list of Strings

DoubleUIParameter Double field

IntegerUIParameter Integer field

StringUIParameter String field

UIPropertyParameter String drop-down list of UIProperty labels

Finally, the ConfigurablePanel subclasses are assembled within a single Configurable-
MainFrame subclass. The latter declares its own parameters, called settings (see Table 3
and Additional file 5), which are instantiated in getDefaultPluginSettings. In the same vein
as GUI properties and parameters, their values are defined in the EMU configuration.
ConfigurablePanel subclass instances should be created in the initComponents methods,
in order to be able to retrieve the settings’ values at runtime. In the following example,
the ConfigurableMainFrame subclass uses an IntSetting to let users choose the number of
lasers in the GUI.

In order to be detected by EMU, one additional class is required (UIPlugin) before pack-
aging the GUI into a .jar file. The detailed steps can be found in the EMU guide [15],

Deschamps and Ries BMC Bioinformatics (2020) 21:456 Page 8 of 13

Table 3 Setting child classes. Each class holds a member variable represented by the type indicated
in the second column. All Setting child classes appear in the EMU configuration menu as a field,
except for the BoolSetting settings, which appear as checkboxes

Class Setting type in EMU configuration menu

BoolSetting Boolean checkbox

DoubleSetting Double field

IntSetting Integer field

StringSetting String field

including the source code for the plugin of Fig. 1. In the next section, we will look at a the
configuration of the latter.

Configuring an EMU plugin

The EMU configuration menu is shown each time a plugin without known calibration is
started. Later, it can be accessed by clicking on the menu bar “Configuration” (see Fig. 1),
then “Modify configuration”. The EMU configuration menu consists of four tabs: “Plugin
Settings”, “Properties”, “Parameters” and “Global Settings”.
In the “Properties” tab (see Fig. 2 for SimpleUI), users can map μManager device prop-

erties to GUI properties by first selecting the device in the drop-down list of the second
column, then the relevant device property in the third column. Some GUI properties have
additional states that need to be configured as well (see Table 1). In particular, this is the
case for the GUI properties used in the previous section. States are related to the actual
device property values and can be easily inferred from the “device property browser”. The
latter is accessible from the “Devices” menu in μManager main window.
In the “Parameters” tab (see Fig. 3), each GUI parameter appears as a field, a drop-down

list or a checkbox, depending of their type (see Table 2). Finally, the other tabs are the
frame settings (“Plugin Settings”) or EMU options (“Global Settings”).
After saving the EMU configuration, a human-readable file is automatically created in a

subfolder of the μManager installation folder. Multiple configurations can coexist and be
saved in the EMU configuration file. The EMU menu (see the menu bar in Fig. 1) allows
users to switch between GUIs or between configurations in a single click. Finally, at each
start of EMU, the configuration file is loaded and the last known plugin configured.

Example cases

To illustrate the flexibility of EMU plugins, we can consider a simple example such as Sim-
pleUI (see Fig. 1). The plugin controls four lasers, allowing users to turn their emission on
and off and change their power percentage. Laser names and colors can be set in the EMU
configuration menu (see Fig. 3). Several cases can be encountered when working with
lasers in μManager: (i) lasers have an operation (on/off) and a power percentage device
property, (ii) some lasers have an absolute power instead of a power percentage device
property and (iii) some lasers do not have a laser emission device property [16]. In (i), the
GUI properties can be mapped to the devices and their relevant device properties. Since
the GUI property representing the laser percentage is an instance of RescaledUIProp-
erty (see Table 1), users can leave the slope and offset values (see Fig. 2) equal to the
default 1 and 0, respectively. For the lasers in (ii), the laser percentage GUI property is
mapped to an absolute power device property. There, the slope parameter should be set
to max/100 (with max being the maximum laser power), effectively rescaling the power

Deschamps and Ries BMC Bioinformatics (2020) 21:456 Page 9 of 13

Fig. 3 Configuring GUI parameters. In the “Parameters” tab of the EMU configuration menu, users can set the
values of the GUI parameters. Here shown for SimpleUI

percentage to the range {0,max} of the device property. Finally, for lasers in the case
(iii), no laser operation device property exists. The laser operation GUI properties should
remain unconfigured. Using the GUI parameters, the on/off buttons can be disabled. In
all three cases, the GUI can be configured to reflect an accurate picture of the microscope
lasers in spite of their differences.
The previous example plugin is simple. However there is no limit on how complex an

EMU plugin can be. We routinely use htSMLM [17] (see Additional file 6), an EMU plu-
gin aimed at controlling a wide-field microscope for localization microscopy [18–20].
htSMLM features four generic lasers, two optional lasers compatible with the iBeamS-
mart series from Toptica, an axial focusing panel, up to four filter wheels and multiple
toggle buttons. It also includes tools to automate activation in localization microscopy
and to perform acquisition series (localization microscopy, multi-slice localization, snap-
shot, time series, z-stack) that take into account the device properties linked to the GUI.
htSMLM has been used by scientists with a wide variety of backgrounds and projects,
ranging from biology to optics [21–24].

Discussion
μManager GUIs are too often tailored to a specific system and are not usable for instru-
ments with similar, yet different, devices. Therefore, such GUIs are only shared when the

Deschamps and Ries BMC Bioinformatics (2020) 21:456 Page 10 of 13

system has the potential to be broadly replicated. Users without programming skills are
limited to the μManagermain GUI window for device control.While themain GUI covers
general need and is thus applicable to most instruments, user experience can be largely
improved by using more specialized GUIs in conjunction with the main window. EMU
fills this gap by providing device-independent and easily configurable GUIs for μManager.
Since microscopes are composed of a wide variety of devices, the diversity and redun-

dancy of devices prevent automated allocation of the device properties to graphical
components without using stringent constraints. In order to give a high degree of flexi-
bility to developers, EMU consists of a set of classes that can be seamlessly inserted in a
Swing GUI. The two main components, frames and panels, declare parameters matching
the constraints of the graphical components rather than those of the intended devices.
Hence, assumptions are limited to whether a certain type of device can be controlled
by a specific graphical component. For instance, laser power is a device property that is
undoubtedly determined by a number within a range and can therefore be represented
graphically by a slider linked to a RescaledUIProperty. Similarly, a filter wheel has fixed
positions, regardless of whether the actual device positioning is continuous or discrete,
and can be paired with a set of buttons linked to aMultiStateUIProperty.
The implementation and graphical layout of an EMUGUI is left to developers. Because

EMU provides an advanced configuration system and the mechanism of interaction with
the device properties, they can focus solely on the GUI design and the choice of properties
and parameters fitting the GUI desired functionalities. EMU automatically aggregates the
GUI properties and parameters in its configuration menu, which makes the framework
particularly beneficial for complex GUIs. Moreover, EMU is compatible with “drag-and-
drop” software found in most integrated development environment. Since EMU’s API is
designed to be simple and involves only a few additional lines of code, plugins can be built
and put to use rapidly.
The goal of EMU is to promote GUIs that are transferable between similar instruments.

Indeed, a GUI taking advantage of EMU’s flexibility will be usable on any other micro-
scope consisting of similar devices. Nonetheless, a few limitations can be encountered.
If the GUI was designed to work with a device property specific to a single manufac-
turer, then the corresponding functionality will not be of interest to other users. In such
a case, developers should ensure that settings or parameters can be used to simply dis-
able this functionality. As an example, htSMLM was designed to control, among others,
iBeamSmart lasers (Toptica). Since these lasers have unconventional properties, such as
the so-called fine settings, the corresponding panels can be disabled using parameters.
Note that unused properties do not alter the function of the rest of the GUI. Similarly,
limitations stemming from the plugin design itself can occur. For instance, a maximum
laser power device property expected to set the upper bound of a slider is obviously not
compatible with lasers that do not have such a property. Using a parameter to set the
maximum value is an easy work-around for developers. Alternatively, the slider could
represent a percentage, rather than an absolute value, and be linked to a RescaledUIProp-
erty. Finally, unconventional device property implementations can potentially be found
in μManager, such as numerical device properties implemented with a string type. These
would prevent allocating it to RescaledUIProperty GUI properties, which can only be
paired with float or integer device properties. Other GUI properties (see Table 1), on the
other hand, are compatible with any device property.

Deschamps and Ries BMC Bioinformatics (2020) 21:456 Page 11 of 13

EMU includes an intuitive configuration menu allowing users to map their instrument
device properties to the GUI properties, as well as setting the various parameters to
improve the GUI friendliness and further tailor it to themicroscope. Configuring an EMU
plugin for an instrument only takes a couple of minutes. In the same way, exchanging
devices on the instrument is equally convenient, as users only need to start the EMU con-
figuration menu and change the relevant lines to reflect the presence of the new device.
It is worth noting that the EMU configuration is different from the μManager configura-
tion. The latter describes which devices are loaded in μManager and how communication
is performed, while the former defines the EMU GUI look and which device properties
are linked to the GUI functionalities. EMU plugins are therefore complementary to the
μManager main window and an obvious consequence is that only devices compatible with
μManager can be used with EMU.
In order to help developers use EMU, we provide online a variety of resources [15],

including a user and a programming guide, a step-by-step tutorial on how to create an
EMU plugin, as well as multiple code examples exploring all aspects of EMU’s API. EMU
is included in the latest μManager distribution and comprises two example plugins.

Conclusion
μManager is a successful open-source software and is widely used to control custom
microscopes. However, its universal interface does not provide a user experience com-
parable to tailored GUIs. Moreover, most GUIs are developed for a specific system and
are never used elsewhere. Here, we presented EMU, a framework that allows developers
to build device-independent GUIs that can easily be transferred to another microscope,
as well as to other research groups. It also includes an intuitive graphical configuration
menu, enabling users to rapidly tailor a GUI to their instrument. We hope that in the
future developers will contribute their own GUI to EMU in order to benefit the whole
community. The source code can be found on Github following the link in reference [25].

Availability and requirements
Project name: emu
Project home page: https://jdeschamps.github.io/EMU-guide
Operating system(s): Platform independent
Programming language: Java
Other requirements:Micro-Manager 2.0.0-gamma
License: LGPL-2.1
Any restrictions to use by non-academics: None

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03727-8.

Additional file 1: UML diagram: ConfigurableMainFrame and ConfigurablePanel. Unified Modeling Language (UML)
diagram of the ConfigurableMainFrame and ConfigurablePanel classes. The two abstract classes inherit from the Swing
classes JFrame and JPanel, respectively. Additionally, ConfigurableMainFrame implements the ConfigurableFrame
interface. As both classes are abstract, their abstract methods must be implemented by developers when creating the
ConfigurableMainFrame subclass and ConfigurablePanel subclasses. Each class is represented by a box with three
compartments: class name, class variables and class methods. Abstract class and interface names are written in italic.
Inheritance relationship between two classes is shown as a solid line with an arrow pointing towards the superclass,
while implementation of an interface is shown as a dashed line with an arrowhead pointing to the interface class.
Aggregation, or class instances being owned by another class, is shown as a solid line with diamond head. The

https://jdeschamps.github.io/EMU-guide
https://doi.org/10.1186/s12859-020-03727-8

Deschamps and Ries BMC Bioinformatics (2020) 21:456 Page 12 of 13

visibility of member variables and methods is indicated by the following signs: - (private), # (protected) or + (public).
The diagram shows all private member variables as well as all non-private member methods. Abstract methods are
displayed in italic. Variable and method return types, if applicable, are indicated after a colon. The corresponding
Javadoc is available in the EMU source-code [25].

Additional file 2: UML diagram: UIProperty and subclasses. UML diagram of the UIProperty class and its subclasses.
These classes are instantiated in ConfigurablePanel subclasses and are ultimately mapped using the EMU
configuration to μManager device properties. Descriptions of each class’ specificity can be found in Table 1. Each class
is represented by a box with three compartments: class name, class variables and class methods. Inheritance
relationship between two classes is shown as a solid line with an arrow pointing towards the superclass. The visibility
of member variables and methods is indicated by the following signs: - (private), # (protected) or + (public). The
diagram shows all private member variables as well as all non-private member methods. Static methods are
underlined. Variable and method return types, if applicable, are indicated after a colon. The corresponding Javadoc is
available in the EMU source-code [25].

Additional file 3: UML diagram: UIParameter and subclasses. UML diagram of the abstract UIParameter class and its
subclasses. These classes are instantiated in ConfigurablePanel subclasses and their respective member variable
value_ is set to a user-defined value using the EMU configuration. Each class is represented by a box with three
compartments: class name, class variables and class methods. Abstract class names are written in italic. Parameterized
class types are shown in a box on the top right corner of each class. Inheritance relationship between two classes is
shown as a solid line with an arrow pointing towards the superclass. The visibility of member variables and methods is
indicated by the following signs: - (private), # (protected) or + (public). The diagram shows all privatemember variables
as well as all non-private member methods. Abstract methods are displayed in italic. Variable and method return
types, if applicable, are indicated after a colon. The corresponding Javadoc is available in the EMU source-code [25].

Additional file 4: UML diagram: InternalProperty and subclasses. UML diagram of the abstract InternalProperty class
and its subclasses. Internal properties are shared between ConfigurablePanel subclasses, provided that they are of the
same type and are given the same label. Each class is represented by a box with three compartments: class name,
class variables and class methods. Abstract class names are written in italic. Parameterized class types are shown in a
box on the top right corner of each class. Inheritance relationship between two classes is shown as a solid line with an
arrow pointing towards the superclass. The visibility of member variables and methods is indicated by the following
signs: - (private), # (protected) or + (public). The diagram shows all private member variables as well as all non-private
member methods. Abstract methods are displayed in italic. Variable and method return types, if applicable, are
indicated after a colon. The corresponding Javadoc is available in the EMU source-code [25].

Additional file 5: UML diagram: Setting and subclasses. UML diagram of the abstract Setting class and its subclasses.
These classes are instantiated in the ConfigurableMainFrame subclass and their respective member variable value_ is
set to a user-defined value using the EMU configuration. Each class is represented by a box with three compartments:
class name, class variables and class methods. Abstract class names are written in italic. Parameterized class types are
shown in a box on the top right corner of each class. Inheritance relationship between two classes is shown as a solid
line with an arrow pointing towards the superclass. The visibility of member variables and methods is indicated by
the following signs: - (private), # (protected) or + (public). The diagram shows all private member variables as well as
all non-private member methods. Abstract methods are displayed in italic. Variable and method return types, if
applicable, are indicated after a colon. The corresponding Javadoc is available in the EMU source-code [25].

Additional file 6: htSMLM plugin. htSMLM is a complex EMU plugin aimed at controlling a wide-field or localization
microscope. Besides the controls for multiple lasers, filter wheels and focus, it features tools to perform series of
sequential acquisition (e.g. localization microscopy, multi-slice localization, time series or z-stack) and automated laser
activation.

Abbreviations
API: Application programming interface; EMU: Easier Micro-Manager User interfaces; GUI: graphical user interface;
μManager: Micro-Manager

Acknowledgements
We would like to thank Serge Dmitrieff, Philipp Hoess, Robin Diekmann and Ingmar Schoen for comments on the
manuscript.

Authors’ contributions
J.D. and J.R. designed the project. J.D. implemented and tested the software. All authors have read and approved the
manuscript.

Authors’ information
Cell Biology and Biophysics Unit, EuropeanMolecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany Joran
Deschamps and Jonas Ries.

Funding
This work was supported by the European Research Council (CoG-724489), the National Institutes of Health (U01
EB021223) and the Human Frontier Science Program (RGY0065/2017). These entities had no part in the design of this
software nor the collection, analysis, or interpretation of data or composition of the manuscript. Open access funding
provided by Projekt DEAL.

Availability of data andmaterials
EMU is distributed with Micro-Manager 2.0.0-gamma nightly-builds. The source code, guide, tutorial and examples are
available at:
https://github.com/jdeschamps/EMU

https://github.com/jdeschamps/EMU

Deschamps and Ries BMC Bioinformatics (2020) 21:456 Page 13 of 13

https://jdeschamps.github.io/EMU-guide.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 26 March 2020 Accepted: 31 August 2020

References
1. Pologruto TA, Sabatini BL, Svoboda K. ScanImage: flexible software for operating laser scanning microscopes.

Biomed Eng Online. 2003;2:13.
2. Langer D, van’t Hoff M, Keller AJ, Nagaraja C, Pfäffli OA, Göldi M, Kasper H, Helmchen F. HelioScan: A software

framework for controlling in vivo microscopy setups with high hardware flexibility, functional diversity and
extendibility. J Neurosci Methods. 2013;215(1):38–52.

3. Pallikkuth S, Meddens M, Fazel M, Farsibaf H, Farzam F, Wester M, Lidke K. A MATLAB-based instrument control
package for fluorescence imaging. Biophys J. 2018;114(3):532.

4. Campagnola L, Kratz MB, Manis PB. ACQ4: an open-source software platform for data acquisition and analysis in
neurophysiology research. Front Neuroinform. 2014;8:3.

5. Barabas FM, Masullo LA, Stefani FD. Note: Tormenta: An open source Python-powered control software for camera
based optical microscopy. Rev Sci Instrum. 2016;87(12):126103.

6. Gronle M, Lyda W, Wilke M, Kohler C, Osten W. itom: an open source metrology, automation, and data evaluation
software. Appl Opt. 2014;53(14):2974–82.

7. Baddeley D, Balduf L, Barentine AES, Chung K, Goodman L, Graff M, Hartwich T, Lin R, Lin Y, Marin Z, Padron
Castillo D, Philips M, Pinto DMS, Soeller C. The PYthon Microscopy Environment (PYME). http://python-microscopy.
org. Accessed 06 July 2020.

8. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N. Advanced methods of microscope control
using μManager software. J Biol Methods. 2014;1(2):10.

9. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):
671–5.

10. Oracle. The Swing tutorial. https://docs.oracle.com/javase/tutorial/uiswing. Accessed 06 July 2020.
11. PhamQL, Chege D, Dijamco T, SurblyteM, Naik A, Campbell K, Tong N-A-N, Voronov R. Open-sourcematlab-based

graphical user interface (gui) for computer control of microscopes using micro-manager. arXiv:1904.1323. 2019.
12. Pitrone PG, Schindelin J, Stuyvenberg L, Preibisch S, Weber M, Eliceiri KW, Huisken J, Tomancak P. OpenSPIM: an

open-access light-sheet microscopy platform. Nat Methods. 2013;10(7):598–9.
13. Gualda EJ, Vale T, Almada P, Feijó JA, Martins GG, Moreno N. OpenSpinMicroscopy: an open-source integrated

microscopy platform. Nat Methods. 2013;10(7):599–600.
14. Kumar A, Wu Y, Christensen R, Chandris P, Gandler W, McCreedy E, Bokinsky A, Colón-Ramos DA, Bao Z,

McAuliffe M, Rondeau G. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat
Protoc. 2014;9(11):2555–73.

15. Deschamps J. EMU guide. https://jdeschamps.github.io/EMU-guide. Accessed 06 July 2020.
16. Schröder D, Deschamps J, Dasgupta A, Matti U, Ries J. Cost-efficient open source laser engine for microscopy.

Biomed Opt Express. 2020;11(2):609–23.
17. Deschamps J. htSMLM. https://github.com/jdeschamps/htSMLM. Accessed 06 July 2020.
18. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz

J, Hess HF. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313(5793):1642–5.
19. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy

(STORM). Nat Methods. 2006;3(10):793–5.
20. Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization

microscopy. Biophys J. 2006;91(11):4258–72.
21. Salvador-Gallego R, Mund M, Cosentino K, Schneider J, Unsay J, Schraermeyer U, Engelhardt J, Ries J, García-Sáez

AJ. Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J. 2016;35(4):
389–401.

22. Deschamps J, Rowald A, Ries J. Efficient homogeneous illumination and optical sectioning for quantitative
single-molecule localization microscopy. Opt Express. 2016;24(24):28080–90.

23. Mund M, van der Beek JA, Deschamps J, Dmitrieff S, Hoess P, Monster JL, Picco A, Nédélec F, Kaksonen M, Ries J.
Systematic nanoscale analysis of endocytosis links efficient vesicle formation to patterned actin nucleation. Cell.
2018;174(4):884–96.

24. Thevathasan JV, Kahnwald M, Cieśliński K, Hoess P, Peneti SK, Reitberger M, Heid D, Kasuba KC, Hoerner SJ, Li Y,
Wu YL. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat Methods.
2019;16(10):1045–53.

25. Deschamps J. EMU source code. https://github.com/jdeschamps/EMU. Accessed: 06 July 2020.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://jdeschamps.github.io/EMU-guide
http://python-microscopy.org
http://python-microscopy.org
https://docs.oracle.com/javase/tutorial/uiswing
https://jdeschamps.github.io/EMU-guide
https://github.com/jdeschamps/htSMLM
https://github.com/jdeschamps/EMU

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Implementing an EMU plugin
	Configuring an EMU plugin
	Example cases

	Discussion
	Conclusion
	Availability and requirements
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03727-8.
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6

	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

