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Abstract
Purpose The aim of this study was to evaluate the ability of 18F-FDG PET/CT texture analysis to predict the exact pathological
outcome of thyroid incidentalomas.
Methods 18F-FDG PET/CT images between March 2010 and September 2018 were retrospectively reviewed in patients with
focal 18F-FDG uptake in the thyroid gland and who underwent fine needle aspiration biopsy from this area. The focal uptake in
the thyroid gland was drawn in 3D with 40% SUVmax threshold. Features were extracted from volume of interest (VOI) using
the LIFEx package. The features obtained were compared in benign and malignant groups, and statistically significant variables
were evaluated by receiver operating curve (ROC) analysis. The correlation between the variables with area under curve (AUC)
value over 0.7 was examined; variables with correlation coefficient less than 0.6 were evaluated with machine learning
algorithms.
Results Sixty patients (70% train set, 30% test set) were included in the study. In univariate analysis, a statistically significant
difference was observed in 6 conventional parameters, 5 first-, and 16 second-order features between benign and malignant
groups in train set (p < 0.05). The feature with the highest benign-malignant discriminating power was GLRLMRLNU

(AUC:0.827). AUC value of SUVmax was calculated as 0.758. GLRLMRLNU and SUVmax were evaluated to build a model
to predict the exact pathology outcome. Random forest algorithm showed the best accuracy and AUC (78.6% and 0.849,
respectively).
Conclusion In the differentiation of benign-malignant thyroid incidentalomas, GLRLMRLNU and SUVmax combination may be
more useful than SUVmax to predict the outcome.
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Introduction

Especially in the field of oncology, with the increase in the use
of 18F-fluorodeoxyglucose (FDG) positron emission
tomography/computed tomography (PET/CT), an increase in
the detection of some unexpected lesions is observed in whole
body imaging [1]. Thyroid incidentaloma is a thyroid lesion
detected in non-thyroid imaging. Benign-malignant differen-
tiation of focal 18F-FDG uptake in thyroid gland in PET/CT is
important for both clinicians and nuclear medicine physicians.
For this purpose, the most studied parameter is the standard
uptake value (SUV). In many studies, there was a significant
difference in SUV between benign and malignant thyroid le-
sions. However, it is still difficult to distinguish between be-
nign and malignant thyroid incidentalomas by SUV alone due
to significant overlap between benign and malignant lesions.
Also, in some studies, a certain SUVmax cut-off value could
not be determined which could provide a distinction between
benign and malignant lesions [2–10].
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In some studies, the use of parameters other than SUVmax
in the differentiation of benign and malignant lesions was
investigated. Volume-based parameters such as total lesion
glycolysis (TLG) and metabolic tumor volume (MTV) were
considered to have potential clinical value as well as SUVmax
in the differential diagnosis of thyroid incidentaloma [11, 12].

Radiomics is a rapidly developing field of research that
expresses quantitative data extraction and analysis from med-
ical images such as CT or PET [13]. Radiomic approach has
recently increased attention because radiomic data can help in
the diagnosis, prognosis, and predicting the response of the
disease [14–18]. The main idea underlying radiomic is that
there is hidden information that cannot be seen in medical
images. This information can be accessed by advanced texture
and shape analysis. Texture analysis refers to various mathe-
matical models to measure the relationships between the sig-
nal intensity of pixels and their relative position in the image.

Few data are available in the literature regarding 18F-FDG
PET/CT radiomics in thyroid nodules. Sollini et al. evaluated
thyroid incidentalomas with texture analysis and predicted
that some parameters could provide benign and malignant
differentiation [19]. However, machine learning modeling
was not performed in this study. The aim of our study was
to evaluate focal 18F-FDG uptake detected by PET/CT with
SUV and texture parameters, to be able to predict the defini-
tive diagnosis with radiomic model.

Materials and Methods

Patients

PET/CT images performed in our center between March 2010
and September 2018 were retrospectively analyzed. Patients
who had focal 18F-FDG uptake in the thyroid gland and who
underwent fine needle aspiration biopsy (FNAB) from this
area were selected. In patients included in our study, PET/
CT imaging was performed for oncological purposes (diagno-
sis, staging, restaging, treatment response evaluation) in 57
patients and non-oncological (infectious/inflammatory dis-
eases) for 3 patients. Focal 18F-FDG involvement in the thy-
roid gland was detected incidentally in these patients, and
PET/CT imaging was not performed to evaluate the thyroid
nodule specifically. These patients underwent ultrasound-
guided FNAB. Cytology and/or histopathology results were
used as reference to identify the exact diagnosis: benign or
malignant. In case of uncertain significance of atypia or sus-
picious results, thyroidectomy results were accepted as gold
standard to determine the definitive diagnosis.

Patients with inadequate cytology result were excluded.
Also, diffuse 18F-FDG uptake in the thyroid gland was not
included in this study because diffuse involvement is often
associated with benign diseases [4]. In addition, patients with

atypia of undetermined significance or suspicious results who
had no definitive pathology were excluded from the study.

PET/CT Imaging

Patients with appropriate patient preparation (fasting for at
least 4 h) and adequate blood glucose levels were enrolled in
PET/CT. Approximately 1 h after the average injection of
4.07 Megabecquerels (MBq)/kg (0.11 miliCurie/kg) 18F-
FDG, first, a contrast-free CT scan from the vertex to the
middle of the thigh was obtained using the following param-
eter in Philips Gemini TOF PET/CT (Eindhoven,
Netherlands): 120 kVp; 50mAs; 5.0-mm re-structured section
thickness. After the CT imaging was completed, the PET scan
in the same area was performed with a position of 10–12 beds
per patient and 1.5 min/bed position. Images were reconstruct-
ed using a row action maximum likelihood algorithm.

Texture Analysis

PET/CT images of the patients included in the study were
analyzed by two nuclear medical physicians by the program
Local Image Features Extraction (LIFEx) package (http://
www.lifexsoft.org) [20]. The focal 18F-FDG uptake, which
can be distinguished from the peripheral thyroid tissue, was
drawn with a 40% SUVmax threshold in 3D from PET images
[21, 22]. Texture matrices were computed after resampling to
a 4 mm× 4 mm× 4 mm grid, with 64 bins and absolute scale
bounds between 0 and 35. Conventional parameters
(SUVmin, SUVmean, SUVstd, SUVmax, SUVpeak, TLG),
first-order (histogram and shape), and second-order features
(gray-level co-occurrence matrix: GLCM, neighborhood
gray-level different matrix: NGLDM, gray-level run-length
matrix: GLRLM, gray-level zone-length matrix: GLZLM),
in total, 46 features were extracted from the obtained VOI.
The evaluated parameters are shown in Table 1.

Statistical Analysis

Statistical analysis was performed with SPSS v24.0 (IBM,
USA). The patients randomly split into the train (70%) and
test (30%) sets, as in the literature [23–25]. Normally distrib-
uted data were presented as mean ± standard deviation, and
non-normal distributed data were given as median (range).
The relationship between gender and pathology was evaluated
by chi-square test. In univariate analysis, the comparison of
texture analysis features in benign and malignant groups was
performed by Mann-Whitney U test. Significant parameters
were evaluated by ROC analysis. The correlation between the
variables with AUC value over 0.7 was examined by spear-
man correlation test. The features with a correlation coeffi-
cient of above 0.6 were not included in the model [26]. The
features with a correlation coefficient of less than 0.6 were

242 Nucl Med Mol Imaging (2020) 54:241–248

http://www.lifexsoft.org
http://www.lifexsoft.org


evaluated with Weka data mining program to form a model.
Five machine learning algorithms (random forest, naive
bayes, k nearest neighbor, decision tree, and support vector
machine) and logistic regression for binary risk classification
were compared. To compare their predictive performance for
differentiating focal 18F-FDG uptake in thyroid gland between
models, the receiver operating characteristic (ROC) curve
analysis was used. Tenfold cross-validation was used as inter-
nal validation method. A p < 0.05 was considered statistically
significant.

Results

Train Set

Forty-two patients with definitive pathology were included in
train group. Fifty-two percent of these patients were women.
The mean age of all patients was 63.5 ± 14.3 (32–88) years.
Mean fasting blood glucose values of patients were 98 ± 2 g/dl
(73–125 g/dl). Between PET/CT and FNAB, there was an
average of 99.1 days (1–294). FNAB results were benign in
24 patients (57%), atypia of undetermined significance in two
patients (5%), suspicion of malignancy in 10 patients (24%),
and malignancy in six patients (14%). Sixteen patients had
total thyroidectomy (Table 2). One of the patients with atypia
of undetermined significance was diagnosed as papillary car-
cinoma due to thyroid carcinoma metastasis in right femur.
Another patient who suspicious FNAB result was diagnosed
with papillary carcinoma metastasis as a result of wedge bi-
opsy from the lung. Total thyroidectomywas not performed in
these patients. And also, total thyroidectomy was not per-
formed in two patients who had malignant FNAB result due
to their oncological diseases.

In total, twenty of the patients (47.6%) had malignant pa-
thology. Fourteen patients were diagnosed with papillary thy-
roid carcinoma, 1 patient with follicular thyroid carcinoma, 2
with medullary thyroid carcinoma, 2 with thyroid anaplastic
carcinoma, and 1 with differential squamous cell and papillary
carcinoma.

Although the FNAB result obtained from two patients was
benign, it was diagnosed as papillary thyroid carcinoma after
thyroidectomy.

The rates of malignancy were 65% and 31.8% in males and
females, respectively; there was a statistically significant dif-
ference (p: 0.032).

Test Set

Eighteen patients with definitive pathology were included in
test group. Sixty-one percent of these patients were women.

Table 2 The number of patients undergoing biopsy and thyroidectomy

FNAB groups Number
of
patients
( t r a i n
set)

Number of
patient who had
total
thyroidectomy
(train set)

Number
of
patients
(test set)

Number of
patient who had
total
thyroidectomy
(test set)

Benign 24 2 10 1

Atypia of
indetermi-
nate
signifi-
cance

2 1 - -

Suspicion of
malignancy

10 9 4 4

Malignant 6 4 4 -

Total 42 16 18 5

Table 1 Extracted features by
LIFEx Conventional SUVmin, SUVmax, SUVmean, SUVstd, SUVpeak, TLG

Histogram based Skewness, kurtosis, entropy (log 2&10), energy

Shape based Volume, sphericity, compacity

GLCM Homogeneity, energy, contrast, correlation, entropy (log 2&10), dissimilarity

GLRLM SRE, LRE, LGRE, HGRE, SRLGE, SRHGE, LRLGE, LRHGE, GLNU, RLNU, RP

NGLDM Coarseness, contrast, busyness

GLZLM SZE, LZE, LGZE, HGZE, SLZLGE, SZHGE, LZLGE, LZHGE, GLNU, ZLNU, ZP

SUV, standard uptake value; TLG, total lesion glycolysis;GLCM, gray-level co-occurrencematrix;GLRLM, gray-
level run length matrix; NGLDM, neighborhood gray-level different matrix; GLZLM, gray-level zone length
matrix; SRE, short-run emphasis; LRE, long-run emphasis; LGRE, low gray-level run emphasis; HGRE, high
gray-level run emphasis; SRLGE, short-run low gray-level emphasis; SRGHE, short-run high gray-level empha-
sis; LRLGE, long-run low gray-level emphasis; LRHGE. long-run high gray-level emphasis; GLNU, gray-level
non-uniformity; RLNU, run length non-uniformity; RP, run percentage; SZE, short-zone emphasis; LZE, long-
zone emphasis; LGZE, low gray-level zone emphasis;HGZE, high gray-level zone emphasis; SZLGE, short-zone
low gray-level emphasis; SZHGE, short-zone high gray-level emphasis; LZLGE, long-zone low gray-level em-
phasis; LZHGE, long-zone high gray-level emphasis; ZLNU, zone length non-uniformity; ZP, zone percentage
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The mean age of all patients was 65.7 ± 12.1 (38–84) years.
Mean fasting blood glucose values of patients were 101 ± 3 g/
dl (87–129 g/dl). FNAB results were benign in 10 patients
(55.6%), suspicion of malignancy in four patients (22.2%),
and malignancy in four patients (22.2%). Five patients had
total thyroidectomy (Table 2). Four patients with suspected
biopsy were diagnosed as malignant after thyroidectomy.

In total, eight of the patients (44.4%) had malignant
pathology.

Radiomic Analysis

In the univariate analysis, all conventional parameters, 5 first-
order features, and 16 second-order features were significantly

different between benign and malignant groups in train set
(Table 3). The feature with the highest benign-malignant dis-
criminating power was GLRLMRLNU. When the cutoff was
68.6, the sensitivity, specificity, PPV, NPV, and accuracy
were 75%, 90.9%, 88.2%, 100%, and 83.3%, respectively
(AUC: 0.827, 0.693–0.962, 95% CI). The median value of
GLRLMRLNU was 60.7 (20.0–645.7).

The median value of SUVmax was 4.75 (2.2–30.4). When
the cutoff was 3.9, the sensitivity, specificity, and accuracy
were 90%, 55.5%, and 77.8% respectively (AUC: 0.758,
0.612–0.904, 95% CI).

AUC values of six conventional parameters, two first-order
features, and 10 second-order features were greater than 0.7
(Table 4).

Table 3 The features with
significantly different median
(range) values between benign
and malignant groups (train set)

Features Benign group Malignant group p value

SUVmin 1.8 (1.0–2.7) 2.3 (1.1–12.1) 0.008

SUVmean 2.5 (1.4–7.4) 3.3 (2.0–19.5) 0.009

SUVstd 0.5 (0.2–2.9) 0.8 (0.3–4.0) 0.012

SUVmax 3.7 (2.2–14.7) 5.6 (2.6–30.4) 0.004

SUVpeak 2.9 (1.7–10.3) 4.3 (2.5–25.4) 0.01

TLG 14.8 (7.0–39.7) 48.1 (6.7–491.2) < 0.001

HISTO_
entropylog10

0.53 (0.23–1.22) 0.67 (0.40–1.42) 0.039

HISTO_entropylog2 1.76 (0.78–4.06) 2.21 (1.32–4.73) 0.044

SHAPEvolume 5.1 (3.3–27.7) 12.0 (3.1–61.1) 0.008

SHAPE_sphericity 1.055 (0.990–1.160) 1.025 (0.910–1.160) 0.036

SHAPE_compacity 0.90 (0.67–1.62) 1.26 (0.68–3.02) 0.004

GLCM_entropylog10 1.06 (0.45–1.73) 1.29 (0.72–2.41) 0.026

GLCM_entropylog2 3.53 (1.49–5.76) 4.28 (2.39–8.00) 0.024

GLCM_correlation 0.196 (0.051–0.506) 0.316 (0.084–0.521) 0.014

GLRLM_LGRE 0.046 (0.009–0.107) 0.026 (0.001–0.067) 0.008

GLRLM_HGRE 25.8 (10.4–226.3) 43.9 (16.7–1355.9) 0.011

GLRLM_SRLGE 0.033 (0.009–0.064) 0.023 (0.001–0.054) 0.008

GLRLM_SRHGE 20.15 (5.80–219.40) 38.00 (12.70–1307.50) 0.012

GLRLM_LRLGE 0.090 (0.010–0.805) 0.046 (0.001–0.155) 0.022

GLRLM_LRHGE 62.6 (28.5–253.9) 85.1 (40.8–1565.1) 0.006

GLRLM_RLNU 43.2 (20.0–84.5) 105.2 (24.7–645.7) < 0.001

NGLDMcoarseness 0.074 (0.022–0.131) 0.030 (0.006–0.118) 0.001

GLZLM_LGZE 0.049 (0.010–0.161) 0.027 (0.001–0.082) 0.007

GLZLM_HGZE 25.35 (9.30–230.50) 47.30 (16.10–1284.60) 0.008

GLZLM_SZHGE 5.65 (0.01–151.50) 15.75 (0.10–932.40) 0.01

GLZLM_GLNU 2.3 (1.0–4.2) 3.7 (1.0–21.4) 0.001

GLZLM_ZLNU 1.8 (1.0–15.0) 3.2 (1.0–92.7) 0.012

SUV, standard uptake value; TLG, total lesion glycolysis;GLCM, gray-level co-occurrencematrix;GLRLM, gray-
level run length matrix; NGLDM, neighborhood gray-level different matrix; GLZLM, gray-level zone length
matrix; LGRE, low gray-level run emphasis; HGRE, high gray-level run emphasis; SRLGE, short-run low
gray-level emphasis; SRGHE, short-run high gray-level emphasis; LRLGE, long-run low gray-level emphasis;
LRHGE, long-run high gray-level emphasis; GLNU, gray-level non-uniformity; RLNU, run length non-
uniformity; RP, run percentage; LGZE, low gray-level zone emphasis; HGZE, high gray-level zone emphasis;
SZHGE, short-zone high gray-level emphasis; ZLNU, zone length non-uniformity
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The correlation between 18 features with AUC values
above 0.7 was investigated (Fig. 1). The features with a cor-
relation coefficient of less than 0.6 were GLRLMRLNU and
SUVmax. Other parameters were not included in the model
because the correlations between these features were high.
GLRLMRLNU and SUVmax were evaluated to build a model
to predict the exact pathology outcome. Random forest algo-
rithm showed the best model accuracy and the highest AUC
(Table 5). Sensitivity, specificity, and accuracy of the model
in benign-malignant differentiation were calculated as 75%,
81.8%, and 78.6%, respectively (AUC: 0.849). The ROC
curve of the model is shown in Fig. 2.

When the random forest model was tested with a previous-
ly unused test set, sensitivity, specificity, and accuracy were
calculated as 75%, 80%, and 77.8%, respectively (AUC:
0.731).

Discussion

In the literature, there are limited studies on the heterogeneity
of thyroid incidentalomas in 18F-FDG PET/CT. Sollini et al.

[19] evaluated the benign-malignant thyroid incidentaloma
differentiation using conventional parameters, first-, and
second-order features. In this study, HISTOskewness was found
to be the best feature for benign-malignant differentiation
(AUC= 0.66). A significant difference was observed between
SUVstd, SUVmax, TLG, MTV, HISTOkurtosis, and
GLCMcorrelation features between benign and malign groups.
In our study, conventional parameters, first-, and second-order
features could be obtained from all patients. A univariate anal-
ysis revealed a significant difference in 27 parameters between
benign and malignant groups. In contrast to the study by
Sollini et al., the HISTOkurtosis and skewness features did not
differ significantly between the benign and malign groups in
our study. In the ROC analysis, the variable with the highest
AUC value was GLRLMRLNU (AUC = 0.827). GLRLMRLNU

is a parameter that measures the similarity of run lengths in the
image, with a high value showing the heterogeneity in the
image.

There are many studies in the literature about the use of
SUV in benign and malignant differentiation. In some of these
studies, a cutoff could be determined for SUVmax [2, 3, 6, 7],
while in some studies, a suitable cutoff could not be detected
[8–10]. And because SUVmax show the highest metabolic
activity in a single pixel, volume-based metabolic parameters
were used in literature. TLG is a semiquantitative parameter
obtained by SUVmean and tumor volume and used for eval-
uating metabolic activity. In a study, Shi et al. [12] reported
that TLG indices were useful in the differentiation of benign
and malignant thyroid incidentalomas. Similarly, in our study,
TLG values were higher in malignant group and there was a
statistically significant difference between benign and malig-
nant groups. Also, in our patient group, the discriminative
power of TLG was higher than SUVmax. But TLG was not
included in our model training because it showed a high cor-
relation with GLRLMRLNU.

Machine learning algorithms provide powerful modeling
tools to mine the huge amount of image data available, reveal
underlying complex biological mechanisms, and make per-
sonalized precision cancer diagnosis and treatment planning
possible. With machine learning algorithms, we evaluated the
features of AUC above 0.7 and the correlations with each
other in order to prevent overfitting. SUVmax and
GLRLMRLNU significantly contributed to model. The sensi-
tivity, specificity, and accuracy of the model for detecting
malignant lesions were 75%, 81.8%, and 78.6%. Our model’s
discriminating power was calculated higher than SUVmax
and TLG. This has led us to conclude that the model we
obtained can be used before the FNAB in the differentiation
of benign-malignant thyroid incidentalomas and may be more
useful than SUVmax to predict the outcome.

One of the problems in texture analysis is that the results
may vary with different patient groups. Before using a model,
it is important to evaluate model performance in data sets that

Table 4 Features with AUC greater than 0.7

Features AUC 95% CI

SUVmin 0.739 0.586–0.891

SUVmean 0.734 0.585–0.884

SUVstd 0.725 0.572–0.878

SUVmax 0.758 0.612–0.904

SUVpeak 0.733 0.577–0.889

TLG 0.822 0.687–0.956

SHAPEvolume 0.741 0.583–0.899

SHAPEcompacity 0.759 0.607–0.911

GLCM_entropylog10 0.701 0.543–0.860

GLCM_entropylog2 0.703 0.545–0.861

GLRLM_HGRE 0.730 0.579–0.880

GLRLM_SRHGE 0.727 0.576–0.879

GLRLM_LRHGE 0.750 0.601–0.899

GLRLM_RLNU 0.827 0.700–0.964

GLZLM_HGZE 0.740 0.590–0.890

GLZLM_SZHGE 0.732 0.579–0.884

GLZLM_GLNU 0.788 0.641–0.934

GLZLM_ZLNU 0.725 0.569–0.881

SUV, standard uptake value; TLG, total lesion glycolysis; GLCM, gray-
level co-occurrence matrix; GLRLM, gray-level run length matrix;
GLZLM, gray-level zone length matrix; HGRE, high gray-level run em-
phasis; SRGHE, short-run high gray-level emphasis; LRHGE, long-run
high gray-level emphasis; RLNU, run length non-uniformity; RP, run
percentage; HGZE, high gray-level zone emphasis; SZHGE, short-zone
high gray-level emphasis; GLNU, gray-level non-uniformity; ZLNU,
zone length non-uniformity; AUC, area under curve; CI, confidence
interval
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are not used to develop the model. External validation uses an
independent dataset to evaluate the accuracy of the predictive
model and to assess the generalizability of a predictive model.
Therefore, we evaluated the performance of the model we
created in our study using external validation.

In the literature, false negative rates in FNAB in thyroid
n o d u l e s r a n g e d f r om 1 t o 3 9 . 7 2% [ 2 7 , 2 8 ] .
Cytomorphological overlap or sampling error between benign
and low-grade malignant lesions can cause false negativity
[29]. In two patients, FNAB results were benign, but the his-
topathology was malignant. In these patients, ultrasound was
suspicious for malignancy and SUVvalues were at the level of
malignancy. The model identified these patient’s pathology
results as malignant. It was a limitation that the definitive

pathology results could not be obtained in other patients with
benign results. Another limitation was that this method could
not be applied to non-FDG avid nodules that can be observed
in 18F-FDG PET/CT.

In the LIFEx program, for technical reasons, second-order
features of VOIs below 64 voxels cannot be obtained. This
can lead to limitations on the use of the second-order features.
Therefore, this method may not work for nodules smaller than
64 voxels. It is also known that blood glucose values, the time
between injection and imaging, and the reconstruction
methods may have effect on the radiomic analysis [30]. A
standardization on this issue is not yet available. Therefore,

Fig. 1 The correlation matrix of
features with AUC greater than
0.7

Fig. 2 The ROC curve of the model

Table 5 AUC and accuracy values of models obtained by different
algorithms in train set

Algorithms Area under curve Accuracy (%)

Naive bayes 0.714 64.3

Logistic regression 0.770 76.2

Support vector machine 0.577 59.5

k nearest neighbor 0.650 64.3

Decision tree 0.638 61.9

Random forest 0.849 78.6
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prospective studies with larger patient groups are needed in
this regard.

In conclusion, it is thought that, 18F-FDG PET/CT texture
analysis may be more useful than SUVmax in predicting the
benign-malignant distinction of focal involvement in the thy-
roid gland.
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